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Numerical Experiment: Initial Data
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Numerical Experiment: Forward Solution
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Numerical Experiment: Truncated Solution
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Numerics: Time-reversed Solution
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Numerics: Solution pushed forward
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IPAM

Zoom on Refocused and Original Signals

Zoom on the Initial Condition

Zoom on the Refocused Signal
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PART I:. FORMAL THEORIES
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T heory of time-reversal refocusing in 3D

The forward problem for u = (v,p) = (v1,v2,v3,p) IS

ou(t,x) 4 pi ou(t,x)
ot 83:]

A(x) =0, xeR3

with initial conditions u(t = 0) = up.
The back-propagated signal can be written using the Green’s propagator
G(t,x;y) as

uPx) = [ TG xyINGEL Y Dxa()xe )y - Y)uo(2)dydy'dz.

Here, [ is a matrix that models the time reversal process. It is given by
[ = Diag(—1,—-1,—1,1), so that the velocity field v is replaced by —v and
the pressure field p remains unchanged; xo(y) is the indicatrix function
of Q2; f(y) is a filtering function (possibly modeling some blurring).
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Theory of time-reversal refocusing (II)

First step: Introduce the adjoint Green’s matrix G«, solution of

0G«(t, x; 0
(t,x y)_|__
ot 895]

with IC: G«(0,x;y) = §(x—y)A~1(x), so that FG«(t, x; V) AX)I = G(t,y: %).

(G«(t,x;¥)) DA™ (x) = 0,

Second step: Rescale problem with ug(x) = S (X;XO) and a filter gidf(y_?yl).
An observation point x is close to xg and we write it as x = xg + €&, SO
that

w(€xo)= , FG(T,x0+ =€ Y)G(T,x0 + ez ¥ ) Alxo + e2)T

S(2)xa(y)xa () fC—L)dydy'dz.
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Theory of time-reversal refocusing (III)

Third step: introduce the Wigner transform

ik-z €z, €z, dz
G(t,x — —;,y)G«(t, —
/R3e (% = 5iG(tx+ 50 5 o

We(t,x, k) = /

R6

/

y—Y

xo () xa(y") f( Ydydy'.

Fourth step: write the refocused signal in terms of the W'T
§ ;L 2 K)e~ (28 A(xg + £2)S(z)dzdk.

uB(€ixo) = [ TWe(t,xo +e

Refocusing is then obtained by analyzing the limit of W: as ¢ — 0.
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Wigner Transform Theory (I)

Let A(R®) be the subset of S’(R®) of matrix-valued distributions n(x, k)
such that [p3supx ||7(x,y)|ldy is bounded, and A’ its dual space.

Lemma. The Wigner transform We(t,x,k)is bounded in C°((0,T); A'(R%))
independent of € provided that f(k) € L1(R3). As a consequence, it con-
verges weakly along a subsequence g;, — 0 to a distribution W(t,x,k) €

cO(0,T; A'(RS)).
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Wigner Transform Theory (II)

The Wigner distribution at time ¢t = 0 is given by

W(0,x,k) = [xo()|*f(k) A1 (x) |

The dispersion matrix L(x,k) = A_l(x)ijj has a double eigenvalue

wo = 0 and simple eigenvalues wy o = +c(x)[k|, c(x) = 1/\/p(x)/<;(x), with
are eigenvectors b.

The limit Wigner distribution can be decomposed as

2
W(t,x, k) = Y ag;(t,x,K)bPb¥* + a1 (¢, x, k)b b'* + as(,x, k)b*b**.
j=1
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High frequency limit of refocused signal

In the limit e — 0, the back-propagated signal is given by
W(gixo) = [ F(t€—2zx0)S(2)dz = (F(t,-ixo) *S)(€).

The quality of the refocusing of the back-propagated signal is determined
by the decay properties in £ of the kernel

2 .
F(t.&x0) = 3 [ am(tx0, 10T (x0,)b™ (xo, k)e™ € A(xo)Mdk

m=1

with a1(0,%,k) = a2(0,x,k) = |xq(x)|?f(k).

e When f = § and Q = R3, we have uP(§;xg) = S(&). All the information
propagates back and the refocusing is perfect.

e In homogeneous medium with ¢(x) = cg, the amplitudes a; 2(t,xg, k) =
Ixo(xo F cokt)|2f(k) become increasingly singular in k as time grows.
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Application to diffusive media (formal theory)

Assume random fluctuations of the density and compressibility of the
form pe(x) = po + vep1 (%), re(x) = ro 4 vEr1 (%), with p1(x), k1(x)
mean-zero stationary random processes. In the limit of large distances
of propagation we can show (formally) that

WP (kixo) = F(t,kix0)S)| (or uP(ix0) = F(t,-1x0) xS()),
where F(t,k;xq) = ¥ (t,x0, k) f(k)I4, with & = |k| and

By (t,x, k) — D(k) Ax(t,x, k) = 0, (0,%, k) = |xo(x)|°.

Here, D(k) is a diffusion coefficient that depends on the power spectrum
of the random fluctuations. Qualitatively, as t grows, iy becomes un-
localized, so that F' is localized. Refocusing is greatly improved by the
presence of the random medium.
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Robustness of Time Reversal

The refocusing is extremely sensitive to modifications in the “random”
medium. It is however very robust when other operations than time
reversal are performed at the receivers.

Let us assume that the usual time reversal operation represented by
o = Diag(—1,—1,—1,1) is replaced by multiplication by an (almost)
arbitrary N'(x). The initial conditions for the Wigner transform are then

W (0,x,k) = |x(x)[*T (x)M oA~ (x) f(k).

The rest of the theory stays unchanged.
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Robustness of Time Reversal (II)

The initial conditions for the acoustic modes are then

a£(0,%,k) = |x(x)|*F(k) (AG)T ()bx(x, k) - b+ (x,k)).

When '(x) = I'g we get back full time reversal results. When [T = Id,
we obtain that a1 (0,x,k) = 0 by orthogonality of the eigenvectors b;.
When only pressure is measured, ' = Diag(0,0,0, 1), we obtain

1 .
a+(0,%,k) = ~[x()|*f (k).
When only the first component of the velocity field is measured with
[ = Diag(—1,0,0,0), the initial data is
2
k1

0(0.xk) = [xGPPT () 5
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Time Reversal in Changing Environment

Consider the simpler case of a Schrodinger equation in the weak coupling
regime

3%

—(tx) = —Aws(t X) — \[ Vi(Z DY (t, %),

73 =1 corresponds to the medium during the forward propagation and
3 = 2 to the medium during the backward propagation after time reversal.

V12 play the same role as k1 2. They are mean-zero stationary random
processes such that

Rmn(x) = <Vm(}’)Vn(y + X)>a m,n = 1,2.

The Fourier Transforms Rm,n(k) are the power spectra.
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wigner Transform

The Wigner transform is defined by

— ik-y _EYN ey, dy
Welt, k) = [ eVt x = wi(ix+ ) 57

Y. and iy, solve the Schrodinger with forward potential V. = V3 and
backward potential V = V5.

We solves the following equation:

oW,
8t€ _I_ k- VW?S — /R?’ K€(X7 k — p)W€(t7 X, p)dpa
1 N : . :
Ke(x,p) = - 3\[(V1(2p)812p.x/s _ VQ(_Qp)e—zQP.x/cc:).
17T £
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Asymptotic limit for W: (I)

Inverting the free transport operator 0; + k- V we obtain that

We(t,x,k) = W=(0,x — tk, k)—I—/Ot/Kg(x—sk,k—p)Wg(t—s,x—sk, p)dpds.
After one more iteration we have

We(t,x, k) = W:(0,x — tk, k)

+ /Ot / Ke(x—sk,k —p)W:(0,x — sk — (t — s)p, p)dpds

t t—s
—I—/O/Ke(x—sk,k—p)/o /Ka(x—sk—up,p—q)
XWe(t — s —u,x — sk — up, q)dqdudpds.
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Asymptotic limit for W: (II)

Assume that (K. ® K.W:) = (Ke ® Ke)(We) and that W, is sufficiently
smooth. Such assumptions cannot be justified at this level although
they are known to provide the correct results!

Using that (Vi (p)Vin(q)) = (27)3Rmn(p)d(p+q), m,n = 1,2, after Fourier
transforms, we deduce that

—1

<( Ria(2 - p)eA PPk - o)

— R12(2(k — p))e?k—P)Pu/e5(k + q — 2p)
—  Rp1(—2(k — p))e 2ik=P)Pu/e5(k + q — 2p)

+ Ron(2(k — p))e~2i(—p)pu/es(k — p) )
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Asymptotic limit for W_. (III)

The power spectrum Ry, is a 2 x 2 positive definite matrix such that
Rin(—p) = Rum(p), m,n = 1,2. After the changes of variables 2p—k — p
and u — eu and replacing Wz(t — s — eu,x — sk — eup,q) by We(t — s,x —
sk,q) we deduce that the ensemble average of the scattering term is
approximated by

A

( % Ri1(p— k) — e—iukTRQQ(p k)) (We)(t — s,x — sk, k)
dudpds
(2m)3

julk?=1pl? i K2 -Ip12
—|—<e 7 +e ! >R21(P k)(We)(t — s,x — sk, p)
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Asymptotic limit for W. (IV)

Pass to the limit e — 0 and replace (Wg) by its limit W using

@) . )
/ eT U dy = 18(w) + z
0 w

We find the transport equation in integral form

t
W(t,x,k) = W(0,x — tk, k) + /O
k|2 — |P|2) dp

(/Rgl(p SIOW (= s.x — sk p)A(= ) B
_(Z(K) + N )W (¢ — s, x — sk, k))ds,

_ [Rii(p—k)+ Boo(p—Xk) _,|k|” - |p|?, dp
Z(k)_/ 2 2 2 )(277)2

- . . 2 dp
109 = f (R =1 = Roa(p k) ) o™ s B
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Asymptotic limit for W: (V)

Assume that V7(k) = V(k) and Vo(k) = ¢(k)Vi(k), where ¢(k) is deter-
ministic. We have the Radiative Transfer Equation

%_Vtv k- VW + (0a(k) 4 iNK)W = QW,

2 _ 2
QW (t.x. 1) = [ B —196(0 —10[W(txp) = W(tx 10| s KD IPE) 2
_ 2 2 _ 2
walk) = [ R(p~10(FTEEOE o 10 oKD P

_[p 2 2 dp
100 = [ A 101~ 160 0P| " oo B
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Back to acoustics

Replacing V; by K (with p constant) we get that the propagating modes
satisfy the RTE (Derivation still formal and much more difficult)
Oa+

P 4 cok - Vas + (0a() £iN39) ) o = Qas,

a+(0,%x, k) = [x(x)[°

Qa(k) = [ o, p)é(x,p — k) (a(p) — a(k) )8(co(Ik| ~ Ip]))dp

c k 2 D k —
Nk) = ]%3(1 — (%, p — K)[?) 20‘1{:2||_P||p|2RE27T)§))

X D — 2
7)) = [ o p) (PP TR g b 1) 5eo( — Iph))dp.

dp
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Diffusion Approximation

Classical. Assume ¥ = O(n™ 1), 0o = O(n), and |¢| = (1 4+ ). Use
a = ag + nai + 772@2, plug Ansatz into transport equation, equate like
powers of n and deduce that ag solves the following diffusion equation:

O > (1k|) w2

0 4 ZEDY 45— DOk A =0

—in(|k)t/n? _ > 1 itk osin |T|[k|

‘ 10(0,%) = XCIP - [, ek = GO
2
C

D(|k]) = 0 :

0D = 3= = Ak

/\<|k|>f<—c3'k'2/ R(p — K)po(eo([K| — [p|))d

= (a2 Js TP~ BOPO(co p|))dp.
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Application to Filters in Time Reversal

The back-propagated signal in the diffusive regime takes the form

cos(I‘IST)z'lE T
- sin(lMgT —zk
08 (o xo) = [ [N B0 4 | gnen [2 | IKIB00)
cos(I‘IsT)
w ik SINTIKL g2 a(T,xO,|k|>.

Tk
This is to be compared to the case where Mg = ¢ = || = 0 when the
medium remains the same during the forward and backward propagations.
The above formula emphasizes two principal distinct effects that appear
when the back-propagation occurs in a different underlying medium.
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2D Numerical simulations

In two space dimensions the filter is given by

_ X2
F (4, ||, k|, T, L, kmax, &) = @ Jo(|7||k|]) cos(2ypMaT) e 2¥"T
It should be compared to the numerical simulation

o 0P+ T),p0(0)
data lpo()2

We consider two simulations with varying || (shifting medium) and vary-
ing 1 (change in fluctuations intensity).
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2D Numerical simulations (II)

0 02 04 T 06 08 1 0 02 04 T 06 08 1 0 02 04 T 06 08 1

Comparison of F,,;, (solid lines) and the theoretical prediction F' (dashed
lines) as a function of = with v = 0. Periodic box of size L = 20,
propagation time T'= 200, number of modes in power spectrum: 50.
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2D Numerical simulations (III)

018} =N i - S o 018
k=21 / N L=20 ' ;o
0.06 0 06l 0.06
L L LL
006/ | —0.06}
018} | | 9 018 | | i —0.18} _ | | |
=ENE 006y 006 DBl 0.18 006y, 006 0.18 -0.18 006y 006 0.18

Comparison of F,,;, (solid lines) and the theoretical prediction F' (dashed
lines) as a function of ¢ with = 0. Periodic box of size L = 20,
propagation time T' = 200, number of modes in power spectrum: 50.
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PART II: RIGOROUS THEORIES
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Two models where stability can be proved

e Paraxial (a.k.a. Parabolic) Approximation. Here, we obtain a (quan-
tum) wave equation with mixing time dependent coefficients. For a
typical wavelength (width of initial pulse) of order ¢ <« 1, the fluctuations
are of the form

ﬁV(g, 0.

e Random Liouville Equations. Here the high frequency limit of the wave
equation (Liouville equation) with random Hamiltonian is used to show
that the Wigner transform solves in the limit ¢ — 0 a Fokker-Planck
equation. For a typical wavelength of order ¢ <« 1, the fluctuations are
of the form

\/ () V(ﬁ) C\In8|_2/3+n<<5(6) — 0 ase— 0.
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PART II/1: PARAXIAL
APPROXIMATION
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Analysis for the Paraxial Equation

The pressure field p(z,x,t) satisfies the scalar wave equation
1 9%

c2(z,x) Ot2

The parabolic approximation consists of

— Ap =0. (1)

p(z,x,t) & [ Oy x, m)codn,

where ¢ satisfies the Schrodinger equation

27352—%, X, k) + Axp(z,x, k) + £2(n?(2,x) — 1)p(z,x, k) = 0,

<
Y(z = 0,x,Kk) = YPo(x, k)
with Ax the transverse Laplacian in the variable x. The refraction index
n(z,x) = cg/c(z,x), and cg is a reference speed.
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Cartoon of Paraxial Approximation

X
TIME-REVERSAL
SOURCE MIRROR
\ 7777777 /‘\ _
|
|
a i
| z
¢ 1
|
L |
R T e e T T R e I
v




IPAM Wave Guide Seminar

Time Reversal within Paraxial Approximation

The back-propagated signal can be written as

P (x, k)
= /Rw G*(L,x,5;mMG(L,y, 5,y )x(mxy) f(n — y)vo(y', k)dydy'dn.

After introduction of the Wigner Transform and scaling, we get

B : _ dydk
we (57’4’1 XO) — /de (27T)d'

AEDW(L %0+ YT E e m)vo(y, )

The above formula shows that the asymptotic behavior of ¥2 (&, k; xg) as
e — 0 is characterized by that of the Wigner transform W:(L,x,k, k).
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Scaling and random medium

The scaled Schrodinger equation is

zmsaai + 2 Axtbe + H;Q\fV(— —)wg =0,

Ye(z = 0,X, k) = ¢o(x, k).

The random field V(z,x) is a Markov process in z with infinitesimal gen-
erator Q. It is stationary in z and x with correlation function R(z,x)

E{V(s,y)V(z+s,x+y)} = R(2,x) forall x,y € R? and z,s € R.

The generator @ is a bounded operator on L*°(V) with a unique invariant
measure w(V), i.e. @*r = 0, and there exists a > 0 such that if (g,7) =0
then

—Qar

TQall 700 < o0
le"=gllree < Cllgllere



IPAM Wave Guide Seminar

Equation for the Wigner Transform

oW, 1
c —l— —k- wag — /ﬁlﬁgWg
0z K

We(0,%,k; k) = W2(x,k; k),

~ Z
1 dV(-, p)
ﬁgWg —_— = 2
/e JRE (2m)d

ePX/e We(x,k — g) — We(x, k + g) -

The initial condition is given by

i(k+aq)y _
o X0 = x(x+ ) Fa)dyda.

0 . -
WO(x, k; k) = /Rd o)

It is uniformly bounded in L2(R%xR%) (hence so is Wx(z; k)) and converges
as ¢ — 0 to WO(x,k; k) = |x(x)|2f (k).
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Main stability result

Let the array x(y) and the filter f(y) be in L1NL>®(R%), while g € L2(R%)
for a given k € R. The refraction index n(z,x) satisfies assumptions given
above. Then for each £ € R? the back-propagated signal 2 (&, xq, k) con-
verges in probability and weakly in L)%O(Rd) as € — 0 to the deterministic

. o dydk
0P mix0) = [, VWL X0,k Yoy ) 5 g
The function W satisfies the transport equation
oW
— + k VxW = kLW,
0z
with initial data Wy(x, k) = f(k)|><(x)|2 and operator £ defined by
P p|? — [k|?
c/\—/ p—K)(A(p) — A(K)),
i a5 P ) —AG)

where R(w,p) is the Fourier transform of the correlation function of V.
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Result on the Wigner transform

Under the same assumptions, the Wigner distribution Ws converges in
probability and weakly in L2(R2%) to the solution W of the above transport
equation. More precisely, for any test function \ &€ LQ(IR{Qd) the process
(We(2),\) converges to (W(z),\) in probability as ¢ — 0, uniformly on
finite intervals 0 < z < L.

Here, (-,-) is the usual scalar product in L2(R2%).
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Details of the proofs

The scaling of the random fluctuations is supposed to be \/EV(E,E).
E €&

We then have the following equation for the scaled Wxg:

oW,
a 8+k'Vng:£gWg
Z

W:(0,x,k) = WO(x,k),

with

~ 2
LW = 1 dv(g’p)eip'x/e We(x, k — o) — We(x,k + 2)
g g ’L\/g Rd (27‘(‘)d g ’ 2 g ’ 2 .

Thanks to the blurring at the detectors, we obtain uniform bounds in
L2 for the Wigner transform Wg independently of the realization of the
random medium.
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Construction of approximate martingales

Let us define P- as the probability measure on the space of paths C([0, L]; X)
generated by V: and W.. Let A(z,x,k) be a deterministic test function.
We use the Markovian property of the random field V(z,x) in z to con-
struct a first functional Gy: C(|0,L]; X)— C[0, L] by

GAIWI(2) = (W, (=) — [0, 4 K Wk + L) (O

and show that it is an approximate P--martingale, more precisely
B {GAIW](2)|Fs} — GAIW(s)| < Ch e

uniformly for all W € C([0,L]; X) and 0 < s < z < L. Then there exists
a subsequence gj — O so that ng converges weakly to a measure P
supported on C([0, L]; X). Weak convergence of P and the above error
estimate together imply that G, [W](z) is a P-martingale so that

EF {GA\[W](2)|Fs} — GA[W](s) = 0.



Taking s = 0 above we obtain the transport equation for W = EX {W(z)}
in its weak formulation.

The second step is to show that for every test function A\(z,x,k) the new
functional

GoAWI(2) = (W 02(2) = 2 [CW QW 5 + K- T+ LN Qe

is also an approximate P--martingale. We then obtain that E/= {(W, >\>2} —

(W, \)?2, which implies convergence in probability. It follows that the limit
measure P is unique and deterministic, and that the whole sequence F-
converges.

That G \[W](z) is an approximate P--martingale uses very explicitly the
uniform a priori L2 bound on the Wigner distribution W-.
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PART II/2: ITO SCHRODINGER
APPROXIMATION
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ItO0 Schrodinger equations

Let us come back to the parabolic approximation

w —’LLZ . ZkLzy ngX Lzz
+2kL2 Axtp = === 7)Y
We now assume that the variations in z are very fast: [, < A. Then we

can formally replace

kL L L L
N G R Ve by <B(= i

where B(x,dz) is the usual Wiener measure in z with statistics

(B(x,2)B(y,?')) = Q(y —x)z A 2.

,dz),
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ItO0 Schrodinger equation

The parabolic equation in this regime becomes then

1Ly L.x
A X, z)dz +1kp(x,z) 0o B

SRLa A 2)dz + imth(x,2) 0 B,

Here o means that the stochastic equation is understood in the Stratonovich

sense. In the It0 sense it becomes the [to-Schrodinger equation:

1/:L,
CW(Xa Z) — _<;L2

Advantage: Closed equations for the statistical moments.

dip(x,z) =

,dz).

L.x

,dz).

_ KP@(O))w(x 2)dz + intp(x, 2) B
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First moment

The first moment defined by m1(x,z) = (y(x, z)) satisfies

Tl(x2) ==

<. 2) —
0z 2\kL2

The L2 norm of the first moment

Mo(2) = ([, Ima(x, z)Fdx)l/Q.

B~ Q(0) )1 (x, 2).

IS given by

Q(0)
Mo(z) = e 2 “M>(0).

T his shows that the coherent field mq1 decays exponentially in z. This ex-
ponential decay is not related to intrinsic absorption. Instead it describes

the loss of coherence caused by multiple scattering.
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Second Moment (I)

Energy propagation is better understood by looking at the second mo-
ment

mo(x1,X2,2) = (Y(X1, 2)Y" (X2, 2)).
By application of the Itd formula we have

d(¥(x1,2)Y*(x2,2)) = ¥(x1, 2)dy* (X2, 2)
_I_dw(Xl) Z)w*(x27 Z) + CW(XL Z)dw*(x27 Z)

This implies that

8212 - Qi]f;%(AXl — Ax,)mo + (Q(Lx(xix_ Xz)) — Q(O))ﬁzg
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Second Moment (II)

Introduce the rescaled variables: x = 1 ;Xz, y = 71 _XQ. Here the

U
adimensionalized wavelength ¢ < n < 1. Defining mo(x,y) = mo(x1,X5)
we have

= Vx -V — 0) — .
55 = nay Ve Vyma(2) = (Q0) - QW) Jma(=)
Introduce the Wigner transform
1

Wxp,2) = g [ PVl — 220" (x + L 2)dy.

(2m)

Then ma(x,y, 2) = / ePY (WY (x, p, z)dp and

]Rd

W) L,

oz kL2n" Vx(W) = /Rd [Q(p —p') — Q(0)é(p — p) | (W) (p)dp".

We thus get an equation for the limiting Wigner transform for free.
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Scintillation (moment of order 4)

We can similarly obtain an equation for the fourth moment:

77’2/4(X1,X2,X3,X4,Z) — <¢(X17Z)¢*(X27Z)¢(X37Z)¢*(X4>Z)>-
We introduce the change of variables m4(x,y,z,t,2) = fr'h4(X1, Xo,X3,X4,2),
wherex—"l"'—"?,y—xl;ﬁ,sz’%g—m,t:’%—;x“, ”_Lx We obtain
dz  kL2n
€;,€; =1

(Vx - Vy 4+ Ve - Vi)mg(z) — Oma(z),
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Scintillation = second moment for the W'T

Define W(x,p,§,q,2) = W(x,p,2)W(§,q,2).
Its statistical average can be related to m4 and we find that

(W) n L,
0z kL2n

(P Vx+a- V)W) = Ro(W) + K12(W)

(x=§)-u

1

Kiow = [ Qe 7 (W -Sa-D+WE+5a+D

WP - Ba+5) - Wp +5a- 1) )du
KW = /de [Q(p —-p)dé(a—d)+Q(a—d)i(p - p’)] W(p',d")dp'dd’
RoW = KW — 2Q(0)W.

When the phase term cancels so that “|K12W| < 1", we obtain that

']77(X7 P, 57 q, Z) — <W(X7 P, £7 q, Z)> T <W<X7 P, Z)> <W(€7 q, Z)>
the scintillation function, is small. The energy is then statistically stable.

~»
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Smallness of the scintillation function

Theorem. Let us assume that Wy(x,p,0) is deterministic and such that

2 2

where (' is a constant independent of n. Assume also that the correlation
function Q(x) € LY(R®) N L>®(R%). Then

| Jnll2(2) < Cn/?,

uniformly in z on compact intervals.
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Weak statistical stability

Theorem. Under the assumptions of the previous theorem and A\ &€
L2(R24), we obtain that

({(0 — ) ) < cnt2iaig

Also (Wy, A\) becomes deterministic in the limit of small values of n as

Cn¥/2||\13
P(| Wi ) = (W), )| 2 0 ) < =22
The Wigner transform W, of the stochastic field 1, converges weakly
and in probability to the deterministic solution W(x, p, z) of a Radiative
Transfer Equation.

O asn—O0.
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Application to Time Reversal

Theorem. Assume that the initial condition ¥g(y) € L2(R%), the filter
f(y) € LL(RY) N L2(RY), and the detector amplification y(x) is sufficiently
smooth. Then wﬁ(ﬁ;xo) converges weakly and in probability to the de-
terministic back-propagated signal

WP(&x0) = [, ™ W (xo,k, L)fo(k)dk,

where W (xg, k, L) is the solution of a RTE with initial conditions W(x,k,0) =

F(K)|x(x)|?. Moreover introducing A(&,xg) = X(x0)u(€) we have the fol-
lowing estimate

(@ = @ 0?) < CnlilwolBINIE = Cnlvol3lul3INIB

uniformly in L on compact intervals.
We do not have such an estimate for the parabolic approximation.
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Scintillation may appear and not disappear

Theorem. Assume that W;(x,p,0) = d(x — x0)dé(p — po) [not physical
in Time Reversal]. Then the scintillation function Jn is composed of a
singular term of the form (with Q@ = Q(0)):

5(x — €)5(p — q) (a<x, p,2) — e 2@a(x — zp, p, o>)

plus other contributions that are mutually singular with respect to this
term. Moreover the density a(x, p, 2) solves the radiative transfer equa-
tion with initial condition ag(x,p) = é(x — x0)d(pP — Po):

O

5, TP Vxa+2Qa= /Rdc?(u)(a(x,p+g,z) + a(x,p — g,z)>du

The total intensity of this scintillation is (1 — e 29%) (so it grows in z
though it vanishes at z = 0).
In this case Energy is NOT statistically stable.
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PART II/3: RANDOM LIOUVILLE
REGIME
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Stability by Random Liouville

Let us come back to the full wave equation and introduce v:(t,x) =
Agl/z(x)ug(t,x) that satisfies the symmetrized system

Ove ~1/2 j 0 ([ ,-1/2 _
AP eon (Ag (X)vg(x)) —0.

Define P:(x,k) = Py(x,k) 4+ eP1(x), where

Py(x,k) = ’L'Ag_é(X)DjAg_j(X)kj = icg(x)ijj
1 5 [/ 1 5 [ _1 1
210 = A:2GDI 7 (4360 ) - 7 (4360 ) piaz .

Lj L
The Wigner transform We(t,x,k) satisfies the evolution equation

oWe

o _ i —id dzdpdydq
Lof (k) = [ (Poy, e f(2,p) — f(z,p)e Py, ) ) T 2T,

¢(X7Z7k7p7Y7q) Z%((p—k)y—l—(q—p)x—l—(k—q)Z)

g +£5Wg:O
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T he Liouville equations

The self-adjoint matrix —:FPy has eigenvalues A\g = 0 of multiplicity d — 1
and Af »(x,k) = £ce(x)|k| and can be diagonalized as

2 2
—iPp(x,k) = ) Ag(x,k)Mg(x, k),  where > Ng(x,k) =1.
q=0 q=0
The Liouville approximation to the Wigner transform is given by

Ue(t,x,k) =) ug (t, %, k) Mg(k),
q

where the coefficients uf] solve the Liouville equation

ou?,
(%‘1 + ViAS - Vxul — VxS - Viu§ =0
ug(0,x,k) = TrllgWo(x, k)M

Here, the coefficients Ag depend on §(e) and Wy is chosen independent
of e.
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Approximation of W: by Liouville equation

Theorem. Let p.(x) = pg + \/3,01(?) and re(x) = kg + \/Smé), with all
terms sufficiently smooth. Then we have

g C't
IWe(t, .10 = Ue(t, xRz < O exp (5 7) [Wol 2 + W2 = Woll 2.

for some m independent of «.

In other words, assuming that WSO converges strongly to Wy and that
5(¢) — 0 as ¢ — 0 with the constraint 8(e) > |Ine|=2/3%7, then the
difference ||We(t,x,k) — Ue(t,x,k)||;2 — O uniformly on final intervals ¢ €
(0, 7).

The convergence is uniform in the realization of the random medium (the
statistics of p; and k1 have not been defined yet). So we safely replace
the analysis of We by that of Ug, the solution of a Liouville equation with
random coefficients.
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Analysis of the random Liouville equation

The Liouville equation is of the form

aUg X ~
ot T (CO + ﬁcl(E))k Ve —

’ng(O,X, k) — U’O(Xa k)
Its solution is given by us(t,x,k) = ug(X(%),K(t)), where

K|
Vo

VXC]_( ) VkUg = O

—% = (CO —+ fcl(X(t)))K, X(0) = x,
K __ROlg . 1(X(t> K(0) = k.

dt T VG
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Decorrelation of nearby particles

Let us assume that two particles satisfy the system for j =1, 2,

(6) ()
T = (co+ Vi Gy ) )RP @), xP(0) =,
K\ (1) X4 ()
K0 _ 3 OO, 10—

Under suitable mixing conditions for ¢; and for ki # ko, the laws of the
processes (K(é),X(‘S),K(‘S),X(é)) converge weakly as 6 — 0 to the law of

(Kq1,X1,K», X5), where X (t) = X Coij(S)dS 7 = 1,2, and where

ki(-), 7 = 1,2 are independent symmetrlc diffusions in R%\ {0} starting
at kj, 7 1,2 correspondingly with common generator

d d
LEk)= Y |k|2Dp,q(k)5’,%p,qu(k)—|— > k| Ep(k) oy, F(k).
p,q=1 p=1
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Stability of the Wigner Transform

We deduce from the previous result that

E{ue(t,x,k)} — F(t,x,k) weakly as d(g) — O,
where F' satisfies the following Fokker-Planck equation

oOF
ot
Moreover, we obtain the stability result

E {/ (ue(T,x0,k) — F(T. xo,k),/\(k)>)2dxo} 0 as 6(e) >0,

which implies that us: converges in probability to the deterministic solution
F'. This in turn implies the stability of the refocused signal ub.

+ cok - VxF — LF = 0.
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Conclusions

e \We have a theory to express the high frequency limit of the refocused
signal in Time Reversal experiments using a Wigner transform. In the
scalar case, this expression is

ﬁB(pr XO) — W(Ta X0; p)g(p, XO)'

The filter can also be generalized to changing environments.

e In certain cases, we can rigorously characterize the high frequency
limit of the Wigner transform and if possible (and true) obtain its sta-
bility. This has been done for the parabolic approximation and the Itd
Schrodinger approximation, and in the random Liouville regime, where
high frequency waves are approximated by particles propagating in ran-
dom media.
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