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Models for acoustic wave propagation

The linear system of acoustic wave equations for the pressure p(t,x)
and the velocity field v(t,x) takes the form of the following first-order
hyperbolic system

0 0
PO+ VP =0, ()T +V-v=0, p(0,%)=po(x), v(0,%) = vo(x),

where p(x) = pg (to simplify notation) is density and «(x) compressibility.
Energy conservation is characterized by

1

Ep(t) =7 [, (PGt %) 4+ k(x)p*(1, %) )dx = £5(0).

We know that total energy is conserved. The role of a kinetic model is
to describe its spatial distribution (at least asymptotically).
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Scalar model

The pressure p(t,x) also solves following closed form scalar equation

82p . 2 . 1
@ = C (X)Ap, C (X) = pOKJ(X)
Moreover
2 X
Ep(t) = % Rd (R(X) (%)Q(tax) + |vp|pét’ ))dX = £y (0).

The latter conservation law is equivalent to the previous one: let ¢(t,x)
be a solution of the above equation, then (v,p) = (—p~ 1V, d1d) solves
the first-order hyperbolic system and Egy[¢o](t) = Eg[v,p](t). It is thus

natural that the kinetic models for the energy distributions associated to
both conservations agree.
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Another system model

)
Finally let us define ¢(t,x) = C_Q(X)a_f(t’x)‘ Then u = (p,q) solves the
following 2 x 2 system

ou . . 0 c2(x)

with appropriate initial conditions. Note that

A=J Nx), J= (_01 é) , N(x) = <_OA c2(()x)> symmetric |,

and that energy conservation may be recast as

1
E(t) = — uAudx = £(0).
2p0 /R4

Kinetic models associated to each acoustic equation must therefore agree
and provide the same spatial energy distribution.
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High Frequency scaling

Consider the framework where the typical distance of propagation L of
the waves is much larger than the typical wavelength X\ in the system.

A
We introduce the small adimensionalized parameter ¢ = 7 < 1. We thus

rescale space x — ¢ 1x and since | = c¢xt rescale time accordingly t — e~ 1t
to obtain the two model equations

82
- 875];8 = c2(x)e2 Ape, p(0,%) = po-(e1x)
ou 0 c2(x _
€ (9156 + Azue = 0, A = — <52A 5(() )> : u:(0,x) = up.(e 1X).

Energy conservation implies

E(t) = 2—20 [ (2200 (=72) %30 + 1e9pP(1,) ) x = £51(0),

_ 1 2 2 _
£(t) = 7/Rd (|€Vpg| (t, %) + 2(x)q- (t,x)) x = £(0).
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Geometrical optics

In the high frequency regime and for “low frequency” media, i.e. cs(x) =
c(x) independent of £, wave propagation can be approximated by looking
at solutions of the form

S(t,x)

pe(t,x) = (p(t,x) + aplg(t,x)>ei £

Then S(t,x) solves the eikonal equation

0S5\ 2
(5,) = 2C0IvxsP2
and p(t,x) the transport equation
95 9 928
aa—]f? — CQ(X)va . pr + (ﬁ — CQ(X)AXs)pO p— O,

S(0,x)
1
with appropriate initial conditions so that p:(0,x) = p(0,x)e ¢
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Limitations of Geometrical optics

The eikonal equation admits a unique (physical) solution only for suff-
ciently short times that are very small in highly heterogeneous media.

When such caustics occur, the geometrical optics decomposition need to
be generalized as a superposition of propagating fronts:

N St x)
pe(t,x) = Z (pg“(t,x) + Eprrlls(tax))e &

n=1

It is unclear how such decompositions can be used to model wave prop-
agation in very heterogeneous media.

It is more natural to replace the physical description of high frequency
waves (S and pg depend on time and space only) by a phase space de-
scription, which also accounts for the direction in which waves propagate.
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Theory of Wigner transforms (I)

[L.P. RMI-1993; G.M.M.P CPAM-1997]. Define the Wigner transform

Wel, d10e 1) = [ e e — D)o e+ 2) 22

For ¢ and v in L2(R%), W is bounded in A’(R2%) defined as the dual of
functions n(x,k) such that [pssupx ||7(x,y)||dy is bounded. This subset
of S’'(R2?49) includes bounded measures on R2¢. The Wigner transform
has “bounded’ L2(R24)—norm of order e /2.

For bounded sequences g, ¢ In LQ(IR%d), we can extract convergent sub-
sequences of We[we, ¢:] in A/(R24). The limits of WO of W:[pe, ¢c] are
positive measures.



CIRM, Marseille September 7, 2005

Theory of Wigner transforms (II)

Let ¢ be a (scalar) bounded family in L2(R%) which is s-oscillatory and
compact at infinity and such that the Wigner transform Wg[ye, 1] con-
verges to the Wigner measure WO[:]. Then if |¢<|2 — v as measures on
R%, we have
g WOl G, dk) = v, oa WOl (dx, di) = Tim | (e (x) dx.

The first equality shows that the Wigner measure may be interpreted as a
probability density (energy density for classical waves) in the phase space.
T he second equality shows that provided that the field . oscillates at the
scale € not too far from the origin, the limiting Wigner measure captures
the whole probability density (energy density for classical waves).

Otherwise both equalities above are inequalities <.
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Noteworthy properties

The Wigner transform of vector fields is defined by:

Welu, v](x, k) = /

Rd
It is the inverse Fourier transform of the product:

Y dy
27 (2m)d

ey Ku(x — €%)V* (x+ ¢

— 1 Y\« * y
We [u, V] (X, k) = F (H(X -+ €§)V (X — 55)) )
We verify that
/Rd W, v](x,k)dk = (.uv*)(x)
/Rd kW[U_, V] (X, k)dk p— E(U.VV* _ VHV*)(X)

/ k[?W[u, v](x,k)dkdx = 52/ Vu - Vvidx.
R2d Rd
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Equations for the Wigner transform

Consider two field equations and the Wigner transform:

8u
86 _I_Agougp — O Y — 1727 W€(t7X7 k) — W[ug_(ta')aug(ta')](xak)'
Here uf = (pf, (¢£)2(x)9pf). Then we verify that
8W
e, F WlAluZ, uZ] + Wuz, A2uZ] = 0.
Calculations of the type
W[P(x,eD)u, v](x, k) = [e VP (y, i Y [e€*W u, v](x, k — € }(d;d;
L pd
WV (x, 2w, vI(x, k) = /}: LTI (@ pW I VG k - 5 = D

allow us to obtain an explicit equation for Ws. The above formulas are
amenable to asymptotic expansions in e.
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A priori bounds

The Wigner transform W.(t,-,-) is uniformly bounded in A’(R2%) by con-
struction. For the Schrodinger equation, we can show that the following
quantities are conserved:

/R _ We(t,x, k)dxdk, /R W2t x, k) dxdk, % /R _ We(IkJ? + Ve(x) ) dkdx.
We is not non negative in general, although its limit is. So the first and
third conservations provide little a priori information.

The second L2(R2?%) a priori bound is much more useful, but only in the
case of a mixture of states

We(t, x, k) = /S Wp=(t, - w)be(t, - w)]du(w),

where (S, u) are such that W.(0,-,-) € L?2(R?9) is bounded independent
of €. This holds in the Time Reversal framework. For pure states (i.e.,
when du(w) = §(w — wg)), the a priori L2 bound is O(e~%).
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Weak-Coupling Regime

In the weak coupling regime, the random fluctuations of the media are
modeled by

(£)°() =~ VeVe(), ¢=12

where cg is the background speed assumed to be constant to simplify. We
consider two random media Vﬂp(s—lx), ¢ = 1,2 and fields propagating in
these media, i.e., solving

ou? 2
T4 APuP =0, Afz—( 0 CO>+\/EV9"(§)K,K=<8 é)

“ ot p(eD) O
p(D) = —A for the wave equation. V¥(x) for ¢ = 1,2 is a statistically ho-
mogeneous mean-zero random field with correlation function and power
spectra:

chWb(x)
(2m)4ct RY (p)d(p + Q)

(Ve (y)V¥(y + x)), 1<, <2,
(Ve(P)VY(q)).
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Equation for the Wigner Transform

Recalling that
WE(ta X, k) — W[ug_ (ta ')7 ug(ta ')](X7 k)
and that
8W5

8
we obtain after (simple) pseudo-differential calculus that W: solves the

following equation:

G;Vs + P(ik + _){/Vé3 + W:-P*(ik — —) + \/_<’C51KW5 + ng*WsK*> = 0,
2

0 c
P(z’k+€2>=( L, D O),ic?fw:/Rd e IW (i — ) P

+ W[Alul,u?] + Wlul, AZu?] =0,

27 (2m)d
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Multiple scale expansion

Because of the presence of a highly-oscillatory phase exp(i(x/e) - k) in
the operator }Cf, direct asymptotic expansions on W: do not provide the
correct limit. Instead we introduce the following two-scale version of Wk:
X
W€(t7X7 k) — W€(t7X7 _7k)7
€

and using that D — Dx + 6_1Dy, find the equation

an €DX . Dy €DX
P(ik W:P*(ik — —
875 + P(4 ‘|‘ 2 5 + WeP*(¢ 5 > )

oz (ICleg + ICQ*WgK*) —0,

ICS"W=/R WPV%@(p)W(k——)(2 T
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Asymptotic expansions

We can now use standard asymptotic techniques:
P = Py+eP;+ 0(2),
We(t,x,y, k) Wo(t, x, k) + /eWi(t,x,y, k) +eWa(t, x,y, k)

plug them into the equation for Wg, equate like powers of ¢, and obtain
three successive equations. The leading equation is

: . —p(tk) O O 1
Py(ik)Wo+WoFPy(tk) =0, Py = —JAg, Ng = ( p(()z ) CQ) , J = <_1 O) :
0

Define gg(ik) = /—p(ik), A+ (k) = +icgqgo(ik), and observe that the fol-
lowing spectral decomposition holds:

PO — )\_l_b_|_C>f|_ -+ )\_b_C*_,

for some vectors b+ and c4+ = Agb4+.
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Leading order term

The leading order equation Py(ik)Wo + WoPFj5(ik) = 0 imposes that

WO = a+b_|_b>f|_ -+ a_b_bi; atf = C*j:WOCj:.

Because all the components of uf are real-valued we verify that

a+(—k) = ax(k).

It is thus sufficient to find an equation for the mode a4 (k).

When ul = u?2, we verify that:

£(t) = /R _ay (%, k) dkdx.

Thus ay can be given the interpretation of an energy density in the
phase-space.
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First-order corrector

To summarize lenghtly calculations, after solving the next-order equation,
we find that Wy(¢,x,p,k) the Fourier transform y — p of the first-order
corrector W1 may be decomposed as

Wi(p.k) = 3 ay(p bk + 2)bj(k - ).
i,j=-=+

where
1 VI)Amk+ g)an(k - g — V2(p)An(k — g)“m(k * g)
23 A (k4 2) = An(k = 2) + 6 |

a+ are the coefficients of the leading order term Wy, So we find that W,
is linear in the fields V¥ and the leading-order term Wj.

amn(p, k) =
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Getting close to Radiative transfer equations

The third equation in the expansion is

D
Po(ik + 7) Wo + Wo P (ik — —y) + K1 KWy + KSW1 K*
oW
+,

After multlplylng the above equation by C—I— on the left and c4 on the right
(recall that ay = cfl_Woc+), taking ensemble averaging, and invoking a
few (non-rigorous) arguments, one finds that

oa

a: — Viwy (k) - Vxay (x,k) + (¢} L1Wicy) =0,
where w_l_(k) = i>\+(ik) = —Coqo(ik). Note that —ka_l_(k) = 60R for
the wave equation. We find that energy propagates along straight lines
(since ¢g is constant) is when Wy = 0.

+ P1(ik)Wo + WoP5 (ik) = 0.
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Getting closer to Radiative transfer equations

It turns out that the missing term is given by
At (k) — R (k — Xi(q)ay (k)
K) L1 W (K)ea (K / ( i(@ay
(3 (L1 (e () = 2 G o (S —ar0 19
RZ(k — q)xy(K)ai(q) R”(k q)A+(k)ag(q) n —R”(k—q)kj(q)wr(k)) dq.
Ai(q) — A4 (k) +0 Ap(k) —Aj(q) + 6 Ap(k) —Aj(q) + 6
Here we have used the definition of the power spectrum:

(2m)4GR?Y (p)s(p + ) = (V¥(p)V¥(q)).

We use the summation over repeated indices 7,5 and 6 > 0 is a regular-

ization parameters ensuring causality. Since Aj(k) is purely imaginary, we

deduce from the relation mﬂ_s — L + 7wsign(e)s(x), as e — 0, that

_I_

| 1 1 B N
080 (Aj(q) (k) + 0 N A (@) — (k) + 9) = 2mo(iAj(@) — A4 (k).
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Finally there

Summing up all the previous calculations, we find that ay satisfies the
following radiative transfer equation:

with
> (k)

in(k)

o(k,q)

9
g:r — Viws - Vxay + (Z(K) + in(k))a

= [ o0 @)at(@d(wi(a) —wp (k) da

w2 (k pll 22
3( )/RdR Th (k — @)5 (w4 (@) — w (k) )da,

2(2m)d 2 e (A ()
1 511 522 + i\d
T el P W v S M
2
7Tw-l-(k) RlQ(k . )
2(27)d d

Recall that wy (k) = iA;(7k) = —cpqo(ik) = —cplk| for the wave equation.
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Rigorous derivations of radiative transfer

Theorem|[Erdds-Yau-2000]. Consider the Schrodinger equation in the

% —|— — A — \/EV(§)¢5 = 0, with smooth
WHKB-type initial conditions in dlmension d > g and where V(x) is a
mean-zero real Gaussian field with smooth power spectrum R(p). Then
E{W:(t,x,k)}, the expectation of the Wigner transform of . converges
weakly in S’(R24) to the solution of the kinetic equation

weak-coupling regime: e

2 2
88_W-|—k VW = zw/dﬁz(k—q)(W(q) —W(k))5(|k2| N |qz| )da

The proof is based on diagrammatic expansions in the Duhamel formula
Ve (t) = e ety (0). The law of the limiting measure is not characterized.
A similar result was recently obtained for (a discrete version of) the wave
equation by Jani Lukkarinen and Herbert Spohn (Kinetic Limit for Wave
Propagation in a Random Medium; math-ph/0505075).
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Analysis for the Paraxial Equation

The pressure field p(z,x,t) satisfies the scalar wave equation
1 9%

c2(z,x) Ot2

The parabolic approximation consists of positing that

— Ap =0. (1)

p(z,x,t) & [ Oy x, m)codn,

where ¢ satisfies the Schrodinger equation

27352—%, X, k) + Axp(z,x, k) + £2(n?(2,x) — 1)p(z,x, k) = 0,

<
Y(z = 0,x,Kk) = YPo(x, k)
with Ax the transverse Laplacian in the variable x. The refraction index
n(z,x) = cg/c(z,x), and cg is a reference speed.
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Scaling and random medium

The scaled Schrodinger equation in the weak coupling regime is

W 2an +w2VEV S, =0

$e(z = 0,%, k) = o (x, ).

21KE

The random field V(z,x) is a Markov process in z with infinitesimal gen-
erator . It is stationary in z and x with correlation function R(z,x)

E{V(s,y)V(z+s,x+y)} = R(z,x) forall x,y € R% and z,s € R.

The generator () is a chosen conveniently, e.g. as a bounded operator
on L>®(V) with a unique invariant measure = (V).
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Equation for the Wigner Transform

et us define the Wigner transform as the following mixture of states

dp(w),

We(t,x, Kk, k) = //Rd Zkylbs(t X—%Rw)¢s(t +—/<3W)( )d

where 1. solves the paraxial equation and where (S,u) is such that
We:(0, x,k; k) is uniformly bounded in L2(R% x R%) and converges as ¢ — 0
to WO(x,k; k).
Then the Wigner transform W; solves the following equation:

OWe

1
—I— k- wag — I‘{,LgWg
0z K

We(0,x,k; k) = WO(x,k; k),

~ 2
LW = WP ePX/E W (x, k W.(x,k + 2
T iyEJRd (2m)d ) 2 Y

Moreover, W:(z; k) is uniformly bounded in L2(R% x R?) for z > 0.
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Main stability result

The Wigner distribution W, converges in probability and weakly in L?(R24)
to the solution W of the transport equation

oW
— 4+ k VxW = kLW,
0z
with initial data Wp(x,k; k) and operator £ defined by
ox= [P R PECIE L o) - a0,
Rd (27r)d 2

where R(w,p) is the Fourier transform of the correlation function of V.

More precisely, for any test function A € L2(R24) the process (We(z),\)
converges to (W (z), \) in probability as e — 0, uniformly on finite intervals
0 < z < L. Here, (-,-) is the usual scalar product in L2(R2%).
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ItO0 Schrodinger equations

Let us come back to the (rescaled) parabolic approximation

Nx) = V : .
9z T 2k L2 x¥ >V e Lo )Y
We now assume that the random fluctuations are very fast in z: [, < .

Then we can formally replace

kL.v  L.x L L
el VGl LA W by kB(Z2
> L L

where B(x,dz) is the usual Wiener measure in z with statistics

7dz)7

la

(B(x,2)B(y,z)) = Q(y —x)z A 7.



CIRM, Marseille September 7, 2005

ItO0 Schrodinger equation

The parabolic equation in this regime becomes then

ZLZ LQEX

d(x,z) = kLQAXQp(X z2)dz + ik (X, 2) o B(

Here o means that the stochastic equation is understood in the Stratonovich
sense. In the It0 sense it becomes the [to-Schrodinger equation:

,dz).

z'Lz
kL2

L.x

,dz).

dw(x, ) = 5 x = 12Q(0) ), 2)dz + im(x, 2) B

Advantage: Closed equations for the statistical moments.
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Second Moment

Introduce the Wigner transform

oyt fo P0G = DU et B )y,

By application of the Itd formula:

d(w(xla Z)w*(x27 Z)) — w(Xla Z)dw*(XQa Z)
+d¢(X1, Z)¢*(X27 Z) + d¢(X17 Z)dlb*(XQa Z))

W(x,p,z) =

we find that

aia? T kiz p-Vx(W) = /IRd [Q(P —p") —Q0)é(p — p')| (W) (p)dp'.

We thus get an equation for the average Wigner transform for free.
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Scintillation = second moment for the W'T

Define W(x,p,&,q,2) = W(x,p,2)W(E,q, z). Its statistical average can be
related to the fourth statistical moment of 3 and we find that

(W) L
0z T kL2

(P Vx+a- V)W) = Ro(W) + K12(W)

x=£-u
KW= [ Qe 7 (W -3a-D+WE+5a+D

WP - Ba+5) - Wp +5a-1))du
KW = /RQd [Q(p —~p)é(a—d)+Q(a—d)i(p - p’)] W(p',d")dp'dq’
RoW = KoW — 2Q(0)W.

When the phase term cancels so that “|Kio2W| < 1", we obtain that

Jn(xap7€7 q, Z) — <W(X7p7€7q7 Z)> T <W(X7p7 Z)> <W(€7 q,2)> ’
the scintillation function, is small. The energy is then statistically stable.
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Smallness of the scintillation function

Theorem. Let us assume that Wy(x,p,0) is deterministic and such that

2 2

where (' is a constant independent of n. Assume also that the correlation
function Q(x) € LY(R®) N L>®(R%). Then

| Jnll2(2) < Cn/?,

uniformly in z on compact intervals.
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Weak statistical stability

Theorem. Under the assumptions of the previous theorem and A\ &€
L2(R24), we obtain that

({(0 — ) ) < cnt2iaig

Also (Wy, A\) becomes deterministic in the limit of small values of n as

Cn¥/2||\13
P(| Wi ) = (W), )| 2 0 ) < =22
The Wigner transform W, of the stochastic field 1, converges weakly
and in probability to the deterministic solution W(x, p, z) of a Radiative
Transfer Equation.

O asn—O0.
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Scintillation may appear and not disappear

Theorem. Assume that |Wp(x,p,0) =4d(x —x0)d(p —pg)|- Then the
scintillation function J, is composed of a singular term of the form (with

Q = Q(0)):

5(x — €)5(p — q) (a<x, p,2) — e 2@a(x — zp, p, o>)

plus other contributions that are mutually singular with respect to this
term. Moreover the density a(x, p, 2) solves the radiative transfer equa-
tion with initial condition ag(x,p) = é(x — x0)d(pP — Po):

0 ~
a—j +p- Vxa+ 2Qa = /RdQ(u)(oz(X,p-l-g,Z) + a(x,p - g,z)>du

The total intensity of this scintillation is (1 — e 29%) (so it grows in z
though it vanishes at z = 0).
In this case Energy is NOT statistically stable.
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Random Liouville model

We come back to the full wave equation and we(t,x) = Ag/z(x)ug(t,x)
(ue = (ve, pe)) which solves the first-order symmetrized system:

OWe ~1/2 j 0 ([ ,-1/2 _
SE A Peopi (Ag (X)Wg(x)) —0.

Define P:(x,k) = Py(x,k) 4+ eP1(x), where

Py(x,k) = ’L'Ag_é(X)DjAg_j(X)kj = icg(x)ijj
1 5 [/ 1 5 [ _1 1
21 0) = A:2GDT 7 (4360 ) = 7 (4360 ) piaz .

Lj L
The Wigner transform We(t,x,k) satisfies the evolution equation

oWe

o _ i —id dzdpdydq
Lef (k) = [ (Poy, e F(2.p) — f(z,p)e Py, ) ) T P,

¢(X7Z7k7p7Y7q) Z%((p—k)y—l—(q—p)x—l—(k—q)Z)

+£5Wg =0

€
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T he Liouville equations

Consider the leading-order term for the Wigner transform. The matrix
—1iPg has eigenvalues A\g = 0 of multiplicity d—1 and A\ 5(x, k) = £ce(x)k|:

2 2
—iPp(x,k) = ) Ag(x,k)Mg(x, k),  where > Ng(x,k) =1.
q=0 q=0
The Liouville approximation to the Wigner transform is given by

Ue(t,x,k) =) ug (t, %, k) Mg(k),
q

where the coefficients ug solve the Liouville equation

ous
8tq + VAL - Vxug — VxAg - Viug =0

ug(0,x,k) = TrllgWo(x, k)M
Here, the coefficients Ag depend on §(e) and Wy is chosen independent

of e.
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Approximation of W: by Liouville equation

Theorem. Let p.(x) = pg + \/3,01(?) and re(x) = kg + \/Smé), with all
terms sufficiently smooth. Then we have

g C't
IWe(t, .10 = Ue(t, xRz < O exp (5 7) [Wol 2 + W2 = Woll 2.

for some m independent of «.

In other words, assuming that WSO converges strongly to Wy and that
5(¢) — 0 as ¢ — 0 with the constraint 8(e) > |Ine|=2/3%7, then the
difference |[We(t,x,k) — Ue(t,x,k)||;2 — O uniformly on finite intervals
te (0,T).

The convergence is uniform in the realization of the random medium (the
statistics of p; and k1 have not been defined yet). So we safely replace
the analysis of We by that of Ug, the solution of a Liouville equation with
random coefficients.
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Stability of the Wigner Transform

Theorem. Let us be a propagating mode associated to U:. Then:
E{us(t,x,k)} — F(t,x,k) weakly as §(e) — O,

where F' satisfies the following Fokker-Planck equation

F .
a—‘|_COl{VXP"—£‘F‘|:O7
ot
d N d .
LPK) = > [k[2Dpg(K)f ; F(k)+ 3 [k|Ep(k)oy,F (k).

p,q=1 p=1
The coefficients Dy 4 and E, are related to the power spectra of k1 and
p1. Moreover, we obtain the stability result

E {/ \<u€(T, xg, k) — F(T, Xo,k),)\(k)>’2dxo} —~0 as 6&(e) — 0,

which implies that us converges in probability to the deterministic solution
F. This in turn implies the stability of the refocused signal u®.
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Summary of radiative transfer models

We have obtained several transport models of the form
oa
ot

where the scattering operator § is given respectively by

/Rd R(p — k) (a(k) — a(p))8(colp| — colk|)dk

+ cok - Vxa + Sa = 0,

Radiative Transfer: Sa

/|2 . |k"2

d_1R(|P P —K)(aX) — a(p))adK’

RO, p = K)(a(K) — a(p’))dK’

Paraxial: Sa = /
R

[tO-Schrodinger: Sa = /R

Fokker-Planck: Sa = —D(|k|])Aga.

Note that Radiative Transfer and Fokker-Planck admit a diffusion limit
for small mean free paths. This can be arranged for the paraxial approx-
imation when R(t,-) =~ §(t)R'(-), but not for Itd-Schrodinger.



CIRM, Marseille September 7, 2005

Outline

1. Waves in heterogeneous media

2. High Frequency regime and Geometrical optics

3. Wigner transforms

4. Radiative Transfer model in the weak coupling regime

5. Random Liouville, paraxial and Ito-Schrodinger approximations

6. More general Radiative Transfer models
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Equation for spatial Wigner transform

So far, all models start with an equation for the Wigner transform, which
requires the field equation to be first-order in the time variable:

8u5

8
so that the Wigner transform of the two fields defined as

+ Afu?f = 0, 0=1,2,

We(t, x, k) = Wlul(t,-),uz(t, )](x, k),

solves the equation

8W
e, F WAluZ, uZ] + Wuz, A2uZ] = 0.
Some pseudo-differential calculus allows us to write W[Alul u?] in terms
of Wg(t,X, k)

This method does not allow us to obtain kinetic models for e.g. second-
order equations or time-discretizations of the wave equation.
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Spatio-temporal Wigner transform

To handle more general differential or pseudo-differential opeators in the
time variable, we introduce the spatio-temporal Wigner transform

— ik-y+itw D W eT ey, dydr
W[u,v](t,w,x,k)—/RdHe u(t—=,x 2 (t—|— X oy

Let us illustrate the use of the spatio-temporal ngner transform by
considering the following constant coefficient equation

R(Eth)U.g(t, X) —I— P(&fDx)Ug(t, X) = 0.
For R(iw) = iw, we are back to first-order equations in time. Then clearly,
W[R(th)U.g, 115] —I— W[P(ng)Ugj, Ugj] — O

The same calculus as earlier gives for Wg = Wue, us] the equations
€Dt

)Wg(t,w,x, k) = 0

<R(7jw + —
Wo(t. w, %, k) (R*(zw _ 8—D’f) + P(ik — 5DX)>

0.
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Application to discrete wave equations

Consider the wave equation with dispersive effects:
R(eDy)uf + Afuf = 0, o=1,2,

where R(iw) = —R(iw). Forinstance iA~1lsin(wA) corresponds to second-
order time discretization. Then the energy density (or correlation func-
tion) associated to the above field equation is still modeled by a kinetic
model. The radiative transfer equation for the propagating mode a is

0 ~ ~ -
g: — Vw4 -Vxay +((k)+ill(k))ay = /Rd o (k, Q)a+(Q)5(w+(Q) —w+(k)> dq,
where the above coefficients are related those with R(iw) = iw by
~ > (k) - o(k,q) -~ Mck)
Z k — y k7 — ) 3 I_I k — - .
=R o “CY = Raiar " T B0

This quantifies the effects of e.g. numerical discretizations on the kinetic
parameters of a random media.
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Application to scalar equations

We can apply the theory to general scalar equations of the form

R(eDy)pf + HEpY =0, 1< p<2,
? = bf(x)B(eDx)df (x)7(eDx), 1< p<2.

For instance R(iw) = —w?, B(ik) = —ik- and ~(ik) = ik, bo(x) = x~1(x)
and dp(x) = p~1(x) is the second-order scalar wave equation.

Kinetic models can be obtained this way for the following equations:

Schrodinger 8% 4 < qug Ve(x)pe = O
82
Klein Gordon &2 81:58 — azA?,bg + oz21,b€ —VeViE)ye = 0
O2E,

E&M —V-2(x)VE: = 0, V-E.=0.

Ot2
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Conclusions

The Wigner transform is a very useful tool in the derivation of radiative
transfer equations to model energy densities or correlation functions of
waves in random media.

Kinetic equations model the correlation of two fields possibly propagating
in two different (though hopefully correlated) media.

Though most derivations are formal in the weak coupling regime for
wave equations, rigorous theories can be obtained for connected models
of wave propation (e.g. paraxial approximation and random Liouville
models).

The spatio-temporal Wigner transform is very useful to derive Kinetic
models from field equations that are more general than first-order differ-
entiations in time.
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