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Numerical Experiment: Initial Data
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Numerical Experiment: Forward Solution
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Numerical Experiment: Truncated Solution
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Numerics: Time-reversed Solution
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Numerics: Solution pushed forward
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Zoom on Refocused and Original Signals
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PART I: FORMAL THEORIES
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Theory of time-reversal refocusing in 3D

The forward problem for u = (v, p) = (v1, v2, v3, p) is

A(x)
∂u(t,x)

∂t
+Dj∂u(t,x)

∂xj
= 0, x ∈ R3,

with initial conditions u(t = 0) = u0.

The back-propagated signal can be written using the Green’s propagator

G(t,x;y) as

uB(x) =
∫
R9

ΓG(t,x;y)ΓG(t,y′; z)χΩ(y)χΩ(y′)f(y − y′)u0(z)dydy
′dz.

Here, Γ is a matrix that models the time reversal process. It is given by

Γ = Diag(−1,−1,−1,1), so that the velocity field v is replaced by −v and

the pressure field p remains unchanged; χΩ(y) is the indicatrix function

of Ω; f(y) is a filtering function (possibly modeling some blurring).
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Theory of time-reversal refocusing (II)

First step: Introduce the adjoint Green’s matrix G∗, solution of

∂G∗(t,x;y)

∂t
+

∂

∂xj
(G∗(t,x;y))DjA−1(x) = 0,

with IC: G∗(0,x;y) = δ(x−y)A−1(x), so that ΓG∗(t,x;y)A(x)Γ = G(t,y;x).

Second step: Rescale problem with u0(x) = S
(
x−x0
ε

)
and a filter 1

εd
f(y−y′

ε ).

An observation point x is close to x0 and we write it as x = x0 + εξ, so

that

uBε (ξ;x0)=
∫
R9

ΓG(T,x0 + εξ;y)G∗(T,x0 + εz;y′)A(x0 + εz)Γ

S(z)χΩ(y)χΩ(y′)f(
y − y′

ε
)dydy′dz.
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Theory of time-reversal refocusing (III)

Third step: introduce the Wigner transform

Wε(t,x,k) =
∫
R6

[∫
R3
eik·zG(t,x−

εz

2
;y)G∗(t,x +

εz

2
;y′)

dz

(2π)3

]

χΩ(y)χΩ(y′)f(
y − y′

ε
)dydy′.

Fourth step: write the refocused signal in terms of the WT

uBε (ξ;x0) =
∫
R6

ΓWε(t,x0 + ε
ξ + z

2
,k)e−ik·(z−ξ)A(x0 + εz)ΓS(z)dzdk.

Refocusing is then obtained by analyzing the limit of Wε as ε→ 0.
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Wigner Transform Theory (I)

Let A(R6) be the subset of S ′(R6) of matrix-valued distributions η(x,k)

such that
∫
R3 supx ‖η̂(x,y)‖dy is bounded, and A′ its dual space.

Lemma. The Wigner transform Wε(t,x,k)is bounded in C0((0, T );A′(R6))

independent of ε provided that f̂(k) ∈ L1(R3). As a consequence, it con-

verges weakly along a subsequence εk → 0 to a distribution W (t,x,k) ∈
C0(0, T ;A′(R6)).
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Wigner Transform Theory (II)

The Wigner distribution at time t = 0 is given by

W (0,x,k) = |χΩ(x)|2f̂(k)A−1(x) .

The dispersion matrix L(x,k) = A−1(x)kjD
j has a double eigenvalue

ω0 = 0 and simple eigenvalues ω1,2 = ±c(x)|k|, c(x) = 1/
√
ρ(x)κ(x), with

are eigenvectors b.

The limit Wigner distribution can be decomposed as

W (t,x,k) =
2∑

j=1

a0ij(t,x,k)b0
i b

0∗
j + a1(t,x,k)b1b1∗ + a2(t,x,k)b2b2∗.
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High frequency limit of refocused signal

In the limit ε→ 0, the back-propagated signal is given by

uB(ξ;x0) =
∫
R3
F (t, ξ − z;x0)S(z)dz = (F (t, ·;x0) ∗ S)(ξ).

The quality of the refocusing of the back-propagated signal is determined

by the decay properties in ξ of the kernel

F (t, ξ;x0) =
2∑

m=1

∫
R3
am(t,x0,k)Γbm(x0,k)bm∗(x0,k)eik·ξA(x0)Γdk,

with a1(0,x,k) = a2(0,x,k) = |χΩ(x)|2f̂(k).

• When f = δ and Ω = R3, we have uB(ξ;x0) = S(ξ). All the information

propagates back and the refocusing is perfect.

• In homogeneous medium with c(x) = c0, the amplitudes a1,2(t,x0,k) =

|χΩ(x0 ∓ c0k̂t)|2f̂(k) become increasingly singular in k as time grows.
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Application to diffusive media (formal theory)

Assume random fluctuations of the density and compressibility of the

form ρε(x) = ρ0 +
√
ερ1(

x
ε), κε(x) = κ0 +

√
εκ1(

x
ε), with ρ1(x), κ1(x)

mean-zero stationary random processes. In the limit of large distances

of propagation we can show (formally) that

ûB(k;x0) = F̂ (t,k;x0)Ŝ(k)
(

or uB(·;x0) = F (t, ·;x0) ? S(·)
)
,

where F̂ (t,k;x0) = ψ(t,x0, k)f̂(k)I4, with k = |k| and

∂tψ(t,x, k)−D(k)∆xψ(t,x, k) = 0, ψ(0,x, k) = |χΩ(x)|2.

Here, D(k) is a diffusion coefficient that depends on the power spectrum

of the random fluctuations. Qualitatively, as t grows, ψ becomes un-

localized, so that F is localized. Refocusing is greatly improved by the

presence of the random medium.
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Robustness of Time Reversal

The refocusing is extremely sensitive to modifications in the “random”

medium. It is however very robust when other operations than time

reversal are performed at the receivers.

Let us assume that the usual time reversal operation represented by

Γ0 = Diag(−1,−1,−1,1) is replaced by multiplication by an (almost)

arbitrary Γ(x). The initial conditions for the Wigner transform are then

W (0,x,k) = |χ(x)|2Γ(x)Γ0A
−1(x)f̂(k).

The rest of the theory stays unchanged.
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Robustness of Time Reversal (II)

The initial conditions for the acoustic modes are then

a±(0,x,k) = |χ(x)|2f̂(k)
(
A(x)Γ(x)b∓(x,k) · b±(x,k)

)
.

When Γ(x) = Γ0 we get back full time reversal results. When Γ = Id,

we obtain that a±(0,x,k) = 0 by orthogonality of the eigenvectors bj.

When only pressure is measured, Γ = Diag(0,0,0,1), we obtain

a±(0,x,k) =
1

2
|χ(x)|2f̂(k).

When only the first component of the velocity field is measured with

Γ = Diag(−1,0,0,0), the initial data is

a±(0,x,k) = |χ(x)|2f̂(k)
k21

2|k|2
.
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Time Reversal in Changing Environment

Consider the simpler case of a Schrödinger equation in the weak coupling

regime

∂ψε

∂t
(t,x) =

iε

2
∆ψε(t,x)−

i
√
ε
Vj(

x

ε
)ψε(t,x).

j = 1 corresponds to the medium during the forward propagation and

j = 2 to the medium during the backward propagation after time reversal.

V1,2 play the same role as κ1,2. They are mean-zero stationary random

processes such that

Rmn(x) = 〈Vm(y)Vn(y + x)〉, m, n = 1,2.

The Fourier Transforms R̂mn(k) are the power spectra.
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Wigner Transform

The Wigner transform is defined by

Wε(t,x,k) =
∫
R3
eik·yψfε(t,x−

εy

2
)ψ∗bε(t,x +

εy

2
)
dy

(2π)3
.

ψfε and ψbε solve the Schrödinger with forward potential V = V1 and

backward potential V = V2.

Wε solves the following equation:

∂Wε

∂t
+ k · ∇Wε =

∫
R3
Kε(x,k− p)Wε(t,x,p)dp,

Kε(x,p) =
1

iπ3√ε

(
V̂1(2p)ei2p·x/ε − V̂2(−2p)e−i2p·x/ε

)
.
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Asymptotic limit for Wε (I)

Inverting the free transport operator ∂t + k · ∇ we obtain that

Wε(t,x,k) = Wε(0,x− tk,k)+
∫ t
0

∫
Kε(x−sk,k−p)Wε(t−s,x−sk,p)dpds.

After one more iteration we have

Wε(t,x,k) = Wε(0,x− tk,k)

+
∫ t
0

∫
Kε(x− sk,k− p)Wε(0,x− sk− (t− s)p,p)dpds

+
∫ t
0

∫
Kε(x− sk,k− p)

∫ t−s
0

∫
Kε(x− sk− up,p− q)

×Wε(t− s− u,x− sk− up,q)dqdudpds.
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Asymptotic limit for Wε (II)

Assume that 〈Kε ⊗KεWε〉 = 〈Kε ⊗Kε〉〈Wε〉 and that Wε is sufficiently

smooth. Such assumptions cannot be justified at this level although

they are known to provide the correct results!

Using that 〈V̂m(p)V̂n(q)〉 = (2π)3R̂mn(p)δ(p+q), m, n = 1,2, after Fourier

transforms, we deduce that

〈Kε(y,k− p)Kε(y − up,p− q)〉 =
−1

π3ε

×
(

R̂11(2(k− p))e2i(k−p)·pu/εδ(k− q)

− R̂12(2(k− p))e2i(k−p)·pu/εδ(k + q− 2p)

− R̂21(−2(k− p))e−2i(k−p)·pu/εδ(k + q− 2p)

+ R̂22(2(k− p))e−2i(k−p)·pu/εδ(k− p)
)
.
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Asymptotic limit for Wε (III)

The power spectrum R̂mn is a 2 × 2 positive definite matrix such that

R̂mn(−p) = R̂nm(p), m,n = 1,2. After the changes of variables 2p−k → p

and u → εu and replacing Wε(t − s − εu,x − sk − εup,q) by Wε(t − s,x −
sk,q) we deduce that the ensemble average of the scattering term is

approximated by∫ t
0

∫ ∫ (t−s)/ε

0

×
(
− eiu

|k|2−|p|2
2 R11(p− k)− e−iu

|k|2−|p|2
2 R22(p− k)

)
〈Wε〉(t− s,x− sk,k)

+
(
eiu

|k|2−|p|2
2 + e−iu

|k|2−|p|2
2

)
R21(p− k)〈Wε〉(t− s,x− sk,p)

dudpds

(2π)3
.
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Asymptotic limit for Wε (IV)

Pass to the limit ε→ 0 and replace 〈Wε〉 by its limit W using∫ ∞
0

e±iuωdu = πδ(ω)±
i

ω
.

We find the transport equation in integral form

W (t,x,k) = W (0,x− tk,k) +
∫ t
0( ∫

R̂21(p− k)W (t− s,x− sk,p)δ(
|k|2 − |p|2

2
)
dp

(2π)2

−(Σ(k) + iΠ(k))W (t− s,x− sk,k)
)
ds,

Σ(k) =
∫
R̂11(p− k) + R̂22(p− k)

2
δ(
|k|2 − |p|2

2
)
dp

(2π)2

Π(k) =
∫ (

R̂11(p− k)− R̂22(p− k)
)

2

|k|2 − |p|2
dp

(2π)3
.
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Asymptotic limit for Wε (V)

Assume that V̂1(k) = V̂ (k) and V̂2(k) = φ(k)V̂1(k), where φ(k) is deter-

ministic. We have the Radiative Transfer Equation

∂W

∂t
+ k · ∇W + (σa(k) + iΠ(k))W = QW,

QW (t,x,k) =
∫
R̂(p− k)φ(p− k)

[
W (t,x,p)−W (t,x,k)

]
δ(
|k|2 − |p|2

2
)
dp

(2π)2
,

σa(k) =
∫
R̂(p− k)

(
1 + |φ(p− k)|2

2
− φ(p− k)

)
δ(
|k|2 − |p|2

2
)
dp

(2π)2
,

Π(k) =
∫
R̂(p− k)

[
1− |φ(p− k)|2

]
2

|k|2 − |p|2
dp

(2π)3
.
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Back to acoustics

Replacing Vj by κj (with ρ constant) we get that the propagating modes

satisfy the RTE (Derivation still formal and much more difficult)

∂a±
∂t

± c0k̂ · ∇a± +
(
σa(k)± iΠ(k)

)
a± = Qa±,

a±(0,x,k) = |χ(x)|2

Qa(k) =
∫
R3
σ(k,p)φ(x,p− k)

(
a(p)− a(k)

)
δ(c0(|k| − |p|))dp

Π(k) =
∫
R3

(1− |φ(x,p− k)|2)
c0
2

|k||p|2

|k|2 − |p|2
R̂(k− p)

(2π)3
dp

σa(k) =
∫
R3
σ(k,p)

(
1 + |φ(x,p− k)|2

2
− φ(x,p− k)

)
δ(c0(|k| − |p|))dp.
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Diffusion Approximation

Classical. Assume Σ = O(η−1), σa = O(η), and |φ| = (1 + ηψ). Use

a = a0 + ηa1 + η2a2, plug Ansatz into transport equation, equate like

powers of η and deduce that a0 solves the following diffusion equation:

∂a0
∂t

+
Σ(|k|)ψ2

2
a0 −D(|k|)∆a0 = 0,

e−iΠ(|k|)t/η2a0(0,x) = |χ(x)|2
1

4π

∫
S2
eiτ ·kdk̂ = |χ(x)|2

sin |τ ||k|
|τ ||k|

D(|k|) =
c20

3[Σ(|k|)− λ(|k|)]
,

λ(|k|)k̂ =
c20|k|

2

(4π)2

∫
R3
R̂(p− k)p̂δ(c0(|k| − |p|))dp.
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Application to Filters in Time Reversal

The back-propagated signal in the diffusive regime takes the form

ûB(k;x0) =


sin(ΠsT )

√
κ0

ρ
ik̂

cos(ΠsT )

p̂0(k) +

 cos(ΠsT )ik̂

− sin(ΠsT )

√
ρ

κ0

|k|ϕ̂(k)


× e−iτ ·k

sin |τ ||k|
|τ ||k|

e−Σψ2T/2 a(T,x0, |k|).

This is to be compared to the case where Πs = ψ = |τ | = 0 when the

medium remains the same during the forward and backward propagations.

The above formula emphasizes two principal distinct effects that appear

when the back-propagation occurs in a different underlying medium.
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2D Numerical simulations

In two space dimensions the filter is given by

F (ψ, |τ |, |k|, T, L, kmax, κ) = ā J0(|τ ||k|) cos(2ψΠ0T ) e−
Σ
2ψ

2T .

It should be compared to the numerical simulation

Fdata =
(pB(x + τ), p0(x))

‖p0(x)‖2
.

We consider two simulations with varying |τ | (shifting medium) and vary-

ing ψ (change in fluctuations intensity).
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2D Numerical simulations (II)

Comparison of Fdata (solid lines) and the theoretical prediction F (dashed

lines) as a function of τ with ψ = 0. Periodic box of size L = 20,

propagation time T = 200, number of modes in power spectrum: 50.
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2D Numerical simulations (III)

Comparison of Fdata (solid lines) and the theoretical prediction F (dashed

lines) as a function of ψ with τ = 0. Periodic box of size L = 20,

propagation time T = 200, number of modes in power spectrum: 50.
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PART II: RIGOROUS THEORIES
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Two models where stability can be proved

• Paraxial (a.k.a. Parabolic) Approximation. Here, we obtain a (quan-

tum) wave equation with mixing time dependent coefficients. For a

typical wavelength (width of initial pulse) of order ε� 1, the fluctuations

are of the form
√
εV (

x

ε
,
z

ε
).

• Random Liouville Equations. Here the high frequency limit of the wave

equation (Liouville equation) with random Hamiltonian is used to show

that the Wigner transform solves in the limit ε → 0 a Fokker-Planck

equation. For a typical wavelength of order ε � 1, the fluctuations are

of the form√
δ(ε)V (

x

δ(ε)
), C| ln ε|−2/3+η � δ(ε) → 0 as ε→ 0.
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PART II/1: PARAXIAL

APPROXIMATION
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Analysis for the Paraxial Equation

The pressure field p(z,x, t) satisfies the scalar wave equation

1

c2(z,x)

∂2p

∂t2
−∆p = 0. (1)

The parabolic approximation consists of

p(z,x, t) ≈
∫
R
ei(−c0κt+κz)ψ(z,x, κ)c0dκ,

where ψ satisfies the Schrödinger equation

2iκ
∂ψ

∂z
(z,x, κ) + ∆xψ(z,x, κ) + κ2(n2(z,x)− 1)ψ(z,x, κ) = 0,

ψ(z = 0,x, κ) = ψ0(x, κ)

with ∆x the transverse Laplacian in the variable x. The refraction index

n(z,x) = c0/c(z,x), and c0 is a reference speed.
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Cartoon of Paraxial Approximation

x

z

L

a

MIRRORSOURCE

TIME-REVERSAL
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Time Reversal within Paraxial Approximation

The back-propagated signal can be written as

ψB(x, κ)

=
∫
R3d

G∗(L,x, κ;η)G(L,y, κ;y′)χ(η)χ(y)f(η − y)ψ0(y
′, κ)dydy′dη.

After introduction of the Wigner Transform and scaling, we get

ψBε (ξ, κ;x0) =
∫
R2d

eik·(ξ−y)Wε(L,x0 + ε
y + ξ

2
,k, κ)ψ0(y, κ)

dydk

(2π)d
.

The above formula shows that the asymptotic behavior of ψBε (ξ, κ;x0) as

ε→ 0 is characterized by that of the Wigner transform Wε(L,x,k, κ).



IPAM Wave Guide SeminarIPAM Wave Guide SeminarIPAM Wave Guide Seminar

Scaling and random medium

The scaled Schrödinger equation is

2iκε
∂ψε

∂z
+ ε2∆xψε + κ2√εV (

x

ε
,
z

ε
)ψε = 0,

ψε(z = 0,x, κ) = ψ0(x, κ).

The random field V (z,x) is a Markov process in z with infinitesimal gen-

erator Q. It is stationary in z and x with correlation function R(z,x)

E {V (s,y)V (z + s,x + y)} = R(z,x) for all x,y ∈ Rd, and z, s ∈ R.

The generator Q is a bounded operator on L∞(V) with a unique invariant

measure π(V̂ ), i.e. Q∗π = 0, and there exists α > 0 such that if 〈g, π〉 = 0

then

‖erQg‖L∞V ≤ C‖g‖L∞V e
−αr.
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Equation for the Wigner Transform

∂Wε

∂z
+

1

κ
k · ∇xWε = κLεWε

Wε(0,x,k;κ) = W0
ε (x,k;κ),

LεWε =
1

i
√
ε

∫
Rd

dṼ (
z

ε
,p)

(2π)d
eip·x/ε

[
Wε(x,k−

p

2
)−Wε(x,k +

p

2
)
]
.

The initial condition is given by

W0
ε (x,k;κ) =

∫
Rd
ei(k+q)·y

(2π)d
χ(x−

εy

2
)χ(x +

εy

2
)f̂(q)dydq.

It is uniformly bounded in L2(Rd×Rd) (hence so is Wε(z;κ)) and converges

as ε→ 0 to W0(x,k;κ) = |χ(x)|2f̂(k).
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Main stability result

Let the array χ(y) and the filter f(y) be in L1∩L∞(Rd), while ψ0 ∈ L2(Rd)
for a given κ ∈ R. The refraction index n(z,x) satisfies assumptions given

above. Then for each ξ ∈ Rd the back-propagated signal ψBε (ξ,x0, κ) con-

verges in probability and weakly in L2
x0

(Rd) as ε→ 0 to the deterministic

ψB(ξ, κ;x0) =
∫
R2d

eik·(ξ−y)W (L,x0,k, κ)ψ0(y, κ)
dydk

(2π)d
.

The function W satisfies the transport equation

∂W

∂z
+

1

κ
k · ∇xW = κLW,

with initial data W0(x,k) = f̂(k)|χ(x)|2 and operator L defined by

Lλ =
∫
Rd

dp

(2π)d
R̂(
|p|2 − |k|2

2
,p− k)(λ(p)− λ(k)),

where R̂(ω,p) is the Fourier transform of the correlation function of V .
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Result on the Wigner transform

Under the same assumptions, the Wigner distribution Wε converges in

probability and weakly in L2(R2d) to the solution W of the above transport

equation. More precisely, for any test function λ ∈ L2(R2d) the process

〈Wε(z), λ〉 converges to 〈W (z), λ〉 in probability as ε → 0, uniformly on

finite intervals 0 ≤ z ≤ L.

Here, 〈·, ·〉 is the usual scalar product in L2(R2d).
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Details of the proofs

The scaling of the random fluctuations is supposed to be
√
εV (

x

ε
,
z

ε
).

We then have the following equation for the scaled Wε:

∂Wε

∂z
+ k · ∇xWε = LεWε

Wε(0,x,k) = W0
ε (x,k),

with

LεWε =
1

i
√
ε

∫
Rd

dṼ (
z

ε
,p)

(2π)d
eip·x/ε

[
Wε(x,k−

p

2
)−Wε(x,k +

p

2
)
]
.

Thanks to the blurring at the detectors, we obtain uniform bounds in

L2 for the Wigner transform Wε independently of the realization of the

random medium.
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Construction of approximate martingales

Let us define Pε as the probability measure on the space of paths C([0, L];X)

generated by Vε and Wε. Let λ(z,x,k) be a deterministic test function.

We use the Markovian property of the random field V (z,x) in z to con-

struct a first functional Gλ : C([0, L];X)→ C[0, L] by

Gλ[W ](z) = 〈W,λ〉(z)−
∫ z
0
〈W,

∂λ

∂z
+ k · ∇xλ+ Lλ〉(ζ)dζ

and show that it is an approximate Pε-martingale, more precisely∣∣∣EPε {Gλ[W ](z)|Fs} −Gλ[W ](s)
∣∣∣ ≤ Cλ,L

√
ε

uniformly for all W ∈ C([0, L];X) and 0 ≤ s < z ≤ L. Then there exists

a subsequence εj → 0 so that Pεj converges weakly to a measure P

supported on C([0, L];X). Weak convergence of Pε and the above error

estimate together imply that Gλ[W ](z) is a P -martingale so that

EP {Gλ[W ](z)|Fs} −Gλ[W ](s) = 0.



Taking s = 0 above we obtain the transport equation for W = EP {W (z)}
in its weak formulation.

The second step is to show that for every test function λ(z,x,k) the new

functional

G2,λ[W ](z) = 〈W,λ〉2(z)− 2
∫ z
0
〈W,λ〉(ζ)〈W,

∂λ

∂z
+ k · ∇xλ+ Lλ〉(ζ)dζ

is also an approximate Pε-martingale. We then obtain that EPε
{
〈W,λ〉2

}
→

〈W,λ〉2, which implies convergence in probability. It follows that the limit

measure P is unique and deterministic, and that the whole sequence Pε

converges.

That G2,λ[W ](z) is an approximate Pε-martingale uses very explicitly the

uniform a priori L2 bound on the Wigner distribution Wε.
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PART II/2: ITO SCHRÖDINGER

APPROXIMATION
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Itô Schrödinger equations

Let us come back to the parabolic approximation

∂ψ

∂z
+
−iLz
2kL2

x
∆xψ =

ikLzν

2
µ(
Lxx

lx
,
Lzz

lz
)ψ.

We now assume that the variations in z are very fast: lz � λ. Then we

can formally replace

kLzν

2
µ(
Lxx

lx
,
Lzz

lz
)dz by κB(

Lxx

lx
, dz),

where B(x, dz) is the usual Wiener measure in z with statistics

〈B(x, z)B(y, z′)〉 = Q(y − x)z ∧ z′.
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Itô Schrödinger equation

The parabolic equation in this regime becomes then

dψ(x, z) =
iLz

2kL2
x
∆xψ(x, z)dz + iκψ(x, z) ◦B(

Lxx

lx
, dz).

Here ◦means that the stochastic equation is understood in the Stratonovich

sense. In the Itô sense it becomes the Itô-Schrödinger equation:

dψ(x, z) =
1

2

(
iLz

kL2
x
∆x − κ2Q(0)

)
ψ(x, z)dz + iκψ(x, z)B(

Lxx

lx
, dz).

Advantage: Closed equations for the statistical moments.
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First moment

The first moment defined by m1(x, z) = 〈ψ(x, z)〉 satisfies

∂m1

∂z
(x, z) =

1

2

(
iLz

kL2
x
∆x −Q(0)

)
m1(x, z).

The L2 norm of the first moment

M2(z) =
( ∫

Rd
|m1(x, z)|2dx

)1/2
.

is given by

M2(z) = e−
Q(0)

2 zM2(0).

This shows that the coherent field m1 decays exponentially in z. This ex-

ponential decay is not related to intrinsic absorption. Instead it describes

the loss of coherence caused by multiple scattering.
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Second Moment (I)

Energy propagation is better understood by looking at the second mo-

ment

m̃2(x1,x2, z) = 〈ψ(x1, z)ψ
∗(x2, z)〉.

By application of the Itô formula we have

d(ψ(x1, z)ψ
∗(x2, z)) = ψ(x1, z)dψ

∗(x2, z)
+dψ(x1, z)ψ

∗(x2, z) + dψ(x1, z)dψ
∗(x2, z).

This implies that

∂m̃2

∂z
=

iLz

2kL2
x
(∆x1 −∆x2)m̃2 +

(
Q

(
Lx(x1 − x2)

lx

)
−Q(0)

)
m̃2.
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Second Moment (II)

Introduce the rescaled variables: x =
x1 + x2

2
, y =

x1 − x2

η
. Here the

adimensionalized wavelength ε � η � 1. Defining m2(x,y) = m̃2(x1,x2)

we have

∂m2

∂z
=

iLz

kL2
xη
∇x · ∇ym2(z)−

(
Q(0)−Q(y)

)
m2(z).

Introduce the Wigner transform

W (x,p, z) =
1

(2π)d

∫
Rd
eip·yψ(x−

ηy

2
, z)ψ∗(x +

ηy

2
, z)dy.

Then m2(x,y, z) =
∫
Rd
eip·y〈W 〉(x,p, z)dp and

∂〈W 〉
∂z

+
Lz

kL2
xη

p · ∇x〈W 〉 =
∫
Rd

[
Q̂(p− p′)−Q(0)δ(p− p′)

]
〈W 〉(p′)dp′.

We thus get an equation for the limiting Wigner transform for free.
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Scintillation (moment of order 4)

We can similarly obtain an equation for the fourth moment:

m̃4(x1,x2,x3,x4, z) = 〈ψ(x1, z)ψ
∗(x2, z)ψ(x3, z)ψ

∗(x4, z)〉.

We introduce the change of variables m4(x,y, z, t, z) = m̃4(x1,x2,x3,x4, z),

where x = x1+x2
2 , y = x1−x2

η , ξ = x3+x4
2 , t = x3−x4

η , η = lx
Lx
. We obtain

∂m4

∂z
=

iLz

kL2
xη

(∇x · ∇y +∇ξ · ∇t)m4(z)−Qm4(z),

Q(x,y, ξ, t) =
(
2Q(0)−Q(y)−Q(t) +

∑
εi,εj=±

εiεjQ(
x− ξ

η
+ εiy − εjt)

)
.
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Scintillation = second moment for the WT

Define W(x,p, ξ,q, z) = W (x,p, z)W (ξ,q, z).

Its statistical average can be related to m4 and we find that

∂〈W〉
∂z

+
Lz

kL2
xη

(p · ∇x + q · ∇ξ)〈W〉 = R2〈W〉+K12〈W〉

K12W =
∫
Rd
Q̂(u)e

i(x−ξ)·u
η

(
W(p− u

2,q−
u
2) +W(p + u

2,q + u
2)

−W(p− u
2,q + u

2)−W(p + u
2,q−

u
2)
)
du

K2W =
∫
R2d

[
Q̂(p− p′)δ(q− q′) + Q̂(q− q′)δ(p− p′)

]
W(p′,q′)dp′dq′

R2W = K2W − 2Q(0)W.

When the phase term cancels so that “|K12W| � 1”, we obtain that

Jη(x,p, ξ,q, z) = 〈W(x,p, ξ,q, z)〉 − 〈W (x,p, z)〉 〈W (ξ,q, z)〉 ,
the scintillation function, is small. The energy is then statistically stable.
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Smallness of the scintillation function

Theorem. Let us assume that Wη(x,p,0) is deterministic and such that∫
R2d

|Wη(x,p,0)|2dxdp +
∫
Rd

sup
x
|Wη(x,p,0)|2dp ≤ C,

where C is a constant independent of η. Assume also that the correlation

function Q(x) ∈ L1(Rd) ∩ L∞(Rd). Then

‖Jη‖2(z) ≤ Cηd/2,

uniformly in z on compact intervals.
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Weak statistical stability

Theorem. Under the assumptions of the previous theorem and λ ∈
L2(R2d), we obtain that〈{(

(Wη, λ)− (〈Wη〉, λ)
)2}〉

≤ Cηd/2‖λ‖22.

Also (Wη, λ) becomes deterministic in the limit of small values of η as

P

(∣∣∣(Wη, λ)− (〈Wη〉, λ)
∣∣∣ ≥ α

)
≤
Cηd/2‖λ‖22

α2
→ 0 as η → 0.

The Wigner transform Wη of the stochastic field ψη converges weakly

and in probability to the deterministic solution W (x,p, z) of a Radiative

Transfer Equation.
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Application to Time Reversal

Theorem. Assume that the initial condition ψ0(y) ∈ L2(Rd), the filter

f(y) ∈ L1(Rd)∩L2(Rd), and the detector amplification χ(x) is sufficiently

smooth. Then ψBη (ξ;x0) converges weakly and in probability to the de-

terministic back-propagated signal

ψB(ξ;x0) =
∫
Rd
eik·ξW (x0,k, L)ψ̂0(k)dk,

where W (x0,k, L) is the solution of a RTE with initial conditions W (x,k,0) =

f̂(k)|χ(x)|2. Moreover introducing λ(ξ,x0) = λ̃(x0)µ(ξ) we have the fol-

lowing estimate〈
(ψBη − 〈ψBη 〉, λ)2

〉
≤ Cηd‖ψ0‖22‖λ‖

2
2 = Cηd‖ψ0‖22‖µ‖

2
2‖λ̃‖

2
2,

uniformly in L on compact intervals.

We do not have such an estimate for the parabolic approximation.
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Scintillation may appear and not disappear

Theorem. Assume that Wη(x,p,0) = δ(x − x0)δ(p − p0) [not physical

in Time Reversal]. Then the scintillation function Jη is composed of a

singular term of the form (with Q = Q(0)):

δ(x− ξ)δ(p− q)
(
α(x,p, z)− e−2Qzα(x− zp,p,0)

)
plus other contributions that are mutually singular with respect to this

term. Moreover the density α(x,p, z) solves the radiative transfer equa-

tion with initial condition a0(x,p) = δ(x− x0)δ(p− p0):

∂α

∂z
+ p · ∇xα+ 2Qα =

∫
Rd
Q̂(u)

(
α(x,p +

u

2
, z) + α(x,p−

u

2
, z)

)
du.

The total intensity of this scintillation is (1 − e−2Qz) (so it grows in z

though it vanishes at z = 0).

In this case Energy is NOT statistically stable.
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PART II/3: RANDOM LIOUVILLE

REGIME
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Stability by Random Liouville

Let us come back to the full wave equation and introduce vε(t,x) =

A
1/2
ε (x)uε(t,x) that satisfies the symmetrized system

∂vε

∂t
+A

−1/2
ε (x)Dj ∂

∂xj

(
A
−1/2
ε (x)vε(x)

)
= 0.

Define Pε(x,k) = P0(x,k) + εP1(x), where

P0(x,k) = iA
−1

2
ε (x)DjA

−1
2

ε (x)kj = icε(x)kjD
j

2P1(x) = A
−1

2
ε (x)Dj ∂

∂xj

(
A
−1

2
ε (x)

)
−

∂

∂xj

(
A
−1

2
ε (x)

)
DjA

−1
2

ε (x).

The Wigner transform Wε(t,x,k) satisfies the evolution equation

ε
∂Wε

∂t
+ LεWε = 0

Lεf(x,k) =
∫ (

Pε(y,q)eiφf(z,p)− f(z,p)e−iφPε(y,q)
)
dzdpdydq

(πε)2d
,

φ(x, z,k,p,y,q) = 2
ε((p− k) · y + (q− p) · x + (k− q) · z).
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The Liouville equations

The self-adjoint matrix −iP0 has eigenvalues λ0 = 0 of multiplicity d− 1

and λε1,2(x,k) = ±cε(x)|k| and can be diagonalized as

−iP0(x,k) =
2∑

q=0

λεq(x,k)Πq(x,k), where
2∑

q=0

Πq(x,k) = I.

The Liouville approximation to the Wigner transform is given by

Uε(t,x,k) =
∑
q
uεq(t,x,k)Πq(k),

where the coefficients uεq solve the Liouville equation

∂uεq

∂t
+∇kλ

ε
q · ∇xuεq −∇xλεq · ∇ku

ε
q = 0

uεq(0,x,k) = TrΠqW0(x,k)Πq

Here, the coefficients λεq depend on δ(ε) and W0 is chosen independent

of ε.
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Approximation of Wε by Liouville equation

Theorem. Let ρε(x) = ρ0 +
√
δρ1(

x

δ
) and κε(x) = κ0 +

√
δκ1(

x

δ
), with all

terms sufficiently smooth. Then we have

‖Wε(t,x,k)− Uε(t,x,k)‖2 ≤ C
ε

δm
exp(

Ct

δ3/2
)‖W0‖H3 + ‖W0

ε −W0‖L2,

for some m independent of ε.

In other words, assuming that W0
ε converges strongly to W0 and that

δ(ε) → 0 as ε → 0 with the constraint δ(ε) � | ln ε|−2/3+η, then the

difference ‖Wε(t,x,k) − Uε(t,x,k)‖L2 → 0 uniformly on final intervals t ∈
(0, T ).

The convergence is uniform in the realization of the random medium (the

statistics of ρ1 and κ1 have not been defined yet). So we safely replace

the analysis of Wε by that of Uε, the solution of a Liouville equation with

random coefficients.
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Analysis of the random Liouville equation

The Liouville equation is of the form

∂uε

∂t
+
(
c0 +

√
δc1(

x

δ
)
)
k̂ ·∇xuε −

|k|√
δ
∇xc1(

x

δ
) ·∇kuε = 0,

uε(0,x,k) = u0(x,k).

Its solution is given by uε(t,x,k) = u0(X(t),K(t)), where

−
dX

dt
=
(
c0 +

√
δc1(

X(t)

δ
)
)
K̂, X(0) = x,

−
dK

dt
= −

|K(t)|√
δ

∇xc1(
X(t)

δ
), K(0) = k.
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Decorrelation of nearby particles

Let us assume that two particles satisfy the system for j = 1,2,

dX(δ)
j (t)

dt =
(
c0 +

√
δc1(

X(δ)
j (t)

δ )
)
K̂(δ)
j (t), X(δ)

j (0) = xj

dK(δ)
j (t)

dt = 1√
δ
∇xc1(

X(δ)
j (t)

δ )|K(δ)
j (t)|, K(δ)

j (0) = kj.

Under suitable mixing conditions for c1 and for k1 6= k2, the laws of the

processes (K(δ)
1 ,X(δ)

1 ,K(δ)
2 ,X(δ)

2 ) converge weakly as δ → 0 to the law of

(K1,X1,K2,X2), where Xj(t) = xj + c0
t∫
0

K̂j(s)ds, j = 1,2, and where

kj(·), j = 1,2 are independent symmetric diffusions in Rd \ {0} starting

at kj, j = 1,2 correspondingly with common generator

LF (k) =
d∑

p,q=1

|k|2Dp,q(k̂)∂2
kp,kqF (k) +

d∑
p=1

|k|Ep(k̂)∂kpF (k).
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Stability of the Wigner Transform

We deduce from the previous result that

E{uε(t,x,k)} → F (t,x,k) weakly as δ(ε) → 0,

where F satisfies the following Fokker-Planck equation

∂F

∂t
+ c0k̂ ·∇xF − LF = 0.

Moreover, we obtain the stability result

E
{∫ ∣∣∣〈uε(T,x0,k)− F (T,x0,k), λ(k)

〉∣∣∣2dx0

}
→ 0 as δ(ε) → 0,

which implies that uε converges in probability to the deterministic solution

F . This in turn implies the stability of the refocused signal uB.
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Conclusions

• We have a theory to express the high frequency limit of the refocused

signal in Time Reversal experiments using a Wigner transform. In the

scalar case, this expression is

ûB(p;x0) = W (T,x0,p)Ŝ(p;x0).

The filter can also be generalized to changing environments.

• In certain cases, we can rigorously characterize the high frequency

limit of the Wigner transform and if possible (and true) obtain its sta-

bility. This has been done for the parabolic approximation and the Itô

Schrödinger approximation, and in the random Liouville regime, where

high frequency waves are approximated by particles propagating in ran-

dom media.
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