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Data Acquisition in SPECT
(Single Photon Emission Computed Tomography)



CT and SPECT measurements in brain



Mathematical modeling

The transport equation with anisotropic source term is given by

θ · ∇ψ(x, θ) + a(x)ψ(x, θ) = f(x, θ) =
N∑

k=−N
fk(x)eikθ, x ∈ R2, θ ∈ S1.

We identify θ = (cos θ, sin θ) ∈ S1 and θ ∈ (0,2π). We assume that

f−k = fk and fk(x) is compactly supported. The boundary conditions

are such that for all x ∈ R2,

lim
s→+∞

ψ(x− sθ, θ) = 0.

The absorption coefficient a(x) is smooth and decays sufficiently fast at

infinity. The above transport solution admits a unique solution and we

can define the symmetrized beam transform as

Dθa(x) =
1

2

∫ ∞

0
[a(x− tθ)− a(x + tθ)]dt.



Mathematical modeling (II)

The symmetrized beam transform satisfies θ · ∇Dθa(x) = a(x) so that

the transport solution is given by

eDθa(x)ψ(x, θ) =
∫ ∞

0
(eDθaf)(x− tθ, θ)dt.

Upon defining θ⊥ = (− sin θ, cos θ) and x = sθ⊥ + tθ, we find that

lim
t→+∞

eDθa(sθ
⊥+tθ)ψ(sθ⊥ + tθ, θ) =

∫
R
(eDθaf)(sθ⊥ + tθ, θ)dt

lim
t→+∞

ψ(sθ⊥ + tθ, θ) = e−(Pθa)(s)/2(Ra,θf)(s),

where Pθ is the Radon transform and Ra,θ the Attenuated Radon Trans-

form (AtRT) defined by:

Pθf(s) =
∫
R
f(sθ⊥ + tθ, θ)dt =

∫
R2
f(x, θ)δ(x · θ⊥ − s)dx

(Ra,θf)(s) = (Pθ(e
Dθaf))(s).



Inverse Problem in SPECT

The inverse problem consists then in answering the following questions:

1. Knowing the AtRT Ra,θf(s) for θ ∈ S1 and s ∈ R, what can we

reconstruct in f(x, θ)?

2. Assuming f(x, θ) = f0(x) + 2cos θf1(x), can we obtain explicit for-

mulas for the source term?

3. Can we reconstruct f(x, θ) = f0(x) from half of the measurements?

4. Do we have a reliable numerical technique to obtain fast reconstruc-

tions?



Part I: Reconstruction from full measurements
The Novikov formula revisited

We recast the inversion as a Riemann Hilbert (RH) problem. Let us define

T = {λ ∈ C, |λ| = 1}, D+ = {λ ∈ C, |λ| < 1}, and D− = {λ ∈ C, |λ| > 1}.
Let ϕ(t) be a smooth function defined on T . Then there is a unique

function φ(λ) such that

• φ(λ) is analytic on D+ and D−

• λφ(λ) is bounded at infinity

• ϕ(t) = lim
0<ε→0

(φ((1− ε)t)− φ((1 + ε)t)) ≡ φ+(t)− φ−(t).

Moreover φ(λ) is given by the Cauchy formula

φ(λ) =
1

2πi

∫
T

ϕ(t)

t− λ
dt, λ ∈ C\T.



RH for AtRT, a road map

1. Extend the transport equation to the complex plane (complex-valued

directions of propagation θ → eiθ = λ ∈ C). Replace the transport solu-

tion ψ(x, λ) by φ(x, λ) which is analytic on D+ and D− and O(λ−1) at

infinity by subtracting a finite number of analytic terms on C\{0}.

2. Verify that the jump of φ(x, λ) at λ ∈ T is a function of the measured

data Ra,θf(s).

3. Read off the constraints on the source terms fk(x) from the Taylor

expansion of φ(x, λ) at λ = 0.

4. In simplified settings, reconstruct the fk(x) from the constraints.



Step 1: RH setting

Define

λ = eiθ, z = x+ iy with x = (x, y),
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
.

The transport equation is then recast as(
λ
∂

∂z
+ λ−1 ∂

∂z̄
+ a(z)

)
ψ(z, λ) = f(z, λ).

We now consider the above equation for arbitrary complex values of λ.

ψ(z, λ) is analytic on λ ∈ C\(T ∪ {0}) and is given by

ψ(z, λ) = e−h(z,λ)
∫
C
G(z − ζ, λ)eh(ζ,λ)f(ζ, λ)dm(ζ),

where h(z, λ) =
∫
C
G(z − ζ, λ)a(ζ)dm(ζ) and

(
λ
∂

∂z
+ λ−1 ∂

∂z̄

)
G(z, λ) = δ(z), so that G(z, λ) =

sign(|λ| − 1)

π(λz − λ−1z)
.



The source term is given by f(z, λ) =
∑N
k=−N fk(z)λ

k. On D+ we have

G(z, λ) =
1

πz

∞∑
m=0

(
z

z

)m
λ2m+1, and ψ(·, λ) =

∞∑
m=1

(Hmf(·, λ))λm,

where the operators Hm are explicitly computable with

H1 =
(
∂

∂z̄

)−1
, H2 = −H1aH1,

∂

∂z̄
Hk+2 + aHk+1 +

∂

∂z
Hk = 0.

Using a similar expression on D−, we find that

φ(z, λ) = ψ(z, λ)−
−1∑

n=−∞
λn

∞∑
m=1

(Hmfn−m)(z)−
0∑

n=−∞
λ−n

∞∑
m=1

(Hmfm−n)(z),

satisfies the hypotheses of the RH problem: it is analytic on D+ ∪ D−

and of order O(λ−1) at infinity. Its jump across T is the same as that of

ψ since the difference ψ − φ is analytic in C\{0}. On D+ it is given by

φ(z, λ) =
∞∑
n=0

λn
∞∑

m=1

(Hmfn−m −Hmfn+m)(z).



Step 2: jump conditions

Writing λ = reiθ and sending r − 1 to ±0, we obtain

G±(x, θ) =
±1

2πi(θ⊥ · x∓ i0sign(θ · x))
,

h±(x, θ) = ±
1

2i
(HPθa)(x · θ⊥) + (Dθa)(x), Hu(t) =

1

π

∫
R

u(s)

t− s
ds.

Here H is the Hilbert transform. We thus obtain that ψ converges on

both sides of T parameterized by θ ∈ (0,2π) to

ψ±(x, θ) = e−Dθae
∓1
2i (HPθa)(x·θ

⊥)∓1

2i
H

(
e
±1
2i (HPθa)(s)Pθ(e

Dθaf)
)
(x · θ⊥)

+e−DθaDθ(e
Dθaf)(x).

Notice that (ψ+ − ψ−) is a function of the measurements Ra,θf(s) =

Pθ(e
Dθaf)(s) whereas ψ± individually are not.



Jump conditions (ii)

Let us define

ϕ(x, θ) = (ψ+ − ψ−)(x, θ).

It depends on the measured data and is given by

iϕ(x, θ) = [R∗−a,θ(2Ha)Ra,θf ](x) = [R∗−a,θ(2Ha)g(s, θ)](x),

where

R∗a,θg(x) = eDθa(x)g(x·θ⊥), Ha =
1

2
(CcHCc + CsHCs)

Ccg(s, θ) = g(s, θ) cos(
HRa(s, θ)

2
), Csg(s, θ) = g(s, θ) sin(

HRa(s, θ)

2
).

Here R∗a,θ is the adjoint operator to Ra,θ. We note that iϕ(x, θ) is real-

valued and that θ ·∇ϕ+ aϕ = 0.



Step 3: constraints on source terms

The function φ is sectionally analytic, of order O(λ−1) at infinity and such

that

ϕ(z, θ) = φ+(z, θ)− φ−(z, θ) on T.

So φ is the unique solution to the RH problem given by

φ(z, λ) =
1

2πi

∫
T

ϕ(z, t)

t− λ
dt =

∞∑
n=0

λn
1

2πi

∫
T

ϕ(z, t)dt

tn+1

on D+ so that

∞∑
m=1

(Hmfn−m −Hmfn+m)(z) =
1

2πi

∫
T

ϕ(z, t)dt

tn+1
≡ ϕn(z), n ≥ 0.

Because ∂
∂z̄ϕn+aϕn+1+ ∂

∂zϕn+2 = 0, there are actually only two indepen-

dent constraints for n = 0 and n = 1. This characterizes the redundancy

of order 2 of the AtRT.



Step 4: reconstruction in simplified setting.

Assume that N = 1 so that f(x, λ) = f0(x) + λf1(x) + λ−1f−1(x). Then

H1f−1(z)−H1f1(z) =
1

2πi

∫
T

ϕ(z, t)dt

t
= ϕ0(z)

H2f−1(z) +H1f0(z) =
1

2πi

∫
T

ϕ(z, t)dt

t2
= ϕ1(z).

Define ω = (cosω, sinω) ∈ S1 and impose for ρ1(z) real-valued:

f1(z) = eiωρ1(z), f−1(z) = e−iωρ1(z),
so that f1(z)e

iθ + f−1(z)e
−iθ = 2cos(θ+ ω)ρ1(z).

Since H1 is multiplication by 2/(iξz) in the Fourier domain, we obtain

f1(x) =
1

4
Dωs∆(iϕ0)(x), ωs = (sinω, cosω),

f0(x) =
1

4π

∫ 2π

0
θ⊥·∇(iϕ)(x, θ)dθ+

1

2
Dωsω

⊥
s ·∇(iϕ0)(x).

When ϕ0 ≡ 0 this is the classical Novikov formula.



Step 4 bis: Application to Doppler tomography.

In Doppler tomography, the source term of interest is of the form

f(x, θ) = F(x) · θ F(x) = (F1(x), F2(x)).

So we define the source term f1(x) = 1
2(F1(x) − iF2(x)) and fk(x) ≡ 0

for |k| 6= 1. The constraint n = 0 gives

∇× F(x) =
∂F2(x)

∂x
−
∂F1(x)

∂y
=

1

2
∆(iϕ0)(x).

The constraint n = 1 gives H2f−1(z) = ϕ1(z) so that

1

2

(
F1(z) + iF2(z)

)
= −

∂

∂z̄

1

a(z)

∂ϕ1(z)

∂z̄
.

This explicit reconstruction formula is valid on the support of a(x) and

has no equivalent when a ≡ 0.



Redundancy and compatibility conditions.

When ϕ0(x) ≡ 0 (compatibility condition), we obtain f1(x) = 0 and the

data can be obtained as the AtRT of a source term f(x, θ) = f(x).

In general, we can reconstruct two functions from the AtRT measure-

ments; say f0(x) and f1(x) at ω fixed.

The reconstruction is optimal in the following sense. Consider some data

g(s, θ) and reconstruct f0 and f1 as above with ρ1(x) = |f1(x)|. Then

the AtRT of f(x, θ) = f0(x)+2cos(θ+ω)ρ1(x) is equal to the measured

data g(s, θ) (this relies on the uniqueness to the RH problem).



Part II: Reconstruction from partial measurements

Since we can reconstruct two functions from the AtRT, can we recon-

struct one from half of the measurements? The answer is yes under a

smallness constraint on the variations of the absorption parameter.

The setting is as follows. We assume that g(s, θ) is available for all

values of s ∈ R and for θ ∈ M ⊂ [0,2π). The assumption on M is that

Mc = [0,2π)\M ⊂M + π; for instance M = [0, π) and Mc = [π,2π).

We also assume that the source term f(x) is compactly supported in the

unit ball B.

The derivation is based on decomposing the Novikov reconstruction for-

mula into skew-symmetric and symmetric components in L(L2(B)).



Decomposition of the identity operator

Let us define
iϕ(x, θ)

2
= R∗−a,θHaRa,θf(x) ≡ Φa,θf(x) and the operators

Fθ = θ⊥·∇Φa,θ = F1,θ + F2,θ

F1,θ = R∗−a,θ
∂

∂s
HaRa,θ, R∗a,θg(x) = eDθa(x)g(x·θ⊥)

F2,θ =
(
θ⊥·∇R∗−a,θ −R∗−a,θ

∂

∂s

)
HaRa,θ.

The Novikov formula shows formally that

2πI =
∫ 2π

0
Fθdθ,

which we recast as

2πI =
∫
M
Fθdθ+

∫
Mc

F ∗1,θdθ+
∫
Mc

(F1,θ − F ∗1,θ)dθ+
∫
Mc

F2,θdθ.



Decomposition of the identity operator (ii)

The main interest of the decomposition is that

F ∗1,θ = R∗a,θHa
∂

∂s
R−a,θ

so that F ∗1,θ on Mc involves

R−a,θf(s) = Ra,θ+πf(−s), because Dθ+π(−a)(x) = Dθa(x),

where now θ+ π ∈M by construction. Thus F ∗1,θ on Mc depends on the

measured data. Defining F s2,θ = 1
2(F2,θ + F ∗2,θ) and F a2,θ = F2,θ − F s2,θ, we

obtain

I = F d + F a + F s, F d =
1

2π

∫
M
Fθdθ+

1

2π

∫
Mc

F ∗1,θdθ

F a =
1

2π

∫
Mc

(F1,θ − F ∗1,θ + F a2,θ)dθ, F s =
1

2π

∫
Mc

F s2,θdθ.



Reconstruction from partial measurements

The preceding decomposition allows us to recast the reconstruction prob-

lem as

f(x) = d(x) + F af(x) + F sf(x), d(x) = F df(x),

where F a is formally skew-symmetric and F s is formally symmetric.

Theorem 1. The operators F a and F s are bounded in L(L2(B)) and

F s is compact in the same sense with range in H1/2(B).

Theorem 2. Provided that ρ(F s) < 1, we can reconstruct f(x) uniquely

from g(s, θ) for θ ∈ M . Since F s is compact we can always reconstruct

the singular part of f(x) that is not in the Range of F s.



Explicit Iterative Reconstruction

The reconstruction is obtained as follows: We have

f(x) = (I − F s)−1/2h(x)
h(x) = (I − F s)−1/2d(x) + (I − F s)−1/2F a(I − F s)−1/2h(x).

Defining the skew-symmetric operator Ga = (I − F s)−1/2F a(I − F s)−1/2

and γ = (1 + ‖Ga‖22)
−1, we observe that the iterative scheme

hk+1(x) = γ(I − F s)−1/2d(x) + ((1− γ)I + γGa)hk(x)

converges to h(x) in L2(B) as ‖(1− γ)I + γGa‖2 =
‖Ga‖2

(1 + ‖Ga‖22)1/2
< 1.

The uniquely defined solution of

fa(x) = d(x) + F afa(x)

is such that f(x)− fa(x) ∈ Range(F s).



Sketch of proof of Theorem 1

We need to consider terms of the form h(x) =
1

2π

∫ β

α
θ⊥ ·∇Φa,θf(x)dθ.

For a ≡ 0 we use the Fourier slice theorem to show that

ĥ(ξ) =
1

2

(
χ(α,β)(ξB) + χ(α,β)(ξF )

)
f̂(ξ).

for some angles ξB and ξF . So ‖h‖2 ≤ ‖f‖2.

In the general case we have terms of the form

h(x) =
1

2π

∫ β

α
θ⊥·∇

(
u(x, θ)H[v(s, θ)Pθ(w(x, θ))(s)](x·θ⊥)

)
dθ,

with u and v smooth [and ≡ 1 when a ≡ 0] and w(x, θ) = eDθa(x)f(x).

The term involving
(
θ⊥·∇u(x, θ)

)
yields a compact contribution whereas

application of the Fourier slice theorem shows that the term involving

u(x, θ)θ⊥·∇ yields a bounded contribution in L(L2(B)).



Case of constant absorption (ERT)

When a(x) is constant and equal to µ on the unit disk and vanishes

elsewhere, we verify that

θ⊥·∇(eDθa(x)g(x·θ⊥, θ)) = eDθa(x)
(
∂g(s, θ)

∂s

)
(x·θ⊥),

so that F2,θ ≡ 0.

We thus recover a result by Noo and Wagner (IP 2001) that f(x) can

uniquely be reconstructed. Furthermore we have that

I =
2

2π

∫
M
Fθdθ+

1

2π

∫
M+π

(Fθ − Fθ+π)dθ = F d + F a,

where d(x) = F df(x) is the measured data and F a is skew-symmetric.



Part III: Fast numerical reconstruction using
the slant stack algorithm

Joint work with Philippe Moireau, Ecole Polytechnique.

Let us represent f(x) by an image with n×n pixels. The objectives are:

• to compute an accurate approximation of g(s, θ) = Ra,θf(s)

• to compute it fast (with a cost of O(n2 logn))

• to invert the AtRT accurately and fast from full or partial measure-

ments.



Slant stack algorithm for the Radon transform

Follows presentation in recent papers by Averbuch, Coifman, Donoho,

Israeli, and Waldén.

Let us define Θ1 = [
−π
4
,
π

4
), Θ2 = [

π

4
,
3π

4
), Θ3 = [

3π

4
,
5π

4
), Θ4 = [

5π

4
,
7π

4
),

and the slant stack transform

Sf(t, θ) =


S1f(t, θ) =

∫
R
f(x, x tan θ+ t)

dx

cos θ
, θ ∈ Θ1

S2f(t, θ) =
∫
R
f(y cot θ − t, y)

dy

sin θ
, θ ∈ Θ2.

We have the reconstruction formula

f(x) =
1

2π

(
S∗1(

∂

∂y
HSf)(x) + S∗2(

∂

∂x
HSf)(x)

)
.

Differentiations in x and y are Cartesian-friendly. The operators Sk, S
∗
k,

and H are local in the Fourier domain.



Comparison of Slant Stack and Radon Transform

Sf(θ; t) [Lineogram] versus Rf(θ; t) [Sinogram].



Discrete slant stack

Set θ ∈ Θ1 and m = 2n. Let F be a n × n image. Define F1 = E1F ,

where E1 zero pads the image into a n×m image. Set Tn = {−
n

2
,−
n

2
+

1, · · · ,
n

2
− 1} and define the interpolation

F1
u (y) =

∑
v∈Tm

F1
u,vDm(y − v), Dm(t) =

sinmπt

m sin t
(Dirichlet kernel).

Define the semi-discrete slant stack transform as

SnFt(θ) =
1

cos θ

1

n

∑
u∈Tn

F1
u (u tan θ+ t), θ ∈ Θ1, t ∈ Tm.

Choose the directions of integration such that

Θn
1 = {θl = arctan

2l

n
, l ∈ Tn},

and define the discrete slant stack transform as SnFt,l = SnFt(θl).



Fast calculation

For the specific choice of angles Θn
1, we have

SnFt,l =
∑
k∈Tm

ei
2π
m (k+1

2)tŜnF k,l, t ∈ Tm, l ∈ Tn,

where

ŜnF k,l =

√
1 +

(
2l

n

)2
F̂1

(
−

2π

m
(k+

1

2
)
2l

n
,
2π

m
(k+

1

2
)
)
.

Define

F̃1
u

(
2π

m
(k+

1

2
)
)

=
1

m

∑
v∈Tm

e−i
2π
m (k+1

2)F1
u,v.

Then with (FαV )l =
∑
u∈Tn

Vue
−i2πn αlu the fractional FT,

(
F−2(k+1/2)

m

F̃1
u

(
2π

m
(k+

1

2
)
))

l
= F̂1

(
−

2π

m
(k+

1

2
)
2l

n
,
2π

m
(k+

1

2
)
)
.



Implementation of the algorithm

1. We zero-pad the n× n image F to obtain the n× 2n image F1,

2. We compute a Discrete Fourier Transform (DFT) on the columns,

3. We compute a fractional DFT on the rows,

4. We compute an inverse DFT (IDFT) on the columns.

Each of these operations can be performed in O(n2 logn) operations.

Moreover the discrete transform converges to the exact transform with

spectral accuracy.



Discrete Fourier slice theorem

The discrete FT of the discrete slant stack involves the Fourier transform

of the image at the above discrete points. Left: angles θ ∈ Θn
1. Right:

angles θ ∈ Θn
2.



Adjoint transform, inversion, accuracy

Let Sn be the fast slant stack operator. The discretization of the Riesz

operator I−1
n is local in Fourier and the “back-projection” operator S∗n

can also be estimated in O(n2 logn) operations. The exact reconstruction

S∗I−1S = Id is now replaced by

Idn ≈ Gn = S∗nI
−1
n Sn.

The matrix Gn is symmetric. Moreover its eigenvalues are all positive

(this was proved for many small values of n). So we can write

Idn = G−1
n Gn = [G−1

n S∗nI
−1
n ]Sn, i.e. , S−1

n = G−1
n S∗nI

−1
n .

The discrete transform can be inverted exactly, for instance iteratively by

Conjugate Gradient (CG).



Spectral properties of Gn and CG iterations

Case (n,ZP,CG) First Second Third n− 1 Last
16,0,0 0.88686 0.88686 0.97878 1.0897 1.3531
32,0,0 0.82501 0.82501 0.97795 1.0984 1.4539
32,1,0 0.99566 0.99566 0.99755 1.0204 1.0615
32,0,4 0.99993 · · · · · · · · · 1.0001
64,0,0 0.7599 0.7599 0.96266 1.1097 1.534
64,1,0 0.99585 0.99585 0.9969 1.0212 1.0657
64,0,4 0.99983 · · · · · · · · · 1.0004
128,0,0 0.69675 0.69675 0.93882 1.1543 1.5977

Spectral data (three smallest and two largest eigenvalues) for different

simulations: n× n number of pixels of image; ZP additional zero padding

such that the algorithm zero pads the original image into a 2n×2n images

for ZP = 1; CG the number of conjugate gradient iterations to invert

Gn.



Classical phantom reconstruction



Classical phantom reconstruction (ii)



Classical phantom reconstruction (iii)



Generalization to the AtRT

Recall that the AtRT is given by

Raf(s, θ) = R[eDθa(x)f(x)](s, θ) ≡ Ra,θf(s).

There are two difficulties. (i) We need to compute the coefficients

eDθa(x). (ii) We need to compute the Radon transform of a source

term f(x, θ). None of these operations can be performed fast. The FFT

based on the Fourier slice theorem only works for spatially dependent

source terms.

Let us define the Fourier coefficients

wk(x) =
∫ 2π

0
eDθa(x)e−ikθ

dθ

2π
.

We can recast the AtRT as

Saf(t, θ) =
∑
k∈Z

eikθS[wk(x)f(x)](t, θ).



Fast AtRT calculation in simplified setting

Let us assume that eDθa(x) can be approximated by N +1 predetermined

Fourier coefficients. Then each slant stack transform S[wk(x)f(x)](s, θ)

can be estimated in O(n2 logn) calculations. The total complexity of the

discrete AtRT

SaNf(t, θ) =
N/2∑

k=−N/2
eikθS[wk(x)f(x)](t, θ),

is thus O(Nn2 logn).

The calculation of the Fourier coefficients can be performed in O(n3 logn)

operations using a modification of the slant stack algorithm. The fast al-

gorithm is therefore useful when the AtRT corresponding to many sources

must be calculated with the same absorption map. This is the case when

the γ radiation of isotopes is monitored in time.



Novikov formula and Discrete Reconstruction

The Novikov inversion formula in the slant stack variables reads

f(x) =
1

4π

(
∂

∂y

∫
Θ1∪Θ3

S∗−a,θHag(x)dθ+
∂

∂x

∫
Θ2∪Θ4

S∗−a,θHag(x)dθ
)
.

The operator Ha involves multiplications (local in the spatial domain)

and the Hilbert transform (local in the Fourier domain). The adjoint

operators S∗−a,θ can also be estimated in O(Nn2 logn) operations provided

that the Fourier coefficients of e−Dθa(x) are precalculated.

Thanks to the Novikov formula, we thus have a fast algorithm to calculate

and invert the AtRT in the case where the Fourier coefficients of the cone

beam transform of a(x) are known.



Accuracy of the method

The Novikov formula I = S∗aHaSa is approximated by

Idn ∼ Gna = (S∗H)naSna.

The operator Gna need no longer be symmetric. To obtain a better

approximation of identity we thus consider

Idn ∼ (G∗naGna)
−1G∗naGna.

There is a difficulty here: (G∗naGna)
−1 is well defined and bounded when

a ≡ 0. This is no longer the case for a 6= 0.



An example of spectral analysis of Gna

Consider the absorption maps a(x;L) = La(x) with a(x) given by [a(x) =

6.5; 6; 0 on the white;grey;black parts], and L a multiplicative constant.



An example of spectral analysis of Gna (ii)

Singular values of Gna as a function of L without (left) and with (right)

zero-padding.



Spectral analysis of Gna (iii)

We thus observe that for sufficiently small values of absorption, the dis-

crete AtRT method will provide good reconstructions and G∗naGna is

invertible. Conjugate gradient iterations can be used to obtain recon-

structions that are as accurate as one wishes.

However for larger values of absorption (and how large depends on the

image size n), some singular values of G∗naGna become arbitrarily small.

Although we do not have any theoretical proof for this, the solution is then

to zero-pad the original image into a bigger image, for instance 2n× 2n.

The spectrum of the AtRT reconstruction Gna after zero-padding is then

again very close to identity.



Examples of spectral data

Case (L, n, ZP,CG) First Second Third n− 1 Last
0.5,16,0,0 0.8217 0.8240 0.8540 1.0927 1.3806
0.5,16,0,4 0.9997 0.9998 0.9998 1.0001 1.0001
0.5,16,1,0 0.9671 0.9675 0.9770 1.0225 1.0913
1,16,0,0 0.3747 0.4922 0.5514 1.5186 1.6228
1,16,0,4 0.7209 0.8743 0.9142 1.0146 1.0156
1,16,1,0 0.8678 0.8717 0.9090 1.0633 1.0678
1,32,0,0 0.3548 0.3972 0.5340 1.5317 1.9680
1,32,0,4 0.6507 0.7086 0.8877 1.0162 1.0169
1,32,1,0 0.8671 0.8891 0.8970 1.0701 1.0816

Spectral data (three smallest and two largest eigenvalues) for different

simulations: λ: multiplicative factor of absorption; n× n number of pixels

of image; ZP additional zero padding such that the algorithm zero pads

the original image into a 2n× 2n images for ZP = 1; CG the number of

conjugate gradient iterations to invert Gan.



Example of reconstruction with 4 CG iterations (i)



Example of reconstruction with 4 CG iterations (ii)



Example of reconstruction with 4 CG iterations (iii)



Example of reconstruction with 0 CG iterations



More reconstructions (CG=4)



More reconstructions (still CG=4)



Reconstruction from partial measurements

Let us assume the measurements are made on Θ1 ∪Θ2 only. The dis-

cretization of

f(x) = d(x) + F af(x) + F sf(x), d(x) = F df(x),

is performed as before and can be calculated in O(Nn2 logn) operations

provided that the Fourier coefficients of eDθa(x) are precalculated.

In the cases taken from the literature, we have always observed that

‖F a + F s‖2 < 1. However, once discretized, the latter operator may not

remain of norm less than 1. In the reconstruction, it is important that

the spectral radius of the discrete iterative procedure be close to the

spectral radius of the continuous iterative procedure. We can then rely

on accurate reconstruction techniques based on CG and zero-padding.



Example of reconstruction (ZP=1 for F a + F s)



Conclusions

Two (and only two) spatially independent source terms can be recon-

structed from the AtRT (extension of the Novikov fornula).

Under some smallness condition on the gradient of the absorption map

a(x), the spatially dependent source term f(x) can uniquely be recon-

structed from half of the AtRT measurements. There is an explicit

iterative procedure to do so.

A generalization of the fast slant stack algorithm allows us to obtain fast

(in specific cases), robust and accurate reconstructions of the source

term from full and partial measurements. A good accuracy may rely on

using conjugate gradient iterations or on zero-padding the initial image

into a bigger one.


