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Outline for the three lectures

I. Inverse problems in integral geometry

Radon transform and attenuated Radon transform

Ray transforms in hyperbolic geometry

II. Forward and Inverse problems in highly scattering media

Photon scattering in tissues within diffusion approximation

Inverse problems in Optical tomography

III. Inverse transport problems

Singular expansion of albedo operator

Perturbations about “scattering-free” problems

Unsolved practical inverse problems.
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Outline for Lecture I

1. X-ray tomography and Radon transform

Radon transform as a transport source problem

2. SPECT and Attenuated Radon transform

Complexification of the transport equation

Explicit inversion formula (à la Novikov)

3. Source problem in geophysical imaging and hyperbolic geometry

Application in geophysical imaging

Complexification of geodesic vector field in hyperbolic geometry
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Data Acquisition in CT-scan

a(x) is the unknown absorption co-

efficient. For each line in the plane

(full measurements), the measured ra-

tio uout(s, θ)/uin(s, θ) is equal to

exp
(
−

∫
line(s,θ)

a(x)dl
)
. s =line-offset.

The X-ray density u(x, θ) solves the

transport equation

θ · ∇u(x, θ) + a(x)u(x, θ) = 0.

Here, x is position and θ =

(cos θ, sin θ) direction.
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Radon transform and transport source problem

We recast the inverse problem for

a(x) as an inverse transport source

problem

θ · ∇u(x, θ) = a(x).

This time, the “measurement”

uout(x, θ) provides
∫
line

a(x)dl.

The inverse source problem consists

of reconstructing a(x) from all its

line integrals, i.e., from the (unat-

tenuated) Radon transform.
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Radon transform. Notation and Inversion

We define the Radon transform

Ra(s, θ) = Rθa(s) =
∫
R
a(sθ⊥ + tθ)dt

for s ∈ R and θ ∈ S1.

Note the redundancy:

Ra(−s, θ+ π) = Ra(s, θ).

Introduce the adjoint operator and the Hilbert transform

R∗g(x) =
∫ 2π

0
g(x · θ⊥, θ)dθ, Hf(t) =

1

π
p.v.

∫
R

f(s)

t− s
ds.

Then we have (e.g. in the L2-sense) the reconstruction formula

Id =
1

4π
R∗

∂

∂s
HR =

1

4π
R∗H

∂

∂s
R.
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3. Source problem in geophysical imaging and hyperbolic geometry

Application in geophysical imaging

Complexification of geodesic vector field in hyperbolic geometry



University of Washington August 1, 2005University of Washington August 1, 2005University of Washington August 1, 2005

Data Acquisition in SPECT
(Single Photon Emission Computed Tomography)

Here a(x) is a known absorption

coefficient and f(x) an unknown

source term (radioactive particles

are injected into the body and at-

tach differently to different tis-

sues). The γ− ray density solves

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x).

The inverse source problem con-

sists of reconstructing f(x) from

uout(x, θ).
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Doppler tomography

So far, the unknown quantities a(x) or f(x) are scalar quantities. There

are applications where vector-valued functions are to be imaged.

For instance in Doppler tomography. Consider a fluid with sound speed

c(x) and velocity v(x). Ultrasounds propagating along the line l(s, θ) have

effective speed c(x) + θ · v(x). Interchanging sources and receivers, we

collect the two travel times

T1 =
∫
l(s,θ)

ds

c(x) + θ · v(x)
, T2 =

∫
l(s,θ)

ds

c(x)− θ · v(x)
.

Assuming |v| � c, we thus measure∫
l(s,θ)

ds

c(x)
,

∫
l(s,θ)

θ · v(x)

c2(x)
ds = θ ·

∫
l(s,θ)

v(x)

c2(x)
ds.

We thus reconstruct c−1(x) from its Radon transform and then want to

reconstruct a field F(x) from its vectorial Radon transform θ ·RF(s, θ).
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Mathematical modeling

The transport equation with anisotropic source term is given by

θ · ∇ψ(x, θ) + a(x)ψ(x, θ) = f(x, θ) =
N∑

k=−N
fk(x)eikθ, x ∈ R2, θ ∈ S1.

We identify θ = (cos θ, sin θ) ∈ S1 and θ ∈ (0,2π). We assume that

f−k = fk and fk(x) is compactly supported. The boundary conditions

are such that for all x ∈ R2,

lim
s→+∞

ψ(x− sθ, θ) = 0.

The absorption coefficient a(x) is smooth and decays sufficiently fast at

infinity. The above transport solution admits a unique solution and we

can define the symmetrized beam transform as

Dθa(x) =
1

2

∫ ∞

0
[a(x− tθ)− a(x + tθ)]dt.
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Mathematical modeling (II)

The symmetrized beam transform satisfies θ · ∇Dθa(x) = a(x) so that

the transport solution is given by

eDθa(x)ψ(x, θ) =
∫ ∞

0
(eDθaf)(x− tθ, θ)dt.

Upon defining θ⊥ = (− sin θ, cos θ) and x = sθ⊥ + tθ, we find that

lim
t→+∞

eDθa(sθ
⊥+tθ)ψ(sθ⊥ + tθ, θ) =

∫
R
(eDθaf)(sθ⊥ + tθ, θ)dt

Measurements = lim
t→+∞

ψ(sθ⊥ + tθ, θ) = e−(Rθa)(s)/2(Ra,θf)(s),

where Rθ is the Radon transform and Ra,θ the Attenuated Radon Trans-

form (AtRT) defined by:

Rθf(s) =
∫
R
f(sθ⊥ + tθ, θ)dt =

∫
R2
f(x, θ)δ(x · θ⊥ − s)dx

(Ra,θf)(s) = (Rθ(e
Dθaf))(s) = Data
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Inverse Problems

The inverse problem consists then in answering the following questions:

1. Knowing the AtRT Ra,θf(s) for θ ∈ S1 and s ∈ R, and the absorption

a(x), what can we reconstruct in f(x, θ)?

2. Assuming f(x, θ) = f0(x) or f(x, θ) = F(x) · θ, can we obtain explicit

formulas for the source term?

3. Can we reconstruct f(x, θ) = f0(x) from half of the measurements or

do we at least have uniqueness of the reconstruction?

4. Do we have a reliable numerical technique to obtain fast reconstruc-

tions?
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Reconstruction as a Riemann Hilbert problem

We recast the inversion as a Riemann Hilbert (RH) problem. Let us define

T = {λ ∈ C, |λ| = 1}, D+ = {λ ∈ C, |λ| < 1}, and D− = {λ ∈ C, |λ| > 1}.
Let ϕ(t) be a smooth function defined on T . Then there is a unique

function φ(λ) such that:

(i) φ(λ) is analytic on D+ and D−

(ii) λφ(λ) is bounded at infinity

(iii) ϕ(t) = φ+(t)− φ−(t) ≡ [φ](t)

= lim
0<ε→0

(φ((1− ε)t)− φ((1 + ε)t))

Moreover φ(λ) is given by the Cauchy formula

φ(λ) =
1

2πi

∫
T

ϕ(t)

t− λ
dt, λ ∈ C\T.
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Riemann-Hilbert problem for AtRT, a road map

1. Extend the transport equation to the complex plane (complex-valued

directions of propagation θ → eiθ = λ ∈ C). Replace the transport solu-

tion ψ(x, λ) by φ(x, λ), which is analytic on D+ and D− and O(λ−1) at

infinity by subtracting a finite number of analytic terms on C\{0}.

2. Verify that the jump of φ(x, λ) at λ ∈ T is a function of the measured

data Ra,θf(s).

3. Read off the constraints imposed on the source terms fk(x) obtained

by Taylor expansion of φ(x, λ) at λ = 0.

4. In simplified settings, reconstruct the fk(x) from the constraints.
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Step 1: Complexification of transport equation

Define

λ = eiθ, z = x+ iy with x = (x, y),
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
.

The complexified transport equation is then recast as(
λ
∂

∂z
+ λ−1 ∂

∂z̄
+ a(z)

)
ψ(z, λ) = f(z, λ).

We consider the above equation for arbitrary complex values of λ. ψ(z, λ)

is analytic on λ ∈ C\(T ∪ {0}) and is given by

ψ(z, λ) = e−h(z,λ)
∫
C
G(z − ζ, λ)eh(ζ,λ)f(ζ, λ)dm(ζ),

where h(z, λ) =
∫
C
G(z − ζ, λ)a(ζ)dm(ζ) and

(
λ
∂

∂z
+ λ−1 ∂

∂z̄

)
G(z, λ) = δ(z), so that G(z, λ) =

sign(|λ| − 1)

π(λz − λ−1z)
.
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The source term is given by f(z, λ) =
∑N
k=−N fk(z)λ

k. On D+ we have

G(z, λ) =
1

πz

∞∑
m=0

(
z

z

)m
λ2m+1, and ψ(·, λ) =

∞∑
m=1

(Hmf(·, λ))λm,

where the operators Hm are explicitly computable with

H1 =
(
∂

∂z̄

)−1
, H2 = −H1aH1,

∂

∂z̄
Hk+2 + aHk+1 +

∂

∂z
Hk = 0.

Using a similar expression on D−, we find that

φ(z, λ) = ψ(z, λ)−
−1∑

n=−∞
λn

∞∑
m=1

(Hmfn−m)(z)−
0∑

n=−∞
λ−n

∞∑
m=1

(Hmfm−n)(z),

satisfies the hypotheses of the RH problem: it is analytic on D+ ∪ D−

and of order O(λ−1) at infinity. Its jump across T is the same as that of

ψ since the difference ψ − φ is analytic in C\{0}. On D+ it is given by

φ(z, λ) =
∞∑
n=0

λn
∞∑

m=1

(Hmfn−m −Hmfn+m)(z).
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Simplifications when f(z, λ) = f0(z)

When f(z, λ) = f0(z), the solution

ψ(z, λ) = e−h(z,λ)
∫
C
G(z − ζ, λ)eh(ζ,λ)f0(ζ)dm(ζ),

of the complexified transport equation(
λ
∂

∂z
+ λ−1 ∂

∂z̄
+ a(z)

)
ψ(z, λ) = f0(z),

is analytic on λ ∈ C\T and λψ(z, λ) is bounded at infinity since G(z, λ)

satisfies these properties. So φ(z, λ) = ψ(z, λ) meets the conditions of

the Riemann-Hilbert problem (sectionally analytic and right behavior at

infinity).

Moreover we find using the transport equation and the Cauchy formula:

f0(z) = lim
λ→0

1

λ

∂

∂z̄
ψ(z, λ) = lim

λ→0

1

λ

∂

∂z̄

1

2π

∫
T

[ψ](t)

t− λ
dt.
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Step 2: jump conditions

Recall that

G(z, λ) =
sign(|λ| − 1)

π(λz − λ−1z)
, h(z, λ) =

∫
C
G(z − ζ, λ)a(ζ)dm(ζ),

and that the transport solution is given by

ψ(z, λ) = e−h(z,λ)
∫
C
G(z − ζ, λ)eh(ζ,λ)f(ζ, λ)dm(ζ).

Writing λ = reiθ

and sending r − 1 to ±0,

we calculate G±(z, θ) and ψ±(z, θ).
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Step 2: jump conditions (ii)

Writing λ = reiθ and sending r − 1 to ±0, we obtain

G±(x, θ) =
±1

2πi(θ⊥ · x∓ i0sign(θ · x))
,

h±(x, θ) = ±
1

2i
(HRθa)(x · θ⊥) + (Dθa)(x), Hu(t) =

1

π

∫
R

u(s)

t− s
ds.

Here H is the Hilbert transform. We thus obtain that ψ converges on

both sides of T parameterized by θ ∈ (0,2π) to

ψ±(x, θ) = e−Dθae
∓1
2i (HRθa)(x·θ

⊥)∓1

2i
H

(
e
±1
2i (HRθa)(s)Rθ(e

Dθaf)
)
(x · θ⊥)

+e−DθaDθ(e
Dθaf)(x).

Notice that (ψ+ − ψ−) is a function of the measurements Ra,θf(s) =

Rθ(e
Dθaf)(s) whereas ψ± individually are not.
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Jump conditions (ii)

Let us define

ϕ(x, θ) = (ψ+ − ψ−)(x, θ).

It depends on the measured data and is given by

iϕ(x, θ) = [R∗−a,θHaRa,θf ](x) = [R∗−a,θHag(s, θ)](x),

where

R∗a,θg(x) = eDθa(x)g(x·θ⊥), Ha = (CcHCc + CsHCs)

Ccg(s, θ) = g(s, θ) cos(
HRa(s, θ)

2
), Csg(s, θ) = g(s, θ) sin(

HRa(s, θ)

2
).

Here R∗a,θ is the adjoint operator to Ra,θ. We note that iϕ(x, θ) is real-

valued and that θ ·∇ϕ+ aϕ = 0.
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Step 3: constraints on source terms

The function φ is sectionally analytic, of order O(λ−1) at infinity and such

that

ϕ(z, θ) = φ+(z, θ)− φ−(z, θ) on T.

So φ is the unique solution to the RH problem given by

φ(z, λ) =
1

2πi

∫
T

ϕ(z, t)

t− λ
dt =

∞∑
n=0

λn
1

2πi

∫
T

ϕ(z, t)dt

tn+1

on D+ so that

∞∑
m=1

(Hmfn−m −Hmfn+m)(z) =
1

2πi

∫
T

ϕ(z, t)dt

tn+1
≡ ϕn(z), n ≥ 0.

Because ∂
∂z̄ϕn+aϕn+1+ ∂

∂zϕn+2 = 0, there are actually only two indepen-

dent constraints for n = 0 and n = 1. This characterizes the redundancy

of order 2 of the AtRT.
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Step 4: reconstruction in simplified setting.

Assume that N = 1 so that f(x, λ) = f0(x) + λf1(x) + λ−1f−1(x). Then

H1f−1(z)−H1f1(z) =
1

2πi

∫
T

ϕ(z, t)dt

t
= ϕ0(z)

H2f−1(z) +H1f0(z) =
1

2πi

∫
T

ϕ(z, t)dt

t2
= ϕ1(z).

Define ω = (cosω, sinω) ∈ S1 and impose for ρ1(z) real-valued:

f1(z) = eiωρ1(z), f−1(z) = e−iωρ1(z),
so that f1(z)e

iθ + f−1(z)e
−iθ = 2cos(θ+ ω)ρ1(z).

Since H1 is multiplication by 2/(iξz) in the Fourier domain, we obtain

f1(x) =
1

4
Dωs∆(iϕ0)(x), ωs = (sinω, cosω),

f0(x) =
1

4π

∫ 2π

0
θ⊥·∇(iϕ)(x, θ)dθ+

1

2
Dωsω

⊥
s ·∇(iϕ0)(x).

When ϕ0 ≡ 0 this is the classical Novikov formula.
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Step 4: reconstruction in simplest setting.

Assume that N = 0 so that f(x, λ) = f0(x). Then

0 =
1

2πi

∫
T

ϕ(z, t)dt

t
= ϕ0(z)

H1f0(z) =
1

2πi

∫
T

ϕ(z, t)dt

t2
= ϕ1(z).

Recall that H1 = (
∂

∂z̄
)−1. We thus obtain

0 = iϕ0(x),

f0(x) =
1

4π

∫ 2π

0
θ⊥·∇(iϕ)(x, θ)dθ.

This is the Novikov formula. The first equality is a compatibility condi-

tions.
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Step 4 bis: Application to Doppler tomography.

In Doppler tomography, the source term of interest is of the form

f(x, θ) = F(x) · θ F(x) = (F1(x), F2(x)).

So we define the source term f1(x) = 1
2(F1(x) − iF2(x)) and fk(x) ≡ 0

for |k| 6= 1. The constraint n = 0 gives

∇× F(x) =
∂F2(x)

∂x
−
∂F1(x)

∂y
=

1

2
∆(iϕ0)(x).

The constraint n = 1 gives H2f−1(z) = ϕ1(z) so that

1

2

(
F1(z) + iF2(z)

)
= −

∂

∂z̄

1

a(z)

∂ϕ1(z)

∂z̄
.

This explicit reconstruction formula is valid on the support of a(x) and

has no equivalent when a ≡ 0.
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Reconstruction from partial measurements

Since we can reconstruct two functions from the AtRT, can we recon-

struct one from half of the measurements? The answer is yes and we

have an explicit reconstruction scheme under a smallness constraint on

the variations of the absorption parameter.

The setting is as follows. We assume that g(s, θ) is available for all

values of s ∈ R and for θ ∈ M ⊂ [0,2π). The assumption on M is that

Mc = [0,2π)\M ⊂M + π; for instance M = [0, π) and Mc = [π,2π).

We also assume that the source term f(x) is compactly supported in the

unit ball B.

The derivation is based on decomposing the explicit reconstruction for-

mula into skew-symmetric and symmetric components in L(L2(B)).
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Reconstruction from partial measurements

Using the full-measurement inversion formula, we can recast the recon-

struction problem as

f(x) = d(x) + F af(x) + F sf(x), d(x) = F df(x),

where F a is formally skew-symmetric and F s is formally symmetric.

Theorem 1. The operators F a and F s are bounded in L(L2(B)) and

F s is compact in the same sense with range in H1/2(B).

Theorem 2. Provided that ρ(F s) < 1, we can reconstruct f(x) uniquely

and explicitly from g(s, θ) for θ ∈M . Since F s is compact we can always

reconstruct the singular part of f(x) that is not in the Range of F s.

Theorem 3. [R. Novikov; H. Rullg̊ard] The AtRT g(s, θ) on R×Θ, where

Θ ⊂ S1 has positive measure, uniquely determines f(x). Moreover,

‖f‖L2(R2) ≤ C‖g(s, θ)‖
H1/2(R×M), for some C > 0.
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Advantage of explicit reconstruction formulas:
Fast numerical algorithms such as the slant stack

algorithm

Joint work with Philippe Moireau, Ecole Polytechnique.

Let us represent f(x) by an image with n×n pixels. The objectives are:

• to compute an accurate approximation of g(s, θ) = Ra,θf(s)

• to compute it fast (with a cost of O(n2 logn))

• to invert the AtRT accurately and fast from full or partial measure-

ments.
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Implementation of slant stack algorithm (RT)

1. We zero-pad the n× n image F to obtain the n× 2n image F1,

2. We compute a Discrete Fourier Transform (DFT) on the columns,

3. We compute a fractional DFT on the rows,

4. We compute an inverse DFT (IDFT) on the columns.

Each of these operations can be performed in O(n2 logn) operations.

The discrete transform converges to the exact transform with spectral

accuracy. The algorithm is based on a discretization of the Fourier slice

theorem R̂f(σ, θ) = f̂(σθ⊥).



University of Washington August 1, 2005University of Washington August 1, 2005University of Washington August 1, 2005

Classical phantom reconstruction: RT data

Image on left; slant-stack (lineogram) data on right.
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Classical phantom reconstruction

Left 2 pictures: reconstructions from partial data. Right: full

reconstruction.
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Classical phantom reconstruction (ii)

2D reconstruction and 1D cross-section.
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Generalization to AtRT data

Left: source. Middle: absorption map. Right: AtRT data.
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Example of AtRT reconstruction (i)

Reconstruction from π/2 data.
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Example of reconstruction (ii)

Reconstruction from full data and 1D cross section.
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1. X-ray tomography and Radon transform

Radon transform as a transport source problem

2. SPECT and Attenuated Radon transform

Complexification of the transport equation

Explicit inversion formula (à la Novikov)

3. Source problem in geophysical imaging and hyperbolic geometry

Application in geophysical imaging

Complexification of geodesic vector field in hyperbolic geometry
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Ray transforms and inverse problems

Many inverse problems involve integrations along geodesics.

In medical imaging, the geodesics are often lines: CT-scan (X-ray λ =

0.1nm), SPECT (gamma ray 159KeV ), PET (2 gamma rays 511KeV ):

Euclidean geometry is fine.

Earth imaging is mostly based on reconstruction of quantities involving

integration along geodesics. However the geodesics are almost always

curved: non-Euclidean geometry.
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Crash course in Dutch geometry
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Geophysical imaging in hyperbolic geometry

Assuming that speed increases linearly in the Earth C(z) ≈ z ∼ y, energy

propagates along the geodesics of the following Riemannian metric

ds2 =
1

y2
(dx2 + dy2).

(This is not a ridiculous assumption.)

Let X be the geodesic vector field and a a known absorption parameter.

The forward problem is:

Xu+ au = f, f is the source term.

The Inverse Problem is: reconstruct the source term f from boundary

measurements of u (emission problem).

Below is a recently obtained explicit inversion formula for this problem.
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What’s the relationship with Escher?

There are various equivalent ways to look at hyperbolic geometry.

⇐⇒

z(w) =
w − i

1− iw

Poincaré
plane

2
; ds2 =

dx2 + dy2

y2
⇐⇒ Poincaré disc; ds2 =

4dzdz̄

(1− |z|2)2
.
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Euclidean geometry, summary

The inversion formula obtained earlier was based on the following com-

plexification. The unit circle is parameterized as

λ = eiθ, θ ∈ (0,2π).

The parameter λ defined on the unit circle T is extended to the whole

complex plane C. The transport equation becomes(
λ
∂

∂z
+ λ−1 ∂

∂z̄
+ a(z)

)
u(z, λ) = f(z), z ∈ C, λ ∈ C.

We have used the classical parameterization

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.
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Geometry of the extension

λ = eiθ is extended to the complex plane C. Position z ≈ x is a fixed

parameter.
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Novikov formula in Euclidean geometry (II)

The reconstruction formula hinges on three ingredients:

(i) We show that u(z, λ) is analytic in D+∪D− = C\T and that λu(z, λ) is

bounded as λ→∞. This comes from the analysis of the fundamental

solution of the ∂̄ problem.

(ii) We verify that ϕ(x, θ) = u+(x, θ)− u−(x, θ), the jump of u at λ = eiθ

can be written as a function of the measured data Raf(s, θ).

(iii) We solve the Riemann Hilbert problem using the Cauchy formula and

evaluate the complexified transport equation (Xu + au)(λ) = f at

λ = 0 to obtain a reconstruction formula for f(z) = f(x).
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How about Hyperbolic Geometry?

θ · ∇ Vector field θi
∂

∂xi
+ Γkijθ

iθj
∂

∂θk

λ
∂

∂z
+ λ−1 ∂

∂z̄
Complexification ???
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Suitable parameterization of geodesics

The vector field X(eiθ) at z ∈ D is parameterized as:

The point at infinity in corresponds to the direction at infinity in .
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For the fun of it

On the hyperbolic disc, the geodesic vector field converging to eiθ at

infinity is

X(eiθ) = (1− |z|2)
(
1− e−iθz

1− eiθz̄
eiθ∂ +

1− eiθz̄

1− e−iθz
e−iθ∂̄

)
.

It can be complexified for λ ∈ C as

X(λ) = (1− |z|2)
(
λ− z

1− λz̄
∂ +

1− λz̄

λ− z
∂̄

)
.

It generates an elliptic operator for λ ∈ C\T and thus admits a funda-

mental solution (X(λ)G(z;λ, z0) = δg(z − z0)) of the form

G(z;λ, z0) =
−P (z0, λ)

2iπ

1

s(z, λ)− s(z0, λ)
.

We deduce that the solution of the complexified transport equation

X(λ)u(z, λ) + a(z)u(z, λ) = f(z)
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is given by

u(z, λ) =
∫
D
G(z;λ, ζ)eh(ζ,λ)−h(z,λ)f(ζ)dmg(ζ).

We have that G, hence u, is sectionally analytic. After an additional

conformal mapping, it is given by the solution of a Riemann Hilbert

problem via the following Cauchy formula

u(z, λ) = ũ(z, µ) =
1

2πi

∫
T

ϕ̃(z, ν)

ν − µ
dν,

where ϕ̃ depends explicitly only on the measured data.

Once u(z, λ) is reconstructed, we apply the transport operator to it to

obtain the source term f(z).
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Reconstruction formula

Let Raf(s, θ) be the attenuated hyperbolic ray transform. Define

Raf(s, θ) =
∫
ξ(s,θ)

eDθa(z, eiθ)f(z)dmg(z)

X̌⊥(eiθ) = i(1− |z|2)
(
−

1− e−iθz

1− eiθz̄
eiθ∂ +

1− eiθz̄

1− e−iθz
e−iθ∂̄

)
Hf(t) =

1

π
p.v.

∫
R

f(s)

t− s
ds

(R∗a,θg)(z) = P (e−iθz)eDθa(z)g(s(e−iθz)), Ha = CcHCc + CsHCs

Ccg(s, θ) = g(s, θ) cos
(
Hâ(s)

2

)
, Csg(s, θ) = g(s, θ) sin

(
Hâ(s)

2

)
.

Then the source term is given by

f(z) =
1

4π

∫ 2π

0
X̌⊥(eiθ)

(
R∗−a,θHa[Ra,θf ]

)
(z, eiθ)dθ.
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Vectorial ray transform

For a vector field F (z), we can consider the vectorial ray transform

RaF (s, θ) ≡ Ra,θF (s) =
∫
ξ(s,θ)

eDθa(z, eiθ)〈X(eiθ), F 〉dmg(z).

Define F [ = F1dx+ F2dy such that F [X = 〈X(eiθ), F 〉. When a = 0,

curlF ≡ ∗dF [ =
∂F2

∂x
−
∂F1

∂y
=

1

2i
∆ϕ0,

where ϕ0 depends explicitly on RaF . When a > 0,

F1(z) + iF2(z) = −2∂̄
(
1− |z|2

a(z)
∂̄ϕ1(z)

)
,

where ϕ1 also depends explicitly on RaF . As in Euclidean geometry, we

can reconstruct the full vector field when a > 0 on its support.
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Conclusions

Explicit inversion formulas in Euclidean and Hyperbolic geometry allow

for efficient numerical inversions (whether in the form of a filtered-

backprojection or in the form of a “faster” algorithm based on the fast

Fourier transform).

The method of complexification of the geodesic vector field is somewhat

rigid, which makes its extension to other problems difficult.

Yet several of the steps presented in the lecture extend to more general

(Riemannian) geometries. This area of research may eventually provide

algorithms to invert Radon transforms for arbitrary metrics (including the

ones of interest in geophysical imaging).

The theory developed for scalar and vectorial source terms adapts to

higher-order tensors with applications in anisotropic media.
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