Imaging in Random Media Kinetic Models

Guillaume Bal Columbia University

Motivations

Imaging in Highly Heterogeneous Media

Statistical Properties of Random Media

Imaging of buried Inclusions

Detecting Buried Inclusions

Examples of wave propagation

Waves propagating in highly heterogeneous media

Imaging in Known Media

- When heterogeneous medium is known: Use Time Reversal:
- Time reversed waves backpropagate to their original location.
- Inclusion may be seen as secondary source.

Imaging in Unknown Media

- When the (random) medium is not known:
 - Model random medium by a homogeneous medium with small random fluctuations.
 - Model wave propagation <u>macroscopically</u>: what we are interested in today.

Homogeneous medium: Kirchhoff migration

High frequency waves in Random Media

- Macroscopic model: need an asymptotic regime. Here high frequency waves with highly heterogeneous media.
- High frequency waves: Liouville equation for the wave energy density a(t, x, k):

$$\frac{\partial a}{\partial t} + \nabla_{\mathbf{k}} \omega \cdot \nabla_{\mathbf{x}} a - \nabla_{\mathbf{x}} \omega \cdot \nabla_{\mathbf{k}} a = 0$$
$$\omega(\mathbf{x}, \mathbf{k}) = c(\mathbf{x}) |\mathbf{k}|$$

Radiative Transfer Equation

Regime: fluctuations too large for Liouville to be valid but too small to prevent transport: perturbation that accounts for SCATTERING.

$$\frac{\partial a}{\partial t} + \nabla_{\mathbf{k}} \omega \cdot \nabla_{\mathbf{x}} a - \nabla_{\mathbf{x}} \omega \cdot \nabla_{\mathbf{k}} a = \frac{\pi \omega^{2}(\mathbf{x}, \mathbf{k})}{2(2\pi)^{d}}$$
$$\times \int_{\mathbb{R}^{d}} \widehat{R}(\mathbf{x}, \mathbf{p} - \mathbf{k}) (a(\mathbf{p}) - a(\mathbf{k})) \delta(\omega(\mathbf{x}, \mathbf{p}) - \omega(\mathbf{x}, \mathbf{k})) d\mathbf{p}$$

 $\widehat{R}(\mathbf{x},\mathbf{k})$: Power Spectrum of velocity fluctuations

Regimes of Wave propagation

- Weak Coupling regime: $\delta c_{\varepsilon}^{2}(\mathbf{x}) = \sqrt{\varepsilon} \delta c^{2}\left(\frac{\mathbf{x}}{\varepsilon}\right)$ $\widehat{R}(\mathbf{k})\delta(\mathbf{k}+\mathbf{p}) = c_{d}\mathbb{E}\{\widehat{\delta c^{2}}(\mathbf{k})\widehat{\delta c^{2}}(\mathbf{p})\}$
- Low Density regime:

$$\widehat{R}_0 = c_d \mathbb{E}\{\tau^2\} n_0$$

$$\delta c_{\varepsilon}^{2}(\mathbf{x}) = \varepsilon^{\frac{1-(\gamma+\beta)d}{2}} \sum_{j} \tau_{j} \delta c^{2} \left(\frac{\frac{\mathbf{x}}{\varepsilon} - \mathbf{x}_{j}^{\varepsilon}}{\varepsilon^{\beta}} \right)$$

 $\mathbf{x}_{j}^{\varepsilon}$ Poisson P.P. with density $\varepsilon^{(\gamma-1)d}n_{0}$

For larger fluctuations, waves localize.

Inverse Problem

Imaging the random media and/or buried inclusions becomes an inverse transport problem:

$$\begin{aligned} \frac{\partial a}{\partial t} + \nabla_{\mathbf{k}} \omega \cdot \nabla_{\mathbf{x}} a - \nabla_{\mathbf{x}} \omega \cdot \nabla_{\mathbf{k}} a &= \frac{\pi \omega^2(\mathbf{x}, \mathbf{k})}{2(2\pi)^d} \\ \times \int_{\mathbb{R}^d} \widehat{R}(\mathbf{x}, \mathbf{p} - \mathbf{k}) \Big(a(\mathbf{p}) - a(\mathbf{k}) \Big) \delta \Big(\omega(\mathbf{x}, \mathbf{p}) - \omega(\mathbf{x}, \mathbf{k}) \Big) \\ \omega(\mathbf{x}, \mathbf{k}) &= c(\mathbf{x}) |\mathbf{k}| \end{aligned}$$

How stable are the measurements?

Statistical Stability

The Energy Density IS Statistically Stable

- Result: Under appropriate assumptions, the energy density converges, as the wavelength goes to 0, weakly and in probability, to its deterministic limit.
- Weakly means we have to average energy over a sufficiently large region compared to the wavelength.
- Result shows that the RTE indeed provides a model suitable for inversion: Measurements are *independent* of the *unknown realization* of the random medium.

Summary so far

- Random medium and buried inclusions are modeled as constitutive parameters in a transport equation, which models the (macroscopic) wave energy density.
- In the high frequency limit, measurements over sufficiently large detectors are statistically stable.

Inverse Transport

- With spatial & angular measurements, InvRTE is mildly ill-posed (Hölder stability). With only spatial measurements, InvRTE is severely ill-posed (as in Calderón's problem).
- Practical measurements often in latter category.
- Important to find imaging scenarios that is as much immune to statistical noise as possible (High SNR).

Energies and Correlations

- RTE can be used to model more general field-field correlations (these are energies when the fields are the same).
- Applications: monitor turbulent region as a function of time, image time-varying buried inclusions.

Generalized RTE for Correlations

Correlation Function $C(t, \mathbf{x}) = \int_{\mathbb{R}^d} a(t, \mathbf{x}, \mathbf{k}) d\mathbf{k}$

$$\frac{\partial a}{\partial t} + c_0 \hat{\mathbf{k}} \cdot \nabla a + (\Sigma(\mathbf{k}) + i\Pi(\mathbf{k}))a$$

$$= \frac{\pi \omega_+^2(\mathbf{k})}{2(2\pi)^d} \int_{\mathbb{R}^d} \hat{R}^{12}(\mathbf{k} - \mathbf{q})a(\mathbf{q})\delta(\omega_+(\mathbf{q}) - \omega_+(\mathbf{k}))d\mathbf{q}$$

$$\Sigma(\mathbf{k}) = \frac{\pi \omega_{\pm}^2(\mathbf{k})}{2(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{R}^{11} + \hat{R}^{22}}{2} (\mathbf{k} - \mathbf{q}) \delta \left(\omega_{\pm}(\mathbf{q}) - \omega_{\pm}(\mathbf{k}) \right) d\mathbf{q}$$

$$i\Pi(\mathbf{k}) = \frac{i\pi \sum_{j=\pm}}{4(2\pi)^d} \text{ p.v.} \int_{\mathbb{R}^d} \left(\hat{R}^{11} - \hat{R}^{22} \right) (\mathbf{k} - \mathbf{q}) \frac{\omega_j(\mathbf{k})\omega_{\pm}(\mathbf{q})}{\omega_j(\mathbf{q}) - \omega_{\pm}(\mathbf{k})} d\mathbf{q}$$

Imaging Scenarios

- <u>Scenario 1</u>: Image from <u>Direct Energy</u> Measurements (with inclusion)
- <u>Scenario 2</u>: Image from Energy Measurements With and Without Inclusion
- Scenario 3: Image from Wave Field Measurements With and Without Inclusion

Direct versus Differential Measurements

- Scenario 1 suffers from large statistical instability caused by our lack of knowledge of the random medium.
- Scenarios 2&3 suffer from statistical instability proportional to changes in the differential measurements.

Direct Measurements

Differential Measurements

Energies versus Correlations

Comparison of Scenarios 2&3 in Highly Scattering regime: In highly scattering media (in the diffusive regime), the perturbation in the energy caused by a void inclusion is given by

$$\delta \mathcal{E}(t,\mathbf{x}) = d\pi D_0 \mathsf{R}^d \int_0^t \nabla_{\mathbf{x}} u_0(t-s,\mathbf{x}_b) \cdot \nabla_{\mathbf{x}_b} G(s,\mathbf{x},\mathbf{x}_b) ds.$$

Here d is dimension and $G(s, \mathbf{x}, \mathbf{x}_b)$ the background Green's function.

The perturbation of the two-field correlation is given by

$$\delta \mathcal{C}(t, \mathbf{x}) = -4\pi \mathsf{R} \int_0^t u_0(t - s, \mathbf{x}_b) G(s, \mathbf{x}, \mathbf{x}_b) ds + o(\mathsf{R}), \qquad d = 3$$

$$\delta \mathcal{C}(t, \mathbf{x}) = \frac{2\pi}{\ln \mathsf{R}} \int_0^t u_0(t - s, \mathbf{x}_b) G(s, \mathbf{x}, \mathbf{x}_b) ds + o(\frac{1}{|\ln \mathsf{R}|}), \qquad d = 2.$$

In moderately scattering regime, both are of order \mathbb{R}^{d-1} .

Correlations vanish at the inclusion's boundary

Numerical Simulations

- Waves solved by Finite Differences
- Transport solved by Monte Carlo

Effect of Void inclusions

Transport theory accurately predicts the influence of an inclusion on the energy measurement.

Energies versus correlations

 Correlation fluctuations (blue) versus energy fluctuations (red) in weakly (left) and strongly (right) scattering media.

Inverse monochromatic transport

- Monochromatic waves
- Foldy Lax to model point scatterers and solve for wave fields
- Forward and inverse transport problems solved by Monte Carlo method
- Random medium parameterized by mean free path:

 $l_{2D}^*(k) \approx \frac{1}{\tau^2 l_3}$

Weak Scattering reconstructions

Kirchhoff (middle) versus Transport (right) reconstructions

Strong Scattering reconstructions

Kirchhoff (middle) versus Transport (right) reconstructions

Reconstruction from <u>Direct</u> Measurements

Reconstruction from Differential Measurements

Hidden Inclusions (by known blocker)

 Reconstruction of inclusions in the absence of line of sight (coherent) measurements.

Duke U. experimental Setup

Antenna

Vancouver, 25 June 2007

Reconstructions from Experimental Data

Reconstructions based on differential data (Scenario 2).
10 GHz data. Medium is 2.5 mean free paths thick.

Reconstruction of voids

Reconstructions based on differential data (Scenario 2).
 10 GHz data. Medium is 2.5 mean free paths thick.

Vancouver, 25 June 2007

Conclusions

- Transport equations offer an accurate generalization of the Liouville equation in the regime of sufficiently small fluctuations.
- In that regime, the energy density and the field-field correlations are statistically stable.
- Thus inverse transport a good model to obtain the statistical properties of random media and image buried inclusions.

Acknowledgment

Joint work with:

- Olivier Pinaud (University Lyon I)
- Kui Ren (Columbia)
- Larry Carin and Dehong Liu (Duke)
- Lenya Ryzhik (University of Chicago)
- George Papanicolaou (Stanford)

Funding support:

- ♦ DARPA-ONR Grant N00014-04-1-0224
- ♦ NSF CAREER DMS-0239097
- ◊ Alfred P. Sloan Fellowship

References available at www.columbia.edu/ \sim gb2030/pubs.html :

- * Transport-based imaging in random media (with K. Ren),
- \star Experimental validation of a transport-based imaging method in highly scattering environments (with L. Carin, D. Liu, and K. Ren),
- \star Kinetic Models for Imaging in Random Media (with O. Pinaud).