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Abstract

This paper concerns the reconstruction of the absorption and scattering parameters in
a time-dependent linear transport equation from knowledge of angularly averaged mea-
surements performed at the boundary of a domain of interest. Such measurement settings
find applications in medical and geophysical imaging. We show that the absorption coef-
ficient and the spatial component of the scattering coefficient are uniquely determined by
such measurements. We obtain stability results on the reconstruction of the absorption
and scattering parameters with respect to the measured albedo operator. The stability
results are obtained by a precise decomposition of the measurements into components
with different singular behavior in the time domain.

1 Introduction

Inverse transport theory has many applications in e.g. medical and geophysical imaging. It
consists of reconstructing optical parameters in a domain of interest from measurements of
the transport solution at the boundary of that domain. The optical parameters are the total
absorption (extinction) parameter o(z) and the scattering parameter k(z,v’, v), which measures
the probability of a particle at position z € X C R™ to scatter from direction v € S"~! to
direction v € S"!, where S*~! is the unit sphere in R".

The domain of interest is probed as follows. A known flux of particles enters the domain
and the flux of outgoing particles is measured at the domain’s boundary. Several inverse theories
may then be envisioned based on available data. In this paper, we assume availability of time
dependent measurements that are angularly averaged. Also the source term used to probe
the domain is not resolved angularly in order to e.g. save time in the acquisition of data.
More precisely, the incoming density of particles ¢(¢,x,v) as a function of time ¢, at position
x € 0X at the boundary of the domain of interest, and for incoming directions v, is of the
form ¢g(t, z,v) = ¢(t,x)S(x,v), where ¢(t,x) is arbitrary but S(z,v) is fixed. This paper is
concerned with the reconstruction of the optical parameters from such measurements. We show
that the attenuation coefficient is uniquely determined and that the spatial structure of the
scattering coefficient can be reconstructed provided that scattering vanishes in the vicinity of
the domain’s boundary (except in dimension n = 2 and when X is a disc, where our theory
does not require k to vanish in the vicinity of 0.X). For instance, when k(x,v',v) = ko(z)g(v', v)
with g(v’,v) known a priori, then ko(z) is uniquely determined by the measurements. Similar
results were announced in [1] when measurements are available in the modulation frequency
variable, which is the dual (Fourier) variable to the time variable.
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Several other regimes have been considered in the literature. The uniqueness of the recon-
struction of the optical parameters from knowledge of angularly resolved measurements both
in the time-dependent and time-independent settings was proved in [7, 8]; see also [15] for a
review. Stability in the time-independent case has been analyzed in dimension n = 2,3 under
smallness assumptions for the optical parameters in [12, 13| and in dimension n = 2 in [16].
Stability results in the presence of full, angularly resolved, measurements have been obtained
in [3, 4, 17]. The intermediate case of angularly averaged measurements with angularly resolved
sources was considered in [11]. The lack of stability of the reconstruction in the time indepen-
dent setting with angularly averaged measurements and isotropic sources is treated in [6]. See
also [2] for a recent review of results in inverse transport theory.

The rest of the paper is structured as follows. In section 2, we recall known results on the
transport equation, present our measurement setting and a decomposition of the resulting mea-
surement operator (the averaged albedo operator) in Proposition 2.1, and study the temporal
behavior of the averaged albedo operator when the scattering coefficient vanishes in the vicinity
of the boundary of the (convex) domain X. Our main results on uniqueness and stability are
presented in section 3. We show that the absorption coefficient and the spatial structure of the
scattering coefficient (the phase function describing scattering from v to v’ has to be known
in advance) can be reconstructed stably from angularly averaged time dependent data. The
reconstruction of the scattering coefficient requires inversion of a weighted Radon transform in
the general case. When X is a sphere, i.e., when measurements are performed at the bound-
ary of a sphere, then the scattering coefficient may be obtained by inverting a classical Radon
transform. In section 4, we show that the results are significantly modified when k does not
vanish at the boundary of the domain X.

The mathematical derivation of the results is fairly technical and is based on a careful
analysis of the temporal behavior of the decomposition of the albedo operator into components
that are multi-linear in the scattering coefficient. We show that the ballistic and single scattering
components can be separated from the rest of the data. These two components are then used to
obtain the uniqueness and stability results. It turns out that the structure of single scattering
is very different depending on whether k£ vanishes on 0.X or not. When k does not vanish on
0X, the main singularities of the single scattering component do not allow us to “see inside”
the domain as they only depend on values of k£ at the domain’s boundary in dimension n > 3.
The singular structure of single scattering and the resulting stability estimates are presented in
detail both when k vanishes on X and when it does not. Since the case of non-vanishing k£ on
0X is practically interesting mostly as a negative result (for then we are not able to reconstruct
k inside the domain from such singularities in dimension n > 3), we have presented the results
without proofs in section 4 and refer the reader to [5] for the mathematical details. The proof of
the results when £ vanishes in the vicinity of 0.X are presented in detail in sections 5 and 6. In
Appendix A, we give the proof of elementary lemmas, which appear in section 5. In Appendix
B, we complete the proof of the technical but central Proposition 2.1.

2 Forward problem and albedo operator

2.1 The linear Boltzmann transport equation

We now introduce notation and recall some known results on the linear transport equation. Let
X be a bounded convex open subset of R, n > 2, with a C* boundary dX. Let v(z) denote the
outward normal unit vector to 0X at x € 0X. Let 'y = {(z,v) € 0X xS ' | £v(z) v > 0}
be the sets of incoming and outgoing conditions. For (z,v) € X x S"71, we define 74 (z,v) and



7(x,v) by 74(z,v) := inf{s € (0,4+00) | x £ sv € X} and 7(x,v) := 7_(z,v) + 74 (x,v). For
z € 90X, we define S} :=={veS" | £v(z) v>0}.

We consider two nonnegative (measurable) functions o : X x " ! — Rand k : X x S"~! x
S"~! — R and two convex open subsets Y and Z of R with C! boundary such that:

Z CY C X:o is bounded and continuous on Y x S" !and supported on Y x S

k is bounded and continuous on Z x "' x S"! and supported on Z x S"7 x S*7L. (2.1)

We consider also the real ¢ defined by ¢ := inf(, .ycoxxz |* — 2| and we assume throughout this
paper except in section 4 that
0> 0. (2.2)

In other words, except in section 4, k vanishes in the d—vicinity of the boundary 0.X. In practice,
this simply means that the array of detectors has to be located some distance away from the
scattering region, which is not too restrictive an assumption.

Let T'> n > 0. We consider the following linear Boltzmann transport equation

%(t z,v) +v - Vyu(t,z,v) + o(z,v)u(t, z,v)

_ / Kz, o) o)ult, z, o )do, (t,2,0) € (0,T) x X x S,
§n—1 (23)

woryxr_ (t, 2, v) = ¢(t, z,v),
u(0,2,v) =0, (z,v) € X x S"71

where ¢ € L'((0,T), LY(T_,d¢)) and suppg C [0,n]. Signals are then emitted for a maximal
duration n and are recorded at the domain’s boundary for a duration 7" that will be chosen
sufficiently large so that information can travel through the domain X and be measured. Here,
d¢(z,v) = |v - v(z)|dvdu(z), where du is the surface measure on 90X and dv is the surface
measure on S",

The theory for (2.3) is well-developed; we refer the reader to [4, 7, 9]. For our purpose, it
is sufficient to recall that the solution may be decomposed as

t ©©
u(t) = G_(t)p + / > Hya(t — s)AsG_(s)dds, (2.4)
0 m=1
where we have defined the following operators:
t
Aof = k(z, v v)f(x,v")dv', H,(t) = / Hy1(t — s)AUp(s)ds, m>1
sn—1 0

Uy(t) = Ho(t) f = e Joo@=so0)ds £ (3 — 1 0) X0 (1), (2,0) € X x S™1,
G_(1)(a,v) = eI Fl=wwdsg (¢t _ 1 (2,0),0 — 7_(z,0)v,0), (t,2,v) € (0,T) x X x §*L,

with X[0,r_(z,v)) defined on R such that x[o-_ (z,))(t) = 1 when 0 <t < 7_(z,v) and x[o,r_(z0))(t) =
0 otherwise. Functions ¢ € L'((0,n), L}(T'_, d€)) are extended to t € R by 0 outside of the in-
terval (0,7n). The first term G_(t)¢ in the above series is the ballistic part of u(t) while the
term corresponding to m > 1 is m-linear in the scattering kernel k. The term corresponding to
m = 1 is the single scattering term.

The albedo operator A given by the formula

A¢ = wor)xr., for ¢ € L'((0,n), L'(T'_, d¢)) where u solves (2.3), (2.5)

is also well-defined and bounded; see [4, 7] for a derivation of the albedo operator and for the
reconstruction of the optical parameters when the full albedo operator is known. We assume
here that only partial knowledge of the albedo operator is available from measurements.
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2.2 The operator Agy and its distributional kernel

We now define more precisely the type of measurements we consider in this paper. The direc-
tional behavior of the source term is determined by a fixed function S(x,v), which is bounded
and continuous on I'_. We assume that the incoming conditions have the following structure

¢s(t', ', v") = S(@' )t a), ¥ € (0,m), (2/,0)) €T, (2.6)

where ¢(t,z) is an arbitrary function in L'((0,7n) x 0X). We model the detectors by the kernel
W (z,v), which we assume is a continuous and bounded function on I'y. The available mea-
surements are therefore modeled by the availability of the averaged albedo operator Agy from

LY((0,m) x 90X, dtdu(z)) to L*((0,T) x X, dtdu(x)) and defined by
Aswo(t,z) = /5”1 A(ps)(t, z,0)W (x,v)(v(z) - v)dv, for a.e. (t,z) € (0,T) x 0X.  (2.7)

The functions S and W are fixed throughout the paper. The case W = 1 corresponds to
measurements of the current of exiting particles at the domain’s boundary.

The decomposition of the transport solution (2.4) translates into a similar decomposition
of the albedo operator of the form

Agw¢ lf 33 Z Amsw¢ t .1') (28)
for (t,x) € (0,T) x 0X, where we have defined

Aoswd(t.0) = [ (12) o)W (2,0) (G-()o5) e, (00 (29)

Apswo(t, x) :/s;;l(l/(x) V)W (z,v (/ Hy1(t —s)AsG_(s )¢Sds>( (t,xz,v)dv, (2.10)

0,T)xTy

for a.e. (t,z) € (0,7) x 0X where ¢g is defined by (2.6). The kernels of the operators A, s w can
be written explicitly. Consider the nonnegative (measurable) function £ from 0X x 0X — R
defined by

w1 =] Ty — Xy T1—X
E(zy,z :exp<—/ oz — s— 2, ! 2 ds) 2.11
( 1 2) o ( 1 |$1—[L'2| |[E1—ZL’2|) ( )
for (z1,22) € 0X x 0X. We use the same notation F(z1,x2) when x; and x5 are either in X
or on 0X. For m > 3, we also define the nonnegative (measurable) function E(xy,...,z,,) by
induction:
E(zy,...,20) = E(x1, ..., 20 1) E(Tm_1,Tm), m > 3,

which measures the total attenuation along the broken path (zy,...,z,,) € 90X x X™? x 0X.

For m € N, m > 1 and for any subset U of R™ we denote by yy the characteristic function
from R™ to R defined by xu(y) =1 when y € U and xy(y) = 0 otherwise. We then obtain the
following result on the structure of the kernels of the albedo operator.

Proposition 2.1. We have

A (0)(t,7) = /( ol ), (2.12)



form >0 and for a.e. (t,x) € (0,T) x 0X, where

/ E(:I;’ x/) / / /
Yo(T, 2, 2) = a1 [W(z,v)S(@",v)(v(z) - v)|v(z) - UHv:l%;‘ o(r — |z —2']), (2.13)
W) = N (T =o' = al) [ (vl) o)W (z,0) [Blao = sv.0)k(z = s0,0/,0)

se
2021 — (z — ) - v)" 3
X X(0r_ (zon(8)S (@, V) |v(x) -V e 22 laa dv, (2.14
X(0,7— (=, ))( ) ( )| ( ) H UI:‘zlefsv‘ ;822(7277}-(1;1\,2)) |l‘ o — 7'1)|2n—4 ( )

for (t,x,2") € Rx0X x0X and where 7, form > 2 admits a similar, more complez, expression
given in section 5 (see (5.21)—(5.22)).

Proposition 2.1 is proved in detail in Appendix B. As in (2.4), 7o is the kernel of the
ballistic contribution to Agyy, 71 that of the single scattering contribution and -, that of the
contribution that is m—Ilinear in k.

2.3 Regularity of the albedo kernels

The reconstruction of the optical parameters is based on an analysis of the behavior in time of
the kernels of the albedo operator. We define the scattering kernels

+oo
o= Ym Ti=To—m, To=T1—mn (2.15)
m=0

Thus, I'y, accounts for scattering of order at least k in the albedo operator. Our first result is
the following.

Theorem 2.2. Under the assumption k € L>®(X x S*™! x S*1) and under assumption (2.2),
which implies that the scattering coefficient vanishes in the vicinity of 0X, we have

(r— |z —2) T n(rz2) € L2(0,T) x 0X x 0X) when n > 2; (2.16)
Lo(r,z,2") € L=((0,T) x 0X x 0X), whenn=2; (2.17)

o -1 /
(1 +1n <M)) (FQ(T—:”) € L®((0,T) x X x 0X), whenn=3; (2.18)

T — |z —a| T — |z —2'|)
(r— |z — ') 2 Ta(r,2,2') € L®((0,T) x 90X x 0X), whenn > 4. (2.19)

Theorem 2.2 is proved in section 5. The results in (2.17)—(2.19) quantify how “smoother”
multiple scattering is compared to the single scattering contribution considered in (2.16).

2.4 Single scattering contribution and weighted X-ray transform

We want to analyze the behavior of the function vy (7, z, ) given by the right hand side of (2.14)
for all (7,z,2") € R x 0X x 0X. Under hypothesis (2.2), i.e., when the scattering coefficient
vanishes in the vicinity of where measurements are collected, Theorem 2.3 below describes the
behavior in time of the single scattering term as a function of E(x,2’) for (x,2') € 0X?, (which
is uniquely determined by the ballistic term; see (2.13)) and the weighted X-ray transform Py,
of x — k(z,vp,vg) (for a fixed vy € S"™!), where Py, is defined by

+($7’U)
Py, f(v,x) = / Yo(v,tv + x) f(tv + x)dt, (2.20)
T—(z,v)



for a.e. (v,x) € S"! x 90X and f € L*(X,sup,cgn—1 Yo(v, z)dz), and where the weight 9, :
S"! x X — R is the function defined by

Yo(v,x) = (T_(a:,v)ﬂr(x,v))_%l, (v,7) € S" ' x X. (2.21)

Theorem 2.3. Let (z,z() € 0X? be such that x{, + s(x — x}) € Z for some s € (0,1). Define
vy = ‘z:—ig' and ty = |x—zp| and let ky, (y) := k(y,vo,v0) fory € X. Then we have the following.

L V2W(, 00)S(xp, vo) (v() - vo) v (2() - vol E(w, 7()

oz, ah) = 9.22
71(7_ x 930) \/7Tt[) \/% ( )
1
xPﬁOkUO(vo,x)—l—o( ), as T — 1§, when n = 2
VT —t()

V(T mh) = (7 —to)"T (2t0) 2 Vol,_o(S"2)S(zh, vo)W (z, vo) [ (z}) - vo| (v(x) - o) (2.23)

X E(z, 2) Py kv, (vo, ) + o((T — to)ang), as T —t§ when n > 3.

Theorem 2.3 is proved in section 6. Theorem 2.3 may remain valid under more general

assumptions. For instance, when o is bounded and continuous on X, k is continuous on X X

S*1 x §"7! and k(x, .,.) decays sufficiently rapidly as x approaches the boundary 0X for any
x € X, then the same asymptotic expansion holds for ;.

3 Uniqueness and stability results under condition (2.2)

We recall that I'y = Z;‘fo 7m the distributional kernel of Agy and that I'y—vy = I'; denotes the
distributional kernel of the multiple scattering of Agy . For the rest of the paper, we assume that
the duration of measurement 7" > diam(X) := sup, e x2 |7 — y| so that the singularities of the
ballistic and single scattering contributions are indeed captured by the available measurements.

Let (,k) be a pair of absorption and scattering coefficients that also satisfy (2.1) and
(2.2) for the same (Y, Z) related to (o, k). We denote by a superscript ~any object (such as the
albedo operator A or the distributional kernels Ty and 7,) associated to (&, k). Let |||,z :=

-1l 222 (0.m)%0X)), L1 ((0,7) x )

3.1 Stability estimates in integral form

The following theorem presents stability results for the reconstruction of the attenuation coef-
ficient and of the scattering coefficient when the latter vanishes in the vicinity of the boundary

0X.

and (5,k) satisfy

Theorem 3.1. Assume mgy = min (infpr_ S,infr, W) > 0. Let (o,k)
= Ci(msw,X,Y) and

conditions (2.1)—~(2.2). Let z{, € 0X. Then there exist constants C,
Cy = Co(msw, X, Z) such that

[ 1B = Bltah + 7ol wo)on, ai)lv(ap) - woldoo < CulAsiy = Asaellr,  (3:1)

s%,_
| B, 20) Payy (0, 76) = B, 04) Pogfog (v, 25)| < Ca |[(7 = |2 = 25" (T = D), 2.2)|
(3.2)

for x € X such that pxy + (1 — p)x € Z for some p € (0,1) where v = ‘z:—igl, Py, is defined
in (2.20), and ky (y) := k(y, vy, vy) fory € X (fﬁug) is defined similarly).
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Theorem 3.1 is the main result of the paper. The first estimate (3.1) shows that integrals of
the attenuation coefficients are stably determined by the measurements Agyy. The attenuation
coefficient may then stably be reconstructed by inverse Radon transform as we will see in (3.7)
below. The second inequality shows that a weighted integral of the scattering coefficient is
stably determined by an appropriate measure of the multiple scattering coefficient I';. What
may then be stably reconstructed in the scattering kernel will be made explicit in Theorems
3.3 and 3.4 below. Theorem 3.1 is proved in section 6.

3.2 Uniqueness and stability when X is a ball of R"

When X is an open Euclidean ball of R", which is important from the practical point of
view in medical imaging as it is relatively straightforward to place sources and detectors on
a sphere, we are able to invert the weighted X-ray transform Py, f for functions of the form
f(z) € L*(X,sup,cgn-1 Yo(v, x)dzx) using the classical inverse X-ray transform (inverse Radon
transform in dimension n = 2). More general convex domains X, which require one to solve
more complex weighted X-ray transforms, are considered in the next subsection.

Up to rescaling, we assume X = B, (0, 1), the ball in R” centered at 0 of radius 1. Consider
the X-ray transform P defined by

T+(va)
Pf(v,z) = / f(sv+z)ds for a.e. (v,z) € S ! x 0X, (3.3)

T_(x,v)
for f € L*(X) (we extend f by 0 outside X). We have the following result:
Proposition 3.2. When X = B,(0,1) we have

Py, f(v,2) = P(of)(v,2), for a.e. (v,x) € S"' x X, (3.4)

for [ € L*(X,sup,cgn-1 Vo(v, x)dx) where o(y) := (1 — 2", ye X.

Proof of Proposition 3.2. It is easy to see that

mi(tv+qutv) = V1-¢ Ft, (3.5)

Go(v,a) = (1—? =375 = (1 |2?) "7, (3.6)

for (t,q) € R? t2 +¢® < 1 and for (v,vt) € S*1 x §" 1 v . vt =0, where x = tv + qu* (we
recall that Jg is defined by (2.21)). Then Proposition 3.2 follows from the definition (2.20). O

Assume that (o, k) satisfies (2.1) and (2.2). Assume also that k(z,v,v") = ko(z)g(v, ")
for a.e. (z,v,v') € X x S"! x S"~! where g is a given continuous function on S*~! x §*~1
inf,cgn-1 g(v,v) > 0, and where ky € L*(X). Then from the decomposition of the angularly
averaged albedo operator Agy (Proposition 2.1) and from Theorems 2.2, 2.3, and from Propo-
sition 3.2 and methods of reconstruction of a function from its X-ray transform, it follows
that (o, ko) can be reconstructed from the asymptotic expansion in time of Agy provided that
o = o(z) and min(infp_ S, infp, W) > 0. In addition we have the following stability estimates.

Theorem 3.3. Assume X = B,(0,1) and mgy = min (infr_ S, infr, W) > 0. Let (0,k) and
(6, k) satisfy conditions (2.1) and (2.2). Assume that o, & do not depend on the velocity variable
(o(x,v) = 0o(x)) and let M = max(||o||Le(yy, |[|0||Ley)). Assume k(x,v,v") = ko(z)g(v,v") and
k(z,0,0") = ko(2)g(v,v'), glv,v) > 0, for (z,v,v') € X x S" 1 x S where g is an a priori
known continuous function on S*! x S* 1,



Then there ezists Cs = Cy(mgw, X, Y, M) and Cy = Cy(mgw, X,Y,Z, M, g) such that

1 - 1
lo =6l ;-3 < Callo = Gl eyl Asw — Asw (3.7)

~ 1 ~ ~
[ko — k0||H—§ < Cullko = kollFoe () <||7€0||L°°(Z)HAS,W — Aswllr (3.8)
1
+ H(T — |z — z’\)ngn(Fl —T)(r, 2, z’)HL )2 :

Theorem 3.3 is proved as Theorem 3.4 given below for a larger class of domains X. Under
the assumptions of Theorem 3.3 and additional regularity assumptions on (o, k), we obtain
stability estimates similar to those given in Corollary 3.5 below for a larger class of domains
X. Note that || — &z~ and |[ko — kol|z~(z) are bounded a priori by positive constants.
These and similar estimates below show how measurement errors translate into reconstruction
errors. These are Holder-type estimates in the sense that measurement errors of size § generate
reconstruction errors of size 0* for some o > 0. Such estimates should be compared to those
obtained for other measurement settings in inverse transport theory; see e.g. [2].

3.3 Uniqueness and stability estimates for more general domains X

Theorem 3.4. Assume that the open subset X of R™ is convex with a real analytic boundary
and that min (infr_ S, infr, W) > 0. Let (o, k) and (6, k) satisfy conditions (2.1) and (2.2).
Assume also that o, ¢ do not depend on the velocity variable (o(x,v) = o(z)) and k(z,v,v") =
ko(z)g(x,v,v") and k(z,v,v") = ko(z)g(z,v,v), g(z,v,v") > 0, for (x,v,0") € X x "1 x §*~!
where g is an a priori known real analytic function on X X S"~ L S*! and where suppky U
suppko C Z, (ko, ko) € L>(Z). Then estimates (3.7)~(3.8) still hold.

Theorem 3.4 is proved in section 6. Now we give stability estimates under additional reg-
ularity assumptions on the optical parameters and on X. Assume that X is convex with a real
analytic boundary and that min (infpf S,infr, W) > 0. Let Y and Z be open convex subsets
of X, Z Cc X,Z CY C X, with a C' boundary. Let ¢ be an a priori known real analytic
function on X x S"7! x "7 g(z,v,v") > 0 for (z,v,v') € X x S* 1 x S*7 L Let r; >0, ry > 0.
Consider the class

N = {(g, k)€ Ha"(Y) x L¥(Z x "' x SN | |loll 54m 4y < M,

)

k = kog, suppko C Z, || ko < Mg}. (3.9)

g2 )
Note that there exists a function D : N x (0, +00) — (0, 4+00) such that

lollzeeyy < Din,ri)llol gger ) < Daln,m) M,
1ol oe(z) < Da(n, ra)llkoll gy +es ) < Di(n,72) M, (3.10)
[kl (z) < lgllzes(z) 1koll oo (z) < Di(n,m9) Mal|gll 2o (2),

for (o, k) € N. We also use the classical interpolation formula

$9—s s—s1
£ llrs0) < LAl v | Il 20y (3.11)

for s1 < s < sy and for (O, s1,59) € {(Y,—3,2+71), (Z,—3,% +r2)}. Using Theorem 3.4 and
(3.10), and applying (3.11) on f = 0 — & and f = ko — ko we obtain the following result.

8



Corollary 3.5. Let (0,k), (7, l%) € N. Then, for —
ezists Cs = Cs(mgw, X, Y, My,71,5) such that

%§s§§+r1 and for 0 < r < ry, there

w) < Csllo =6l iy lAsw — Aswll 2y, (3.12)

/
K

lo =6l y3eryy < CollAsw — Aswllnz (3.13)

lo = 3]

2 o
where (k,K') = <"+2(”_S) 2, 1) ) and Cg = C27" Dy(n,r)>=+ (Di(n,r) is defined by (3.10)).

n+1+2r1 7 n+1+2r;
In addition, there exists C7 = Cr(mgw, X,Y, Z, g, Mq,11, M3, 72, 5) such that

ko = Follmsz) < Crllko = holl oz (45w = Asawlln (3.14)

+ H<T — |z — Z/|)37TH(F1 - Ty)(r, Z’ZI)HLoo)

B

H/

~ ~ 3-m ~ 7

o = Follyy ooz < O (s = Asawllyr + [[(r = le = /)" (01 = P22 | )
(3.15)
for =1 < s < 541y and 0 < r < 1y, where (k,K') = (nﬁ(TTS) 2(712%)) and Cy =

[\

n+1+42ry 7’ n+1+4+2rg

C2 Dy(n, 1)~ (Dy(n,r) is defined by (3.10)).

Remark 3.6. (i.) Theorem 3.4 and Corollary 3.5 remain valid when: X is only assumed to be
convex with C? boundary; the weight ¥, defined by (2.21) (resp. the function g which appears
in the assumptions of Theorem 3.4 and Corollary 3.5) is sufficiently close (in the C? norm) to
an analytic weight 6, on the vicinity of Z x S"~! (resp. an analytic function g, on the vicinity
of Z x S"~! x §"1); see proof of Theorem 3.4 and [10, Theorem 2.3].

(ii.) When n = 3 then under hypothesis (2.2), we have

H(T = D) = T, 2, )

‘LOO N

Z(Am,S,W - Am,S,W)
m=1

L(LY((0,n)x0X),L>((0,T)x0X))

where the distributional kernel of the bounded operator Z:;Cfl (Am,S,W_Am,S,W) from L'((0,n) x
dX) to L*((0,T) x dX) is given by I'y — I'y. Therefore when n = 3 and under condition (2.2),
the right-hand side of the stability estimates (3.8) and (3.14) can be expressed with operator
norms only (instead of using a norm on the distributional kernel of the multiple scattering).

4 Non-vanishing scattering on 0X

Throughout this section, we consider the class of optical parameters (o, k) such that (o, k)
satisfies (2.1) with

X =Y = Z (thus § = 0); the function k is continuous on X x S"~* x §*°1, (4.1)

Under assumptions (2.1) and (4.1), the albedo operator Agy is defined as in section 2 and the
decomposition given in Proposition 2.1 still holds. The behavior in time of the measurement
operator Agy is however significantly modified when k& does not vanish on 0.X. Because they
appear to be less interesting practically, the results of this section are given without proofs. We
refer the reader to [5] for the details.



4.1 Behavior in time of the averaged albedo operator

The analog of Theorem 2.2 is given by the following Theorems 4.1 and 4.2.

Theorem 4.1. Under the conditions k € L>(X x S"~! x S"™1) the following holds:

72 — o — 2Py (7,2, 2") € L=((0,T) x 0X x 0X) when n = 2; (4.2)
W
T'i—'x,’%(m, 2) € L¥((0,T) x X x dX)  whenn =3; (4.3)
ln (T r—x >
T—lz—z'|
Tlz — 2" 2y (1, 2,2') € L=((0,T) x 90X x 9X) when n > 4; (4.4)

The results in the following Theorem 4.2 quantify how “smoother” multiple scattering is
compared to single scattering contribution considered in (4.2)—(4.4).

Theorem 4.2. Assume that k € L>®(X x S"~! x §"7!). Then we have:

statement (2.17) still holds, whenn=2;  (4.5)
Tlx — 2'|To(T, 2, 2")
(r— |z — /) (1 +ln (_;jg;;j|))

. ‘,L,I|n72

5 € L=((0,T) x 0X x 0X), whenn =3;  (4.6)

el | ] Ty(r,2,2") € L®((0,T) x X x 0X),  whenn>4. (4.7)
T—|T—x

The analog of the single scattering asymptotic expansion in time given in Theorem 2.3 is:

Theorem 4.3. Let (z,z}) € 0X? be such that v + s(x — z}) € X for some s € (0,1). Set

vy = ;:Zﬂﬂ and ty = |z — xp|. Then under condition (4.1), we have the following results.
(2.22) still holds when n = 2,
1
W) = () ZW (o) (b, w0 ((0) - vl - ol o)) (45)
—lo 1
1
X (k(z,vo, vo) + k(x5, vo, v0)) + o(ln( ; )), as T — g, when n = 3,
T — o
w )k
i) = B [Sthwlvet) | [ T O ),
st U+
1o I AN
W (2, v) () - vo)/ Ko, ', o) 5o, V) (o) v ‘du'] (4.9)
s 1 ="
T, —
+o(1), as T — t§, when n > 4.

Note that the asymptotic expansion in time of v; depends on the values of £ on 0X in
dimension n > 3, and no longer on k inside X. Such singularities are thus useless in the
reconstruction of the scattering coefficient inside X. The proof of these results can be found in

5].

4.2 Stability results

The singularities exhibited in the preceding results still allow us to perform stable reconstruc-
tions when k does not vanish on 9X. The analog of Theorem 3.1 is as follows.
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Theorem 4.4. Let (0,k) and (6,k) satisfy (2.1) and (4.1). Let z}, € dX. Then we have:

E — E|(z, ! ~
[ B, )0 o) o) el ol | i) < s = Asalyr

ox | |z — g to=lo—zp|
-
|z—m0\

(4.10)

Let x € 0X be such that pr{+(1—p)x € X for somep € (0,1). Set vy = % and ty = |x—xj).

0

When n = 2, we have

W (,10)S . 1) (v(2) - v0) | (xh) - vol | Ew, ) Pogkay (v0, ) = E (@, 2) Paghag (v0, 2)]

< % |V =T =R - Fmz )| (4.11)
where || - ||poo = || - | Loo(0.1)x0x x0x)- When n =3, then
‘E(x, ) (k(, vo, v0) + k(@h, v, v0)) — B, ) (E(x, vo, vo) + E(xh, vo, UO))‘ (4.12)
XW (x,00)S (25, vo) (v(x) - vo)|v(xg) - vo| < % %(Fl —I)(r,22)] .
== Lo

When n > 4, then

(E(a;, 2k (z, vo,v) — E(z, 2))k(z, vo, v)) dv

—|—W(5E,U0)(V((I}) 'UO) / S(l’g,vl)’V(l‘{)) . U’| <E(x,x{))k(:c6,v’,vo) . E(l‘,%é)iﬂ(l’é,vl,vo)> du’

S",_l 1 — ’U, . ’UO
T, —
(VS W ICED! (4.13)

Lo

Note that if we assume that infr_ S > 0 and infr, W > 0, then (4.10) and (3.1) are
equivalent by performing the change of variables “vy = T 0y (4.10). Note also that (4.11)

|z—z|
is similar to but different from (3.2) in dimension n = 2. Results in (4.12) and (4.13) show
that the spatial structure of £ may be stably reconstructed at the domain’s boundary in n > 3.

They do not imply stable reconstruction of £ inside the domain.

4.3 Improved results when X is a ball

First consider the case n = 2 and X = B»(0,1). Let (o, k) satisfy (2.1) and (4.1). Assume that
k(z,v,v") = ko(z)g(v,v') for a.e. (z,v,0") € X x S"! x §""! where g is a given continuous
function on S"™! x S"7!inf,cgn-1 g(v,v) > 0, and where ky € L°°(X). Then from the decom-
position of the angularly averaged albedo operator Agy (Proposition 2.1) and from Theorems
4.1, 4.2, 4.3, and from Proposition 3.2 and methods of reconstruction of a function from its
X-ray transform, it follows that (o, ko) can be reconstructed from the asymptotic expansion in
time of Agw provided that o = o(x) and inf( yyepr_ S(2',v") > 0 and inf; )er, W(z,v) > 0.
In addition we have the following stability estimates.

Theorem 4.5. Assume X = B,(0,1), and min (infr_ S, infr, W) > 0. Let (o, k) and (&, k)
satisfy conditions (2.1) and (4.1). Assume that o, ¢ do not depend on the velocity variable
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(o(xz,v) = o(x)) and let M = max(||o|| peyy, ||0]|Le(y)). Assume k(z,v,v") = ko(x)g(v,v") and
k(z,v,0") = ko(z)g(v,v), g(v,v) > 0, for (z,v,0") € X x S" 1 x 8" where g is an a priori
known continuous function on S*~! x S*71. Then we have :

(1) (3.7) still holds;

(11) when n = 2, there exists Cs = Cs(S, W, X,Y, Z, M, g) such that

~ ~ 3 ~ ~
lo(ko =~ ko)l -3, < Csllko = Folld (IFollocllAssw — Aslyr (114)
1
VA= =Rr - T )| )
LOO
Theorem 4.5 can be proved as Theorem 3.4. Under the assumptions of Theorem 4.5 and

additional regularity assumptions on (o, k) one obtains stability estimates similar to those given
in Corollary 3.5.

5 Proof of Theorem 2.2

For 0 < b < a, we recall that

2n 1 2
- A= — 1
/0 a— bsin(Q)d a2 — b2 (5.1)

5.1 Proof of (2.16)

First, we give an estimate on the single scattering term. From (2.14), it follows that
n(r2,2)] < 2" W oISl Bl G (7, 2, 2') (5.2)

for a.e. (1,x,2") € R x 0X x 0X, where

dv. (5.3)

(1— (v —a')-v)"?
Xsuppk(x_svhsz% |z — 2 — T2

Gl(T,I,J,’/) :X(07+oo)(T—|LL’—LL’/|)/ )
sn-
Let (1,2z,2") € (0,T) x 0X x X be such that x # 2/ and 7 > |z — 2'|. Assume without loss
of generality 2’ — z = |2/ — z[(1,0...0). Let v € S"! and s := %
computations give s + |z — 2’ — sv| = 7. Using (2.2) we obtain that

Straightforward

if T <dors>7—90, then x — sv & suppk. (5.4)

Let n = 2. From (5.3) and (5.1), it follows that

o 1 27 27
Gi(r,z, 2 S/ . dQ) = < ; 5.5
1 ) o T— |t —2|sin(Q) VTE =z — a2 T VT — |z — 2] (5:5)
for 7 > 4. Using (5.3) and (5.4), we obtain
if 7 < 6 then Gy(7,x,2") = 0. (5.6)

Combining (5.2) with (5.5)—(5.6), we obtain (2.16) for n = 2.
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Let n > 3 and 7 > ¢ (the case 7 < § is already considered in (5.6)). Performing the

change of variables “r = (TTT;‘ET;E(Q)) - T7|271l|” with “v = ®(Q,w) = (sin(N), cos(Q)w),

Qe (—%,5), we S"?” on the right-hand side of (5.3), we obtain

3

n—3 r—x! n—3
N Gl o W / ( Vrle = =r)"
0

|z — ' |2 T-\ﬂ;—x’l + r)nfz(ﬂr\ﬂ;—w — p)n-2
/ [Xsuppk (T — sv)]ﬂzarcsin(‘z_z,‘fl(f_ (2ole—s?) dwdr. (5.7)
Sn—2 T[]
2(r+ 2] )
s:r-&-T_lz_zl‘ s v=%(Q,w)

Now assume 7 > $ + [z — 2/|. Then

o n—3
’.17—1"’2_”/':0 4 ( \/T(|$—$/|—T) dr
0

# + r>n72(7+|5;_x/| — p)n2

6 4—2n |x—z/| n—3 5 4—2n 1 5 4—2n
< (_) o — 2" V(e =2 =r) “dr = (Z) / Vr(l=r)dr < (Z) :
0 0

4

Therefore using (5.7) we obtain
s s 5 4—2n
(1 — |z —2'|)~"7 Gi(r,x,2") < 272Vol,_o(S"?)(T 4 diam(X))" 7 (—) : (5.8)

Finally assume § <7 < 2+ |z —2/| and |z — 2| <7 < T. From (5.7) and (5.4), it follows that

. r4(1,2,2") .
Vo, _o(S*2)(T + diam (X)) "z / Ve —a =)
P R e

(T—[z—2'])" T G1(7'95 ') < dr,

(5.9)

— / p—
|z —2'|+0—7 (5.10)

2

T—0+ |z — |
5 :

, (T ) =

r(r,z,2) =

Note that

|z—a'|

ro (a2 n—3 n—3
[ YT T
r | T)niQ r_(r,z,x’) ( |

(rae) (# + r)nfz(fﬂ% _ # + r>n72(7+|v’;—x 2

|z—a’| |z—a'|

2—n 2 1 2 1
<2 <Z> |x—x'|”_3/ va vl dr = 2"‘172_"\x—$’|”_3/ |x P dr.
2 r_(r,z,x") ( -+ 7') -2 r—(r,z,x’) ( ( + 7'3
5.11

Using (5.10) we obtain

/|m2z| 1 . Cin.7) In (%), ifn=23, ( )
— r=C(n,7) = 5 i . 5.12
vy (T -2 o <(5) - (Z ) > otherwise.

From (5.9), (5.11), (5.12) and the estimates § <7 < £ + |z — 2’|, it follows that

(r— |z — ') Gy(r,2,2') < 2"Vol,_o(S* %)~ )T + diam(X))" C(n,T),  (5.13)

where the constant C'(n,T) is defined in (5.12). Combining (5.2) with (5.6), (5.8) and (5.13),
we obtain (2.16) for n > 3. O
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5.2 Preliminary results for the proof of (2.17), (2.18) and (2.19)

To prove Theorem 2.2 (2.17), (2.18) and (2.19), we need the explicit expressions for ~,,, m > 2
given below and the following Lemmas 5.1-5.2, whose proof is given in Appendix A.

Let m > 1 and 2,2 € R" such that z # 2/. Let p > 0. We denote by &,,,(u, z,2’) the
subset of (R™)™ defined by

Emn(,2,2) = {1, ym) € RY)™ [yal +. o+ [ym| + 12 = 2" =g — .. —ym| < p}. (5.14)
When p < |z — 2|, then &, (1, 2, 2") = 0.
Lemma 5.1. Let n > 2. Let (u,2,2') € R x R" x R"™ be such that > |z — 2'| > 0. Then

Vol (€1, (2. ) < YOhn2 (8" (it |2 — ) (\/N2—|Z—Z’|2> o (5.15)

4 2

Lemma 5.2. Let n > 2 and § > 0. Let N denote the nonnegative measurable function from
(0,T) x 0X x R™ to [0, +o0]| defined by

—(z =2 -v)"3
N2 2) = Xl |2 = ) [ EZEZEL g, (5.16)

|Z — o #v|2n—4

for (p,2,2') € (0,T) x 0X x R™. When n = 2, then

N _ /
C(N,2) = sup / = lyl. 2,2 +y)dy < 0. (5.17)
(122)€O.T)x0X X2 Jyegy | (1,2,2) Y|
u>|z—2"|
When n = 3, then
1y —1 [y |Z — Z,‘ -
Cy(N,3) = sup (u—1z—21) I+In{——7p
(py2,2')E€(0,T) x X XR™ ILL - |Z —Z ’
p>|z—2|
X N(p—lyl, 2,2 + y)dy < oo, (5.18)
yegl,n(#qu’Z/)
p—=|y|>6, |z—2'—y|>6, |y|>6
Cy(N,3) = sup (b —|z—2)) " ulz — 2| (1+ln (,u—|—|z /|>)
(p,z,z/)e(O,T)XBXX]Rn |Z |
p>|z—2|
N _ /
" / (p \yl,j,z + y)dy <o (5.19)
y€&€L n(1,2,2") ‘y’
When n > 4, then
C(N,n) = sup plz — 2" 2N (u, 2, 2') < oo. (5.20)

(,2,2")€(0,T) x OX xR™

The explicit expression for v,,, m > 2, is given by

)= [ @) W) B (=l = s)va £ 9.0)

o/ +yeX
X(O,’L(x,v)) (T - |y| - 81)]{3(1’ - (T — 51 — |y|)va U1, U)k(l’, + Y, ’U/, Ul)S(xla U,)
2" 21—yl = (@ =2 —y)-v)"?
v(x') - o 1yl dydv, 5.21
() -] 1*2‘(7 (Iyly(x(‘ x‘f)lylﬁ) il 2 — 2 —y— (1 — [y 4y (5.21)
z—a’ —Yy—(7—381 ylv ’ Y

vi= 51 YTl
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and for 7 € R and a.e. (z,2") € 0X x 0X and for m > 3:

Y (T, 2, ') = AQ """ ym>esm1,n<rw’>/g (v(z) - v)W(x,v)

n—1
90/+Z;.":i y; €X for i=2,...,m z,+

22 (1 —|yal — o = || — (=2 — o — .. —Ypn) - 0)"
2"ty e = =y — = Y — (T = |2 = oo = ym|)U[P
X [X(0r—@an (T = 81 = [g2] — . = lymD E(z, 2 — (1 — 51— [go| — ... — [y},
A Ymeo oty Y, V(= (7= 51— |y2| — .. = |ym|)v, v1,0)

m—2

X H ]{Z(Il + Ym + - Yig1, Vit Ui)k<x/ + Yms Ula Um—l)s<x/a U,)
=1

/ /
(') -] B e T B dyz ... dymdv. (5.22)
1
_lz—a'—yo—...—ym—(r—|yz| == |lym|)v|2 /_ ym oy _
1720 Tyg = [Um1l—(@—2 —yg— Uy _1)-0) " Tyml’ ”“\yﬁl‘ =2..m-1

5.3 Proof of (2.17), (2.18) and (2.19)

Let 7 > 0 and let z,2’ € 0X such that |z — 2'| < 7 and x # 2/. We set ¢, = |z — 2’|. Using
spherical coordinates (“y; = s;w;”, (si,w;) € (0,+00) x S"" ' i =2...m) and (5.14), we obtain

dys . .. dym,
/ = J < Vol(Sn_l)m_l/ dsy . ..ds,, = Vol(S"1)™!
Em—1,n(T,z,2") ‘QQ

"y S (m =1
(5.23)
for all m € N, m > 2. Note that using (2.2) and (5.14), we obtain
a:’—irZyiEsuppk:MSg\x—x’—Zyi|<T—Z\yi\, (5.24)
i=2 i=2 i=2
&'+ Y € suppk = 8 < |y, (5.25)

for (ya, ..., Ym) € Em_1n(T,x,2') (vecall that (2, z) € 0X?).

We first look for an upper bound on |7, (7, x, )|, m > 2. Using the explicit expression for
the multiple scattering kernels v, (7, z,z") (see (5.21)—(5.22)) and the fact that o is a nonneg-
ative function, we obtain that

a7, 2,27)] < 22 W oo IS lloo 1512 G, 2, 2), (5.26)

where N, & ,,(7,z,2") and Gy are defined by (5.16), (5.14) and

N(p—lyl, 22" +y)
AN ]
GQ(M? %z ) T \/&:Ggl,n(ﬂ‘,z,z’) ’y‘ﬂ*l dy7 (527)

2/ +yEsuppk

for (i, z,2") € (0,+00) x X x R™. We also obtain
(7, 2, 2)] < 22 [ W oIS oo 1Bl % G (7 22, 2), (5.28)

where

G - 771 AES) /+ TTi [
Gu(1,2,2) = ) 2(7 21_3_!31 2.2 _122_3y >dy3 o Y, (5.29)
(Y3,--s ym)egmfln(Tvxﬁx ) |y3’7’l e |ym|n

m’-&-zz‘ij y; Esuppk, j=3..m
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and Go (resp. Ep—on (T, x,2")) is defined by (5.27) (resp. (5.14)).
We now prove (2.17). Assume n = 2. From (5.26) and (5.17) we obtain

a7, 2, 2)] < 272 W [loo 1S 1o 1K 15, C (I, 2). (5.30)

Then using (5.29), (5.17) and (5.23), we obtain

’ dyg RN dym m—2 m—2
Gm(T,z,2") < C(N,2) ———— = C(N,2)(27) ———ps form > 3.
5m72,n(7',$7$') ’yg‘ Ce ’ym’ (m — 2)
(5.31)
Finally combining (5.31) and (5.28), we obtain
m—2
Y (7, 2, 2")| < 2"72C(N, 2)(27r)m‘2||W||oo||S||00Hk||g’;ﬁ, for m > 3. (5.32)

Statement (2.17) follows from (5.30) and (5.32).
We prove (2.18). Assume n = 3. Using (5.24)—(5.25) (with “m = 2”) and (5.27), we obtain

Go(r, x,2") <672 N(r = lyl, z, 2"+ y)dy. (5.33)

y€E 3(m,z,2")
T—y| >4, |z—a’—y|>8, |y|>6

Therefore using (5.18) we obtain

sup (s—|z—=2))" (1 +In (M>> Ga(s,2,2) < 572C1(N,3) < c0.
(5,2,2)€(0,T) xOX x DX s—|z—2|
s>|z—2/|>0

(5.34)
Now assume n = 3 and m > 3. Using (5.29) and using (5.19) and the estimate sup,¢(g 1) 7(1 —
In(r))? < co we obtain

—_— / —_— —_— —_— —_— m .
sty T = s [y — 2 = ys = =y
(y3 vvvv ym)efm_g’n(-r,z,zf))
(&' +3 1 o y5,0' +ym) €(suppk)2
where D := sup, ¢ 1) 7(1=In(r))*Ca(N, 3). If m = 3, then using (5.24)-(5.25) with “(ya, ..., ym)”
replaced by “(ys,...,ym)”, we obtain

Gs(,2,2") < 215 *DVol(&, 3(, z,2")) (5.36)

(we also used the estimate |x — 2’ — y3| + 7 — |ys| < 27 for y3 € &1 3(7,2,2")). If m > 4, then
using (5.24)-(5.25) with “(ya, ..., ym)” replaced by “(ys,...,ym)”, we obtain

dys ... dYm—
Gu(r,2,7") < 276 *DVol(&, 5(7,z,2')) / yi) Ym-1 -
lys|" = Y
(Y35 Ym—1)EEmM—3,3(T,z,2")
m—3
- 2764DV01(S”1)m3ﬁ\/ol(5173(7, z,7)) (5.37)
(we also used the estimate |z — 2" —ys — ... —ym| +7 = |ys| —. .. = |ym| < 27 for (ys,...,ym) €

Em—23(T,x,2') and we used (5.23)). Statement (2.18) follows from (5.26), (5.28), (5.34) and
(5.36)(5.37) and (5.15).
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We prove (2.19). Let n > 4 and m > 2. Using (5.27), (5.29) and (5.20), we obtain

dys ... dyn,
Gm(1,2,2") < C(N,n) / = " . (5.38)
o "y [P o — 2 = 3w (= 20 [vil)
(Y9se-+s ym)ESm,Ln(T,z,z{))
z/ +ym Esuppk
o/ +3°M , y;Esuppk
From (5.38) and (5.24)—(5.25), it follows that
Go(7,2,2") < 52" P2C(N, n)Vol(E, (T, z, ")) (5.39)
for m = 2, and
_ dys . ..dy
Gu(r,z,2)) < §2""2C(N,n / m
7 ) e TG
(Y25 Ym) EEm—1,n (T,x,2")
m—2
= 5220 N, n)Vol(S" )™ 2Vol (&, (, z, x’))ﬁ (5.40)

for m > 3 (we also use (5.23) to prove (5.40)). From (5.39), (5.40) and (5.15) it follows that

n \/O S - T n—1
m 7 Y ) — 9 \Y% z

for m > 2. Statement (2.19) follows from (5.26), (5.28) and (5.41).

6 Proof of Theorems 2.3, 3.1 and 3.4

Proof of Theorem 2.3. For the sake of simplicity and without loss of generality we assume
vo = (1,0,...,0). Assume that conditions (2.1)-(2.2) are satisfied. For n > 2 consider the
following open subset of (0, +00) x S"~1 x §"~!

D = {(s,v,v") € (0,400) x S} x Szgi | s € (0,7—(z,v))}. (6.1)
Then we introduce the bounded function ¥,, on D defined by
U, (s,v,0") = 2" 2W (z,v)(v(x) - v) E(x, 2 — sv, x))k(x — sv,v',v)S (x5, v)|v(z}) -], (6.2)

for (s,v,v") € D. Note that from convexity of X it follows that 7. is continuous on I'z and

.|x—956—sv\ ( m—m{)—sv z—m6—3v

— Jo o(z—pv,w)dp— [y o(x—sv—p
e’ |

-1

o aol Taal —so] )P
E(x,r — sv,z}) = “ro=sllemeo =T for p € ST and 0 < s <

7_(x,v). Under (2.1)—(2.2) we obtain that

U, (s,v,v") = 0 for (s,v,0') € (0,+00) x S§' x Sggi such that = — sv & Z,

6.3
and the function W, is continuous at any point (s,v,v’) € D such that x — sv € Z. (6.3)
We first prove (2.22) for n = 2. Let 7 > ¢. From (6.2), (2.14), it follows that
ey = [ (5)Ws(s,0,0')] a0
T,T,T — I —— T (zv S S,U,U v=(cos §2,sin
T E %o ey T —tocos(2) X(O7- (@) 2 i) e
7'27—:1%
*= 207 cos ()
= ’Yl,l(Taxax{)) +")/172(7',l’,336), (64)
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where S = {(cos Q,sinQ) | —ap < Q<7 —ap} (0 < ap <) and

’ T X(O,W*QQ)(Q> /
e E—— (v \II , Uy v=(cos §2,sin dQ, 65
Y.1(7, @, xy) /0 T — o cos() [X(o, (a))(8)Wa(s, 0,0 )} v,_t0<1,o>_s(u SQ_ o 2 (6.5)
- T—s ? 7T 2(1t—tg cos(Q2))
0
’ X(—Oé070)<Q) '
ft B T (v \Ij y 5 v=(cos ,sin dQ 66
Y.2(7, T, 25) /_7r T — fy cos(Q) [X(0r—(2,0)) () ¥ (s, v,0")] v,ito(l,o)fg:v fi Q)Tz_tg (6.6)
- T—s » 7T 2(T—tg cos(R2))

We now prove that

, W (z,v0)S(xh, vo) (V(x) - vo)|v(z}) - vol E (g, x) /to k(x — svg, vg, o)
VT — tovi4(T, 2, 29) — ds,
071, ( 0) Dty ; 5(to — 9)

as T — t§, (6.7)

for i = 1,2. Then adding (6.7) for ¢ = 1 and ¢ = 2, we obtain (2.22). We only prove (6.7)

for ¢+ = 1 since the proof for ¢ = 2 is similar. Let 7 > t3. Using the change of variables
2 2
s = 2(7_20_(:22(9)) — 7_2“’, we obtain
1 " X(Or—(@o(s,m)) (5 + T52) Wa(s, (s, 7), 0'(s, 7))
T, 2, 2h) = a)(Q(s, T o 2 R
71,1( 0) \/7'27—15(2)/0 X(0, 0)( ( )) m
(6.8)
where
7'2—1%
. . _ T = 2s+1—to
v(s,7) = (cosQ(s, 7),sin Q(s, 7)), Qs,7) = arccos(t—>,
0
, fo(1,0) — (s + 75 (s, 7) (6.9)
V' (s, T) = FE T )
2
Let s € (0,19). From (6.9), it follows that
v(s,7) — (1,0) as 7 — tg, v'(s,7) — (1,0) as 7 — t. (6.10)

Note that using the definition of vy and using the assumption z( + e(z — xj) € X for some

e € (0,1) we obtain ty = 7_(x,vg). Note also that the function s — (z ) S € (0,tp), is
s(to—s

integrable in (0,ty). Therefore, using (6.3), the boundedness of W5 on D and the Lebesgue
dominated convergence theorem, we obtain (6.7). This proves (2.22) when n = 2.
Let n > 3 and prove (2.23). From (6.2) and (2.14), it follows that

, (T — tovg - v)" 3 ,
YT, x, @ :/ —X(0, v(z) - v)W,(s,v,0") ,_tw-sv du, 6.11
) = [ o e o (/@) 005, 00) (6.11)
5:2(7—t0v-v0)

for 7 > |z — xy.
Let ®(Q,w) = (sinQ, cos(Q)wy, . .., cos(Q)wy,_1) for Q€ (=F,7) and w = (w1,...,wn-1) €
Sn—2. Using spherical coordinates we obtain

/2 (T — tosin(Q))"3
A 0)"—2 0 12
(T o) /_m sl L  atyrsin(@)) 12

/ X(0,+OO)(V(‘T) ) (I)(Qa w))\lln(87 CI)(Qa w)v 'U,) o= 000 =s2(Qw) dwds,
S§n—2 T—S

242
s=s——
2(T—tg sin(2))
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for 7 > ty. Performing the change of variables “r = 57 Tl Tt o the first integral on

T—t0sin(Q?)) 2
the right-hand side of (6.12), we obtain

- Vrlto—r)""
(T @, xy) = 22_"153_”(72—%)23/ ( rito —7) (6.13)
0

S

-1
/ X (P82, W))W (r + : =, (Q,w), ") _ 242y ) dwdr.
amra TS0 = tor=s2(0)

Therefore using (6.13), (6.3) and (6.2) and using Lebesgue dominated convergence theorem, we
obtain (2.23). This concludes the proof of Theorem 2.3. O

Proof of Theorem 3.1. We now prove (3.1). Let z, € 0X. For ¢ = (g1,e2) € (0,+00)? and
g3 € (0,400), let (f.,,9:,) € CH(OX) x CY(R) satisfy

Gey >0, fo; >0, suppge, € (0, min(ez,n)), (6.14)
suppfe, C {2’ € 0X | |2’ — xp] < &1}, (6.15)
7
/ g, (t)dt' =1, fe (2N du(z") = 1, (6.16)
0 X

for € = (g1,€2) € (0, +00)% Therefore, ¢. := g., f-, is an approximation of the delta function at
(0,25) € R x X for € := (e1,&2) € (0,+00)?. Let ¢, € L=((0,T) x dX) be defined by

¢53(Tf,$) - X(—63,€3)(t - |I - x6|)(2X(07+00)((E - E)((L‘,ZL’B)) - 1)7 (th) € (OvT) X aX? (617>
for €5 > 0. From (2.12) and (2.15) it follows that

/ Yy (1, 2)(Asaw — Asaw )b, 2)dbdu(z) = To(tbey, 62)
(0,T)x0X

+/ ey (B, )P (', 2") (T — f’l)(t —t' z, ") dtdu(z)dt' du(z"), (6.18)
(0,T)x0X x(0,n)x0X

for e = (1,22) € (0,400) and €3 € (0, +00), where

IO(¢837¢8) = / wad(t,ﬂf)qbg(t— |$_x/|’x/)E(x;SC/) —E(l',gj’)

(0,T)4 x 0X g x0X |z — &' |1
lz—az|<t

X [W(x,v)S(a',v)(v(z) -v)|v() - o], _ =1 dtdp(x)dp(x). (6.19)

|o—

From (2.16), (2.17), (2.18) and (2.19) it follows that

3—n

(r—|z—2')) 7 (I'1 = [1)(r,z,2") € L®((0,T) x 0X x 0X). (6.20)

Combining (6.18) and the equality ||de||21(0nxox) = 1 and the estimate [|1)., || o (0,1)x0x) < 1
and (6.20) we obtain

[0<w537 (bz-:) < HAS,W - AS,WHW,T + CAl(wegv ¢€)7 (6'21>
for & = (e1,2) € (0,+00) and 3 € (0, +00), where C = ||( — |z — /) =" (I'y — [1)(7, z, 2')
| o= ((0,7)x0x. x0x,,) and

n—

A (Vey, D) :/ %3(75,x)qﬁa(t',x’)(t—t’—|.iL'—:B’|)73dtdu(x)dt'du(x’). (6.22)

(0,T)¢ x0X gz x(0,m) s XOX /s
lz—a/|<t—t/
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Note that the function ®; ., : [0,7) x 0X — R defined by

Py, (t,2") = [Omtxaxz Ve, (L)t —t — |z — x’])ansdtdu(x), (t',2') € [0,n) x 0X, (6.23)

lz—a|<t—t/
is continuous on [0,7) x 0X for €3 € (0,+00). Therefore, from (6.14)—(6.16) and the equality
Ay (Yey, ) = f(o n)xOX (', 2" )Py oo (V' 2")dt dpu(2”), it follows that

lim lim hm Ay (Yey, 0c) = hrrol Py .,(0,25) =0 (6.24)

e3—01 e9—01 g1 =01 €3
(we also used (6.23), (6.17) and the Lebesgue dominated convergence theorem to prove that
lim, o+ ®1.,(0,25) = 0). Note that under condition (2.2) the function ®¢.,., : 0X — R
defined by
E(z,z') — E(z,2)

|.’L‘ _ x/|n—1

q)07€2,€3 (ml) = /O,T)txaxm %3 (t, l')QEQ (t - ‘iL' — $/|)

|lz—a|<t

X [W(x,v)S(a',v)(v(z)-v)|lv() - vl], "’ dtdu(x), (6.25)

is continuous on 9X for (£9,¢3) € (0, +00)?. Therefore, from the equality [O(wgg, D) = [ox Pocaes (@)
X feo, (2")dp(z") (see (6.19)) it follows that

11H8+ Io(wasv Qbs) = (1)0,82783 (ZL’E)), for (527 83) < (07 +OO)2' (626>
e1—

Thus, using the Lebesgue dominated convergence theorem and (6.25) we obtain

‘E z,zp) — E(x, ) / /
lim lim lim Iy(¢e,, ¢c) = /a (W (x,v)S(xg,v)(v(x) - v)|v(zg) -v|] 2wy dp(w).

e3—0F e9—01 g1 —0+ X, ’QJ — x! ’TL 1 V=

Combining (6.27), (6.24) and (6.21) we obtain the formula (4.10). Using (4.10) and the estimates
infr_ S > 0 and infr, W > 0 and the change of variables © = x(+ 74 (x(, vo)vo (Ix (f, merdp(x) =
dvg) we obtain (3.1) where the constant C, which appears on the right-hand side of (3.1), is
given by C = (infp_ Sinfp, VV)_1

We now prove (3.2). Let S 0X be such that pzj + (1 — p)z € Z for some p € (0,1). We

From (2.16), (2.17), (2.18) and (2.19) it follows that

_ /
set to = |.T — (L’O| and Vo = m

—Ail(7, @, 7p) < (7= e =) P Lo = Dal(,2,2)  (6.28)

+(s — |Z—Z/|) (F1 F1)(3 2 2/)||L°° ((0,T)s xOXx0X 1)

(7 =l —ag)) ="

for 7 > |z — 2. From (2.17), (2.18)-(2.19) it turns out that lim, .4+ (7 — [z — zh|) 2" Ty —
Ty|(7, 2, 2') = 0. Therefore applying (2.22) and (2.23) on the left-hand side of (6.28) we obtain

277" o — |7 CuS (ah, v0) W (2, v0) [w () - wol (v() - vo)

» /to e Jo” olpsvo.uo Jsk(x —on,Uo,Uo) — e Jo” Flaptavoy s ( PUO,UO,Uo)d
pry 1%
0 P = (to —p)Tl
3—n ~
<|l(s =1z =272 (T1 = T1)(s, 2, 2")) | Lo (0.1)s x0x. x0X.1) (6.29)

where C,, = 2ifn = 2 and C,, = Vol,,_»(S"~?) if n > 3. Then note that Cx := inf, cyx, ez V(21)-
Z1=% > () since X is a bounded convex subset of R* with C!' boundary and Z C X. Therefore

|z1—2]

(3.2) follows from (6.29) where the constant Cy which appears on the right-hand side of (3.2)
QnT_ldiam(X)nT_l

Cncg( infp Sinfp+ w

is given by Cy = . Theorem 3.1 is proved. [
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Proof of Theorem 3.4. We first prove (3.7). We extend o and & by 0 outside Y. For a bounded
and continuous function f on Y consider the X-ray transform Pf :S""! x R® — R defined by
(3.3) (we extend f by 0 outside Y). We recall the following estimate

30, = ([ [ 1Psteopasan)” (6.30)

where IT, := {z € R" | v-2z = 0} for v € S""'. Note that using the estimate ||o| < M, we
obtain

T+(:E6, )
/ o(xy + sv,v)ds < M7y (z(,v) < Mdiam(X), for (zp,v) € T'_. (6.31)
0

Replacing o by & on the left-hand side of (6.31) we obtain an estimate similar to (6.31) for &.
Therefore using the estimate |e!t —e'2| > e~ Mdiam(X) |t ¢, | for (¢1,1,) € [0, +00)2, max(t;,ty) <
Mdiam(X), we obtain

o(z{+svw)ds _ 6—.6T+<16’U)&(x6+sv,v)ds > e—Mdiam(X) |P(O’ . 5’) (U, $6)| ’ (632)

_ o
6 P

for (x(,v) € I'_. Integrating the left-hand side of (3.1) over 0X and using (6.32), we obtain

[ 1P = o) wap)lde(o,p) < M ONOUOX)Cull Ay — Asarllr, (639

where (] is the constant that appears on the right-hand side of (3.1). Note that using that X
is a convex open subset of R" with C' boundary we obtain [ |P(o —&)(v, ()| d&(v, zf) =

Jsnor [, |P(6 — &) (v, x)|dxdv. Therefore using (6.33) and the estimate |P(c — 7)(v,)]* <
lo = || vydiam(X)|P(o — 7) (v, )] for (v,z) € TS* ! (see (6.31) and the estimates o > 0,
g > 0) we obtain

1
2 1 ~ 1
(/‘h/!Pw—6ﬂu@ﬁhm> < Csllo —all&llAsw — Aswlly - (6.34)
Sn—=1 JII,

where C5 = (diam(X)eMdiam(X)Vol(ﬁX)C’l)%. Combining (6.34) and (6.30), we obtain (3.7).
We now prove (3.8). Let f € L*(X), suppf C Z. We consider the weighted X-ray transform
of f, Pyf, defined by

+(Uv'r)
Pyf(x,v) = / f(pv + z)d(pv + z,v)dp, for a.e. (x,v) € I'_, (6.35)
0

where 1 : X x S"71 — (0, +00) is the analytic function given by
Wz, v) = (T,(x,v)nr(x,v))’%g(x,v,v), for (z,v) € X x S" 1. (6.36)
From [10, theorem 2.2] and from [14, theorem 4] we obtain
Hf”Hf%(Z) < ClPsfllrz_ e, (6.37)
where C' = C(X, Z, g) is a constant that does not depend on f. Let zf, € 0X and let z € 0X

such that pz) + (1 — p)x € Z for some p € (0,1) where vy = % and ty = |x — x}|. Note that
0

using (2.2) (since k € L>(Z) and suppk C Z C {z € X | infyeax |z — 2| > 6}), we obtain

T+ (z0,vh) E(y! + vl vh 0! R T4+ (z0,0)—6 1
/ RKOI%OOLJpSHWm@/ — — —dp
0 p 2 (my(zh,vp) —p) 2 6 p 2 (T (zh,vp) —p) 2
< ez D) < e d ™" Ddiam(X). (6.38)
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We use the estimate

Pallo = Fo)(ah vh)| < €™ b Pyl up)| e Poheh) — e FoChst)

(6.39)

+€Po(vé ()

e‘PU(va’xé)ngO(xg, vy) — e_P&(”é’%)Pﬁ/;:o(ﬂfga U())) )

Integrating both sides of inequality (6.39) over v} € Szgi and using the estimate e"7(0-70) <
eMdiam(X) “and using (6.38), (3.1)-(3.2), we obtain

/SM [Py (ko — ko)l (x, vo) l(xp) - vldv < 6=~ Vdiam(X)eM Oy k||| Asw — Aswllyr
@, —
+V01<Sn—1)eMdiam(X)C2
2

H(T = D) = (2, z)H (6.40)

L ((0,T)x0X x0X)

where C; and Cy are the constants that appear on the right-hand side of (3.1) and (3.2).
From the estimate | Py(ko — ko) (v), 2()| < ||k — k|| poo(2)0 ™~ Vdiam(X) for a.e. (xf,v}) € T'-
(see (6.38)), it follows that

I1Potbo=Fo) ey < Wr—Eld™ " dian(X) [ [ |Poho—Fo)(ab, i)l oldod(a)
X Jsm
Ty~

(6.41)
Combining (6.40)—(6.41) and (6.37), we obtain (3.8). O
A Proof of some lemmas
We recall the following change of variables for the proof of Lemmas 5.1, 5.2.
( / f<t0+scos(<p)’ s2— 13 singp)
02X 2 2
X (s 4_ OQCOS ggp))dsdgp, if n =2,
sc—1t
fy)dy = ° T (A1)
/51,n(r,tov,0)) / f(to + 5 cos(y) , 1 sin gpw)
72 (0,7) X (t0,7) 2 2
- 2 12\ 2 o2 _ 42 2
y (sm(ap)\/s t0> s® — tg cos® (i) dodsdp, ifn >3,
2 4/s2 —t2
\ 0
for f € LY(R™) and (7,t9,v) € (0,400) X (0,400) x S*! such that 7 > .
Proof of Lemma 5.1. Let n > 2. Using a rotation and (5.14), we have
Vol,, (& n (T, 2, 2")) = Vol,, (& (T, teer, 0)), (A.2)

where ty = |z — 2'| and e; = (0,...,0) € R™. From (A.1), it follows that

T T 12 n—22 42 2
Vol (E1.0(7 toex, 0)) = Vol,_(S™2) / / (Sm(@)vzs to) =00 9) o (A3)
to 0

4y/s* — 13
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From (A.3) and the estimate sin(¢)4/s2 — t2 < \/72 — 13 for s € (to,T), we obtain

_ 2 n—2 _ 2
Vol, (E1.n(7, toe1,0)) < v01n_2(sn—2)( t / / s’ tocos 9 gsd
1 — n—2
< §v01n_2(gn_2)<_v : to) Vol(&1.5(7, toes, 0)). (A.4)

We recall that Vol(& o(T, toe1,0)) = % V7l Therefore (5.15) follows from (A.4). Lemma
5.1 is proved. O

Proof of Lemma 5.2. We first prove (5.17). Let n = 2. Note that

2m 1
N N = ds.
= [
for (u,z,2") € (0,T) x 0X x R", u > |z — 2/|. Therefore, using (5.1) we obtain
2
N(u,z2') = i (A.5)

M2— \z—z’P?

for (p,z,2") € (0,T) x 0X x R™, u > |z — 2/|. Now let (u,z,2) € (0,T) x 0X x R" be fixed
with g > |z — 2/|. Set tg = |z — 2/|. Using (A.1) (“7 = u”, “tov = z — 2”), we obtain

/ 2w &y = / 2 dy
Era(ue) I (= [y])? = |2 — 2/ — y? E15(nt0(1,000) [Ylv/ (1 — [y])? — [to(1,0) — y[?
o 2w
= d4m / / Gaa(f, s, p)dpde, (A.6)
to 0
where Gaa(p, s, @) = (s — to cos(p)) (A.7)

V52— 12/l — s/ — to cos(p)’
for ¢ € (0,27) and s € (to, ). From (A.7) and the estimates u — tocos(¢) > s — tycos(p),
s+ 1ty > s —tocos(yp), it follows that

G2 2(:“’78 QO) m\/TS (Ag)

for ¢ € (0,27) and s € (to, p). Performing the change of variables s = to + e(u — tp) we have

de < +o0, (A.9)

for s € (tg, ). Combining (A.5), (A.6), (A.8), (A.9), we obtain

N _ /
E1,2(p,2,2")

(11,2,2')€(0,T) x OX X R2 ‘y| / VE

p>|z—2|

Statement (5.17) follows from (A.10).

de < 00. (A.10)

We prove (5.18). Let n = 3. Note that

d
N(u,z,2') = 27r/2 — In (1 + |z — 2/|* — 2u|z — /| sin(Q)) dQ,

_
2



for (p, z,2') € (0,T) x 0X x R", u > |z — 2/|. Therefore

27 A+ |z — 2
N(p, 2, 2) = ] , A1l
(1, 2,2) uv—zw“(u—v—zw (A1)

for (u,z,2") € (0,T) x X x R, pn > |z — 2|. Now let (u,2,2") € (0,T) x 90X x R" be fixed
with p > |z — 2/|. Set tg = |z — 2/|. Using (A.11) and (A.1), we obtain

JE— /_
N(u—yl,z 7 +y)dy < 2m62 1n( —lyl+]z—= yl)dy
y€&€i,3(1,2,2")

&1.3(p,2,2") I
e |y|>ge\zl3zu >3, |y|>o — |yl =z = 2" =y
= 262/ / Gas.a(pt, s, p)deds, (A.12)
where
—1
Gaaalp o) = (° = eost () sin() o (L= 02, (A13)
for ¢ € (0,7) and s € (to, ). Using (A.13) and the estimates In (%OSS(@U < In (%),
5% — t2 cos?(¢) < p?, we obtain
v e t
/ Gasa(p, s, 9)de SMZ/ sin(p)dy In (“+ 0). (A.14)
0 0 n—3S

We recall the following integral value

" t
/ In ('u+ O) ds = (u—tp)In (M+t0> + o —to. (A.15)
to n—=3= lu_to

Combining (A.12), (A.14) and (A.15) we obtain

2,2
/ Tl p =+ to
_ < _
veersoey Nyl 22"+ y)dy < —5=(n —to) (ln <u - to) + 1) ;- (A16)

w=ly|28, |z=2'~y|>6, |y|>6

which proves (5.18).
We next prove (5.19). Let n = 3. Let (i, 2,2") € (0,7) x 0X x R" be fixed, u > |z — 2/|.
Set tg = |z — 2/|. Using (A.11) and (A.1), we obtain

p=lyl+lz—2"—y|
/ N(ILL - |y|7 Z’ Z/ + y) dy — / 27r ]_n (H_‘y|_‘Z_Zl_y‘>
y€&€1,3(1,2,2) |y|2 y65173(u7zyz/) |y|2<lu . |y|>|z v y|
21 In <“_‘y|+|t0(1?070)_y|>

1|yl =1t (1,0,0)—y| o (M [T
= dy = 8w / / Gaap(p, s, 0)deds,  (A.17
memo|m< ~ 1uDlfo(1,0.0) — 3] o )

where

sin(y) In (M)

n—s

Gagp(p, s,0) = (s +tocos(p))(2u — s — tocos(p))

_ m(u—toCOS(w))(QM( sinp) sin(p) )(A.18)

p—s s+tocos(p))  2u(2u— s —tocos(yp))
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for p € (0,7) and s € (to, ). From (A.18) and the estimates 2u — s — tg cos(p) > p—to cos(p),
0 < In (“12e22)) <n () it follows that

Gazp(p,s,) <In (“ + to) (2#< sin(p) + sin(e) ) ,

i—s ) G —tycos()) 2 — to con(7))
for p € (0,7) and s € (tg, p). Therefore

™ 111 (m) s
—s +t0 ILL_’_tO
G .8, 0)dp < ;(ln<—>+ln(—>)
/D 2351 8, p)dp < 2ils py— o
In (&1‘/0)
p—s P+ to p =+ to
— (1 1 : Al
2uto (n<8—t0)+n<ﬂ—t0)> (A19)

Using the estimate In ( i ) <In ( (li”tto > for s € (to, “F#), we obtain

Z t t N t t
/ ln('u+ 0>1n<'ujL O>ds:2/ ’ 1n<'u+ O)IH(H+ O)ds (A.20)
to s —1o M= to s —to p—s
totup
<2 (M) / In (’”to) ds < 2(u — to) (ln (’”to) +ln2) (m (“th‘)) + 1) .
p—to to s — to p—to p—to
Combining (A.17)-(A.20) and (A.15), we obtain

N — ! t t
(p |y|,227z +y)d <yt h (31 (u+ 0) +21n2) (m (M—i— 0) +1).
y€&€i,3(p,2,2") |y| to w—to w—1to

Statement (5.19) follows from (A.21).
We now prove (5.20). Let n > 4 and let (u, 2z, 2') € (0,7) x 0X xR"™ be such that p > |z—2/|
(we recall that N(u, z,2") =0 if 4 < |z — 2’|). Using spherical coordinates, we obtain

N(u, 2, 2') = Vol,_o(S"2) / : (= |2 = /] sin(€)"7 —cos(Q)" 2. (A.22)
—x (|2 = 2|2 + p? = 2u|z — 2| sin(2))"
Performing the change of variables “r = 2(#572—5]2;5(9)) - ”_|22_Z,|”, we obtain
_ n—3 o n—3
N( p Z/) _ V01n72<Sn 2)(/’62 — "Z B Z/‘Q) 2 | | \/T(’Z B Z/| _ T) dr
o 2 |z — 2/|n—2 0 (M—|ZQ—Z/| 4 7a)rh2<u+lzz—Z’| — p)n-2
A I [Vl et 0 Nl SRV (R Kt MR
o |z — /|72 0 (u—\;—Z’\ + T)n—z(u+|z2—2’| — )2 "
2VO1n—2(Sn72)|</$2 _ |z _ Z/|2)"T—3 /z_; \ 1 ]
= / n—1 z—z n—1 r
|2 — 2/[n—2 0 (uflz{ﬂ +T)T(u+\2 | _ )"z
_ lz=2"| z 4
2Vol,_o(S"2) (12 — |2z — 2 [2)"2 pi5®
< - = ‘Z . | —dr (A.23)
|Z z | —+ 7") 2
n—1 5 n—1
_ " +lz—2z =N _ 2 e o
S — 3\/‘01”_2(871 2)| ,|2 (%ﬂ‘) % ! = 3V01n—2(S 2)|Z - Z,|2 2 1’
]
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B Proof of Proposition 2.1

We start With the derivation of (2.13) and (2.14). From (2.9) and the definition of G_, we obtain
Agswol(t, x) fSn 1 o)W (z,v)E(x,z — 7_(z,v)v)S(x — 7_(z,v)v,0)0(t — T_(2,0), 0 —
T_(x,v)v)dv, (t,z) € (0 T) x 0X and for qb € L'((0,n) x 9X). Therefore, performing the change
of variables “2""=x — 7(x,v)v (dv = ‘JU = L dp(2') and 7(z,v) = \x — 2'|), we obtain (2.13).
From the definition of A; and G_ we note that AyG_(s)ps(z,w) := [guy k(2,0 w)E(z, 2—
7 (2,0 )0)S(z — 7_ (2,0 )0, 0" ) (s — 7_(2,0"), 2 — T_ (2,0 )v')dv/, for a.e. (z,w) € X x S"~! and
for ¢ € L'((0,n) x 0X). Performing the change of variables “o’ = z — 7_(2,v")v"”, we obtain
the equality (A2G_(s)ds) ( = [ox k(2,0 w)S (@, v")|v(a’) - v'|] ,_ o ‘ZE_(;—,’"Z/L(MS — |z —

[2=a7]
2|, 2" )du(x), for a.e. (z,w) € X xS" 1t and ¢ € L'((0,7) x X). Using also the definition of
A1 sw (see (2.10) for m = 1) we obtain the following equality for any ¢ € L*((0,n) x 0X) and
for a.e. (t,x) € (0,T) x 0X

As s (0)(t,7) /S / /BX 7= (t = 8)0, 0", 0)S(@ ) () V] e (v() - 0)

|z —(t—s)v—2a|

E(x,xz — (t—s)v,x ) X0 (@) (t — 8)p(s — |z — (t — s)v — |, "YW (z,v)dpu(z")dsdv.  (B.1)

|z — (t — s)v —a/|n 1 (

Then, performing the changes of variables “s”= ¢ — s and “t""=t — s — |z — sv — 2| (s =
t—t")2—|z—2'|2 a _ 2((t—t)—(z—2')w)?
D ey Dl el s ), we obtain (2.14).

In order to prove (5.21)-(5.22), we introduce and prove Proposition B.1 below, which
gives the distributional kernel of the operators H,, defined in section 2.1. Let E denotes the

nonnegative measurable function from R” x R™ to R defined by

_ ey —xg] T —T T —T
E(x1,x9) = e do "(“_Slwi—xi\’lwi—xi\)ds@(xl,asg), for a.e. (x1,22) € R" x R", (B.2)

where O(z1,22) = 1 if {pz; + (1 —p)z2 | p € [0,1]} € X and O(z1,72) = 0 otherwise. For
m > 3, we define recursively the nonnegative measurable real function F(z1,...,x,,) by the
formula

E(xy,....2m) = E(@1, ..., %m 1) E(Xpm_1,2m), (B.3)
for (z1,...,2,) € (R™)™

Proposition B.1. We have

Haloe0) = [ Bl v o)l )i (B.4)
X xSn—1

fort € (0,T) and a.e. (x,v) € X x S*™! and for m > 2, where

22 (t — 59— (& — 590 — ) - 0)"°

2 — sov' — 2/ — (t — s9)v["*

t
52(t7x7 U7x/7vl> - / X(O,t—52)<|x, - (I’ - SQU,)D
0

X [BE(z,x — (t — s1 — s2)v, 0" + so0', 2" )k(x — (t — 51 — 82)v,01,0)

k(x +82U U Ul)] = z—s9v/ —z/ —(t—s1 —s9)v _ \zfsgullef(tfsg)v\2 d827 (B5>

s1 ’81_2(t7527(171’752v/)-v)
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Bn(t, , 0,2, 0") /S y /Zngﬁ X(04=37" 5 55) ]a:—i—smv +ZSJUJ
n— J

>032m

n—3
an? (t — a8 — (= = 05 sy — swt) - U)

X
o — ' = T vy — st = (8= 27y 8 vl
m m—1 m—1
X |E(z,z — (t — Z $;))0, &' + spuv" + Z S0, + S0 + Z S0y oy 4 sy’ )
j=1 =2 =3
m m—1 m—1
xk(x — (t — Z sj)v, 1, 0)k(z" + s,0" + Z $jVj, V2, 01) .. k(2" 4 s,0" + Z $iVj, Vig1, Vi) - - -
=1 =2 j=it1

k(x4 80,0 v 1)) dsy...dspdvy ... .dv,_1, m>3.  (B.6)

—1
171/72;12 Sjvjfsmvlf(tfzgnil Sj)’U
Ul— gl
| —a Z] 2 sjvj—smv/—(t=3 7 o s5)vl?

2(t— 27 g 8j—(z— xl— Z] 21 s; stmv)v)

S1=

Proof of Proposition B.1. Note that

Hy(Oo(av) = ( / / t—sl—52)A2U1(31)A2U1(52)¢d52d51)( v)

_ ( / ( / Ut — s —32)A2U1(51)A2d31) U1(82)¢d82> (2,v)
_ // Blo,o— t—sl—32)v)/sn1]{:(1:—(25—81—52)@;“17”)

XE(z — (t — 81 — 82)v, 7 — (t — 81 — 52)V — 5101)
X / k(x — (t — sy — $1)v — S101, V2, V1)
Sn—l

XE(x — (t — 81 — 83)v — 5101, 0 — (t — 8] — 82)V — 510] — SaU3)

Xo(x — (t — 81— $2)v — S101 — SaUs, V) dvadv1ds1dss,

for t € (0,T) and (z,v) € X x S"7, where the functions E are defined by (B.2)—(B.3).
Using the change of variables “y(s1,v1) = (t — s2 — s1)v + s;v;” we obtain

o(z,v) // E(z,x — (t —s1 — s2)v, 2 —y,x —y — Sova)k(x — (t — 51 — S2)v, V1, V)
Snl

272 ((t—s9) —y-0)" "
X k(zx —y,vg,v1)] by u=(t=s1=sz)v 51— 0T — Yy — 5202, va)dyduads,.
| 1 2 |y - (t - SQ)U’
s y—(t—sg)v|
1= 20— s9—Y-v)

Hence we obtain (B.4) for m = 2. Note that
¢
(Hs(t)¢)(z,v) = / Hy(t — s3) A2Ui(s3)ddss
0

t
= / / ﬁg(t — 83,T,V, X9, Ug)(AQUl(Sg))¢($2, ’UQ)dQTQd’UQng
X xSn—1

t
= / / Ba(t — s3,, v,xg,vg)/ k(xg, v, v9) E(22, 19 — s30)
xxsn-1Jo sn—1

X P(xg — 830", 0")dv'dszdxadus.

27



Hence performing the change of variables “a’ = xy — s3v"” (dz’ = dxs) and using definitions
(B.5) and (B.6) (for m = 3) we obtain

(H3(t)p)(x,v) = /X . Bs(t, x,v, 2’0" ) (2!, v')da' dv'. (B.7)

The proof of (B.6) follows by induction from (B.7) and the recurrence formula H,,(t) =
t

/ H, 1 (t — s) AUy (s)ds for t > 0. O
0

Proof of (5.21)-(5.22). We recall that

E(z o
(A2G_(8)ds) (z,w) = / [k(z, 0", w)S (2!, v")|v(x) ~v/|]v - ﬁqﬁ(s—b—x'[,x’)du(m’),
8X zZ—x
(B.8)
for a.e. (z,w) € X x S" ! and ¢ € L*((0,n) x X).
Let m = 2. Then from (2.10) and the definition of the operator Hy, it follows that
Ay sw(o)(t, x) :/ (v(z) - v)W(z,v / / / / (x — (t — s — s1)v,v1,0)
Sl S” 1Jox
X k(xr—(t—s— 31)v — s1v1, v, 01) (@ V) (@) V] ememapomsyn o B(@, 2 — (=5 = s1)v,
_|z (t—s—sq)v—sqvi—a'|
ds—|lz—(t—s— sl)v— sy — 2|, x
—(t— s — — !

v (E=s=s)u =) |z — (t — s — s1)v — syv1 — /|1

xx2(x — (t —s—s1)v,x— (t — s — s1)v — syvy)du(x')dvyds dsdv.

Performing the change of variables y(s1,v1) = (t — s — s1)v + $1v1, we obtain

¢
Aesw(@)(t.o) = [ va) - oW(e,0) [ oo (lv)
S”;lanxR” —o0
X [E(x,x — (t—s—s1)v,x —y, 2" )xx2(x — (t — s — s1)v, 0 — )
X k‘(l’ - (t — S — 81)@,111,U>k($ - y’ UI,U1>S(:E/,U/)|V<$/) . 'U/H ‘(E s)v— 1/\)2 = —(t—s—s1)v o= z—y—=z
t—s—y-v) "’ s1 |z —y—z'|

2"t —s—y-v)"P(s — v —y —a'],2)
: dv. B.
X = 50— yPile —y — ] dsdydp(z")dv (B.9)

“ 7

Performing the change of variables “y”=z — 2’ — y and ¢’ = s — |y| we obtain (5.21).
Let m = 3. Then from (2.10), (B.4) (for “m = 2") and (B.8) it follows that

Asswi(o)(t,z) = /Snl(y( W(z,v / /X . 1 — 8,T,0, X, V) (B.10)

E
[ st oSGl 1, e (2, 7)
0X

o=l | T2 — 2|77}

o(s — |xe — 2’|, 2")dpu(2")dzadvadsdu,

for t € (0,7) and z € 9X. From (B.10) and (B.5) we obtain

Ausar (@)t = [ () oWl /X o eelin s

272 (t — 5 — 89 — (T — SoUp — 3) - V)"

E(x,x — (t — 81 — $2)U, To + SoUs, To, T
|LL‘2—$’|”_1‘$—82U2—JJ2—(t—S—SQ)U‘Qn_A (z ( ! 2)V, T 202, 02, %)
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Xxxz2(z — (t — 81 — $2)v,Ta + Souo)k(x — (t — 51 — 82)v, v1,0) k(22 + Sova, Vo, V1 )k (22,0, va)
S, v)|v(’) V], espupma (o o)y (s — |xg — 2’|, 2")dsadsdradvedp (") dv.

|z —sgvg—my— (t s—sp)v|2
s1= 2(t—s—sg—(z—xg—sgv9) V)
ol = T2~ !
g —a/|

Performing the change of variables ys = s9v9 and y3 = x5 — 2/ we obtain (5.22) for “m = 3.
Let m > 3. From (2.10), (B.4) and (B.8) it follows that

Api1,sw (9 / / W(z,v // Bt —t' — |2y — |, 2,0, 20, V)
Shy tJoax 00, t—|zm—a'|)xSn—1

E
[k (2, V' 0m) S (2", V") [0 (") - V] e L/T)lgb(t',:E')d,u(x')dt'dxmdvmdv
lem—a] |T n-
= / Y1 (t =tz 2o (t', 2" )dt dp(x'), (B.11)
(0,n)x0X

where

X xSn—1

m
/(S'ﬂ 1)77172 Am 2 Sj<-r—\zm—z/| X(O,T—|wm—:c’|—23f”:2 sj)(|xm + Z SjUj - I")
_ Je28i<

5,20, j=2..m Jj=2

n—3
2n—? <T = lzm = 2| = 225y 855 — (@ — mm — 2250, s505) - U)

maalrea) = [0 W) [ ol ~len =)

X
o 2T~ o~ S 50— (7 o — ] — g 5 )P
m m m
X |E(z,z — (1 — |xm — 2’| — Zsj)v, Ty, + Z $jVj, Ty + Zsjvj, e Ty F S Uy T, )
— — —
m
Xxxm(r — (T — |2 — 2| — Z $5)V, T+ SV, - -+ Ty + Z 5;05)
=1 =
m m m
xk(x — (7 — |z, — 2'| — Zsj)v, v1, V) k(T + Z SV, V2, V1) .. k(zy + Z S5V, Vig1,V;) - - .
=1 j=2 j=it1

k(2 + SmUms Vs Um—1)k(@m, V', v)S (2", 0") v (2') - V'] T O L e o Sy AT
=
|z —2m— Z =2 55V5 (TSl\Im x| - Zm j)”‘2

1= PO 3 T s @ =y s ]m
v
dsy . ..ds,,dvs . ..dv,_1dx,,dv,,dv. (B.12)
Performing the change of variables y; = s;v;, i = 2...m, and Y11 = Tpmy1 — 2/, We obtain
(5.22) for “m > 4". O
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