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Outline for the three lectures

I. Inverse problems in integral geometry

Radon transform and attenuated Radon transform

Ray transforms in hyperbolic geometry

II. Forward and Inverse problems in highly scattering media

Photon scattering in tissues within diffusion approximation

Inverse problems in Optical tomography

III. Inverse transport problems

Singular expansion of albedo operator

Perturbations about “scattering-free” problems

Unsolved practical inverse problems.
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Outline for Lecture II

1. Optical tomography

Transport equations and examples of applications

2. Macroscopic modeling of clear layers

Diffusion approximation of transport

Macroscopic modeling of clear layers

3. Reconstruction via the Factorization method

Reconstruction of clear layer and enclosed coefficients

Shape derivative plus level set methods
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Mathematical Problems in Optical
Tomography

Optical Tomography consists in reconstructing absorption and scattering

properties of human tissues by probing them with Near-Infra-Red photons

(wavelength of roughly 1µm).

What needs to be done:

• Modeling of forward problem using equations that are easy to solve:

photons strongly interact with underlying tissues.

• Devising reconstruction algorithms to image tissue properties from

boundary measurements of photon intensities.(
• Address relevant questions and no more: severely ill-posed problem.

)
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Transport equations in Optical Tomography

The photon density u(x,Ω; ν) solves the following transport (linear Boltz-

mann) equation

iν

c
u + Ω · ∇u + σt(x)u = σs(x)

∫
S2

p(Ω ·Ω′)u(x,Ω′; ν)dµ(Ω′),

where ν is the (known) modulation of the illumination source, p(µ) is the

phase function of the scattering process (often assumed to be known),

σt(x) is the total absorption coefficient and σs(x) the scattering coeffi-

cient. The last three terms model photon interactions with the underlying

medium (tissues).

The inverse problem in OT consists of reconstructing σs(x) and σt(x)

(and possibly p(µ)) from boundary measurements.

The transport equation is often replaced by its diffusion approximation.
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Applications in Near-Infra-Red Spectroscopy

Imaging of human brains.
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Applications in Near-Infra-Red Spectroscopy

Imaging of human brains (from A.H. Hielscher, biomedical Engineering,

Columbia).
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Outline for Lecture II

1. Optical tomography

Transport equations and examples of applications

2. Macroscopic modeling of clear layers

Diffusion approximation of transport

Macroscopic modeling of clear layers

3. Reconstruction via the Factorization method

Reconstruction of clear layer and enclosed coefficients

Shape derivative plus level set methods
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Typical path of a detected photon
in a DIFFUSIVE REGION

Source Term

Detector
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Same typical path in the presence of
a CLEAR INCLUSION

Source Term

Detector
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Same typical path in the presence of
a CLEAR LAYER

Source Term

Detector
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Modeling the Forward Problem:

We want macroscopic equations that model photon propa-
gation both in the diffusive and non-diffusive domains.

Outline:

1. Brief recall on the derivation of diffusion equations

2. Generalized equations in the presence of Clear Layers

3. Numerical simulation of transport and diffusion models
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Transport Equation and Scaling

The phase-space linear transport equation is given by

1

ε
v · ∇uε(x, v) +

1

ε2
Q(uε)(x, v) + σa(x)uε(x, v) = 0 in Ω× V,

uε(x, v) = g(x, v) on Γ− = {(x, v) ∈ ∂Ω× V s.t. v · ν(x) < 0}.

uε(x, v) is the particle density at x ∈ Ω ⊂ R3 with direction v ∈ V = S2.

The scattering operator Q is defined by

Q(u)(x, v) = σs(x)
(
u(x, v)−

∫
V

u(x, v′)dµ(v′)
)
.

The mean free path ε measures the mean distance between successive

interactions of the particles with the background medium.

The diffusion limit occurs when ε → 0.
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Volume Diffusion Equation

Asymptotic Expansion: uε(x, v) = u0(x) + εu1(x, v) + ε2u2(x, v) . . .

Equating like powers of ε in the transport equation yields

Order ε−2 : Q(u0) = 0
Order ε−1 : v · ∇u0 + Q(u1) = 0
Order ε0 : v · ∇u1 + Q(u2) + σau0 = 0.

Krein-Rutman theory:

Order ε−2 : u0(x, v) = u0(x)

Order ε−1 : u1(x, v) = −
1

σs(x)
v · ∇u0(x),

Order ε0 : −divD(x) · ∇u0(x) + σa(x)u0(x) = 0 in Ω

where the diffusion coefficient is given by D(x) =
1

3σs(x)
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Diffusion Equations with Boundary
Conditions

The volume asymptotic expansion does not hold in the vicinity of bound-

aries. After boundary layer analysis we obtain

−divD(x) · ∇u0(x) + σa(x)u0(x) = 0 in Ω

u0(x) = Λ(g(x, v)) on ∂Ω.

Λ is a linear form on L∞(V−).

We obtain in any reasonable sense that

uε(x, v) = u0(x) + O(ε).
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Generalization to an Extended Object
of small thickness (Clear Layer)

Σ

Σ

Σ

E

IΩ
C

Thickness = 2l εLΩ

Geometry of the Clear Layer ΩC of boundary

{
ΣE = Σ + lLεν(x),
ΣI = Σ− lLεν(x),

where ν(x) is the outgoing normal to Σ at x ∈ Σ.
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Local Generalized Diffusion Model

Assuming L2
ε | lnLε| ∼ ε, in the limit ε → 0 we obtain in a joint work with

Kui Ren the following generalized diffusion model

−∇ ·D(x)∇U(x) + σa(x)U(x) = 0 in Ω\Σ

U(x) + 3L3εD(x)ν(x) · ∇U(x) = Λ(g(x, v)) on ∂Ω

[U ](x) = 0 on Σ

[ν ·D∇U ](x) = −∇⊥dc∇⊥U.

The clear layer is modeled as a tangential (supported on Σ) diffusion

process with coefficient dc(x). The approximation (w.r.t. transport so-

lution) is of order
√

ε when Σ has positive curvature and can be as bad

as | ln ε|−1 for straight clear layers.
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Numerical simulations

Geometry of domain with circular/spherical clear layer.
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Two-dimensional Numerical simulation
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Outgoing current for clear layers of 2 and 5 mean free paths.
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Two-dimensional Numerical simulation

h 0.01 0.02 0.03 0.04 0.05 0.06 0.07

dC
theory 0.0124 0.0455 0.0971 0.166 0.253 0.355 0.475

dC
best fit 0.0129 0.0465 0.0983 0.167 0.253 0.356 0.474

EGDM (%) 1.17 1.56 1.43 1.09 0.81 0.56 0.60
EBF (%) 0.73 0.65 0.57 0.49 0.46 0.47 0.46
EDI (%) 3.3 10.2 17.7 24.5 30.2 35.3 39.8

Tangential diffusion coefficients and relative L2 error between the

transport Monte Carlo simulations and the various diffusion models for

several thicknesses of the clear layer.
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Three-dimensional Numerical simulation
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Outgoing current for clear layers of 3 and 6 mean free paths.
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Summary of Forward Modeling:

• We have a macroscopic model that captures particle propagation both

in scattering and non-scattering regions, such as embedded objects and

clear layers.

• The generalized diffusion model is computationally only slightly more

expensive than the classical diffusion equation (essentially, one term is

added in the variational formulation) and much less expensive than the

full phase-space transport model.

• The accuracy of the macroscopic equation is sufficient to address the

inverse problem where absorption and scattering cross sections are re-

constructed from boundary measurements.
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Outline for Lecture II

1. Optical tomography

Transport equations and examples of applications

2. Macroscopic modeling of clear layers

Diffusion approximation of transport

Macroscopic modeling of clear layers

3. Reconstruction via the Factorization method

Reconstruction of clear layer and enclosed coefficients

Shape derivative plus level set methods
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Inverse Problem

• Optical Tomography uses near-infrared photons to image properties of

human tissues.

• Advantages: Non-invasive (as are all “imaging” techniques); Cheap

(that is, for a medical technique); Quite harmless (as light should be);

and Good Discrimination properties between healthy and non-healthy

tissues.

• Disadvantages: photons scatter a lot with underlying medium because

they have low energy. This implies that the images have a low spatial

resolution, and forward models are computationally expensive.

• Here we focus on reconstructing the clear layer and what it encloses.

We also consider the similar problem in Impedance tomography.
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Model problem in Impedance Tomography

The potential u(x) solves the following equation:

∇ · γ∇u = 0, in Ω\Σ
[u] = 0 on Σ

[n · γ∇u] = −∇⊥ · d∇⊥u on Σ
n · γ∇u = g on ∂Ω∫
∂Ω

u dσ = 0.

Assume that the above hypotheses are satisfied and that g ∈ H
−1/2
0 (∂Ω).

Then the above system admits a unique solution u ∈ H1
0,Σ(Ω) with trace

u|∂Ω ∈ H
1/2
0 (∂Ω). The variational formulation is∫

Ω
γ∇u · ∇v dx +

∫
Σ

d∇⊥u · ∇⊥v dσ =
∫
∂Ω

gv dσ.
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Model problem in Optical Tomography

The photon density u(x;ω) solves the following equation

iωu−∇ · γ∇u + au = 0, in Ω\Σ
[u] = 0 on Σ

[n · γ∇u] = −∇⊥ · d∇⊥u on Σ
n · γ∇u = g on ∂Ω.

Assume that a(x) is bounded when ω 6= 0 and that a(x) is uniformly

bounded from below by a positive constant when ω = 0, and that g ∈
H−1/2(∂Ω). Then the above system admits a unique solution u ∈ H1

Σ(Ω)

with trace u|∂Ω ∈ H1/2(∂Ω). The variational formulation is:∫
Ω

(
iω + a

)
uv +

∫
Ω

γ∇u · ∇v dx +
∫
Σ

d∇⊥u · ∇⊥v dσ =
∫
∂Ω

gv dσ.
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Assumptions and what we can reconstruct

• Main Assumption: The conductivity tensor γ is known on Ω\D such

that Σ = ∂D.

• We reconstruct the interface Σ = ∂D using a factorization method.

The method is “constructive”.

• Next we find the tangential diffusion tensor d(x) on Σ.

• Finally we reconstruct what we can (using known theories) on γ from

the knowledge of the Dirichlet-to-Neumann map.
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A few more assumptions (Impedance case)

We define the Neumann-to-Dirichlet operator ΛΣ as

ΛΣ : H
−1/2
0 (∂Ω) −→ H

1/2
0 (∂Ω), g 7−→ u|∂Ω.

We define the “background” Neumann-to-Dirichlet operator Λ0 as above

with γ(x) replaced by a known background γ0(x) and with d(x) replaced

by 0.

Our assumptions on the background γ0(x) is that it is the true conduc-

tivity tensor on Ω\D and a lower-bound to the true conductivity tensor

on D:

γ0(x) ≤ γ(x) on D, γ0(x) = γ(x) on Ω\D.

The main assumption is thus that we assume that everything is known

in Ω\D.
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A typical result

Theorem. Let us assume that the tensor γ(x) is of class C2(Ω)

for n = 2,3, is known on Ω\D, and is proportional to identity (i.e.,

γ(x) = 1
nTr(γ(x))I) on D.

Then the surface Σ = ∂D, the tangential diffusion tensor d(x), and the

conductivity tensor γ(x) are uniquely determined by the Cauchy data

{u|∂Ω,n · γ∇u|∂Ω} in H1/2(∂Ω)×H−1/2(∂Ω).

Moreover the method to recover Σ is constructive and based on a suitable

factorization of Λ0 − ΛΣ.
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The Factorization method

The idea is to reconstruct the support of objects without knowing what

is inside.

Originally proposed by Colton and Kirsch and analyzed to detect obstacles

in the scattering context by Kirsch [IP1998].

Analyzed in impedance tomography for objects with different impedance

than the background by Brühl [SIMA01].
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Factorization method idea

The idea is to factor the difference of NtD operators as

Λ0 − ΛΣ = L∗FL,

where L and L∗ are defined on Ω\D and where F can be decomposed as

B∗B with B∗ surjective. This implies that

R((Λ0 − ΛΣ)1/2) = R(L∗).

We then construct functions y 7→ gy(·) from the measured data that solve

the source-less diffusion equation in Ω\D and are in the Range of L if

and only if y ∈ D.

This allows us to constructively image the interface Σ from the boundary

measurements.
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Details of the factorization

Let us define v and v∗ as the solutions to:

∇ · γ∇v = 0, in Ω\D ∇ · γ∇v∗ = 0, in Ω\D
n · γ∇v = 0 on Σ n · γ∇v∗ = −φ on Σ
n · γ∇v = φ on ∂Ω n · γ∇v∗ = 0 on ∂Ω∫
∂Ω

v dσ = 0,
∫
Σ

v∗ dσ = 0.

L maps φ ∈ H
−1/2
0 (∂Ω) to v|Σ ∈ H

1/2
0 (Σ) and its adjoint operator

L∗ maps φ ∈ H
−1/2
0 (Σ) to v∗|∂Ω ∈ H

1/2
0 (∂Ω). We have

(u, L∗v)∂Ω ≡
∫
∂Ω

uL∗v dσ =
∫
Σ

vLu dσ ≡ (Lu, v)Σ.
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Construction of F

Let us define w as the solution to

∇ · γ∇w = 0, in Ω\Σ
[w] = φ, on Σ

[n · γ∇w] = −∇⊥d∇⊥w− on Σ
n · γ∇w = 0 on ∂Ω∫
∂Ω

w dσ = 0.

The operator FΣ maps φ ∈ H
1/2
0 (Σ) to n · γ∇w+ ∈ H

−1/2
0 (Σ).

The variational formulation to the above problem is∫
Ω

γ∇w ·∇w dx+
∫
Σ

d∇⊥w− ·∇⊥w− dσ =
∫
Σ

n ·γ∇w+ φ dσ =
∫
Σ

FΣφ φ dσ.

F0 is defined similarly with γ(x) replaced by γ0(x) and d(x) ≡ 0.

The operator F is defined as F = F0 − FΣ. It is symmetric and we have

Λ0 − ΛΣ = L∗FL.
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Coercivity of F

After a few integrations by parts we obtain with δw = wΣ − w0:∫
Σ

Fφ φ =
∫
Ω

γ∇δw · ∇δw +
∫
D
(γ − γ0)∇w0 · ∇w0 +

∫
Σ

d∇⊥w−Σ · ∇⊥w−Σ.

We can then show that F is coercive in the sense that

(Fφ, φ) ≥ α‖φ‖2
H

1/2
0 (Σ)

,

for some α > 0.
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What makes the factorization useful (I)

In the case of a jump of the diffusion coefficient across the interface Σ,

one can show that F is an isomorphism so that it can be written F = B∗B
with B also an isomorphism.

In the clear layer case, F may not be an isomorphism. It can still be

decomposed. Let I be the canonical isomorphism between H
−1/2
0 (Σ)

and H
1/2
0 (Σ) and define

I = J ∗J , J : H
−1/2
0 (Σ) → L2

0(Σ), J ∗ : L2
0(Σ) → H

1/2
0 (Σ).

We can thus recast the coercivity of F as

(Fφ, φ) = (FJ ∗u,J ∗u) = (JFJ ∗u, u) ≥ α‖φ‖2
H

1/2
0 (Σ)

= α‖u‖2
L2

0(Σ)
.
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What makes the factorization useful (II)

Since

(JFJ ∗u, u) ≥ α‖u‖2
L2

0(Σ)
,

JFJ ∗ is symmetric and positive definite as an operator on L2
0(Σ). So

we can decompose the operator as

JFJ ∗ = C∗C, with C, C∗ positive operators from L2
0(Σ) to L2

0(Σ).

So we have the decomposition

F = B∗B , B = J−1C∗ maps H
1/2
0 (Σ) to L2

0(Σ).

Since F is coercive, we deduce that ‖Bφ‖L2
0(Σ) ≥ C‖φ‖

H
1/2
0 (Σ)

.

This implies that B∗ is surjective.
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Factorization: The Range Characterization

From the above calculations we obtain that

Λ0 − ΛΣ = L∗FL = L∗B∗(L∗B∗)∗ = A∗A.

Since the Range of (A∗A)1/2 is the Range of A∗, we deduce:

R((Λ0 − ΛΣ)1/2) = R(L∗B∗) = R(L∗)

since B∗ is surjective. Now consider the solution of

∇ · γ0∇N(·;y) = δ(· − y), in Ω

n · γ0∇N(·;y) = 0 on ∂Ω
∫
Σ

N(·;y) dσ = 0.

Then n · γ∇N(x;y)|Σ ∈ H
−1/2
0 (Σ) and N(x;y) ∈ R(L∗) if and only if

y ∈ D. Notice that this requires that γ(x) = γ0(x) be known on Ω\D.
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How do we get the rest?

Now that Σ is known, we have on R(Λ0 − ΛΣ) ⊂ R(L∗):

(L∗)−1(Λ0 − ΛΣ) = FL.

L is dense in H
1/2
0 (Σ) since R(L) = N (L∗)⊥ = {0}⊥ = H

1/2
0 (Σ) so we

have access to the full mapping F in L(H
1/2
0 (Σ), H

−1/2
0 (Σ)) and FΣ =

F + F0.

The Range of GΣ = FΣL is dense since G∗
Σ is injective. This provides

knowledge of the full Cauchy data:{
w−|Σ ∈ H

1/2
0 (Σ); n · γ∇w+

|Σ ∈ H
−1/2
0 (Σ)

}
,

whence of the Dirichlet to Neumann operator

ΛD = −∇⊥ · d∇⊥ + Λ̃D,

where Λ̃D is the Dirichlet to Neumann map of the domain D.
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Reconstruction of d(x).

Recall that

ΛD = −∇⊥ · d∇⊥ + Λ̃D.

The second contribution Λ̃D is a bounded operator from H1
0(Σ) to L2

0(Σ).

Let Σ be given locally by xn = 0 in the coordinates (x′, xn). Since Λ̃D

differentiates only once, it is clear that

ω′ · d(x′)ω′ = lim
s→∞

−1

s2
e−isω′·x′ΛDeisω′·x′, for all ω′ ∈ Sn−2.

This fully characterizes the symmetric tensor d(x′).



University of Washington August 3, 2005University of Washington August 3, 2005University of Washington August 3, 2005

Reconstruction of γ(x).

Once d(x) is known, we have access to the Dirichlet to Neumann map

Λ̃D of the domain D.

We then use known results to show that γ(x) can uniquely be recon-

structed if it is a sufficiently smooth (depending on space dimension)

scalar-valued conductivity.

For anisotropic tensors in dimension n = 2 we have that γ1 and γ2 in

C2,α(D), 0 < α < 1, with boundary ∂D of class C3,α with same data Λγ

are such that there exists a C3,α(D) diffeomorphism Φ with Φ|∂Ω = I∂Ω,

the identity operator on ∂Ω, and

γ2(x) =
(DΦ)Tγ1(DΦ)

|DΦ|
◦Φ−1(x).

In dimension n ≥ 3 the same results holds provided that γ1, γ2, and ∂D

(then Φ) are real-analytic.
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Shape sensitivity analysis.

In a joint work with Kui Ren, we have developed a shape-sensitivity-

based method to reconstruct the singular interface (clear layer) Σ. This

is recast as a regularized nonlinear least square problem:

Fα(Σ) :=
1

2

∥∥∥u− uδ
m

∥∥∥2
L2(Γ)

+ α
∫
Σ

dσ(x) → min
Σ∈Π

.

Here and below, Γ = δΩ. For a smooth vector field V(x) we define

Ft(x) = x + tV(x), Σt = Ft(Σ),

and show that

dFα(Σ) = (u− uδ
m, u′)(Γ) + α(κ(x), Vn)(Σ),

where u′ is the shape derivative of the current estimate u = u(Σ).
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Level-set based numerical simulation.

We show that dFα(Σ) ≤ 0 when V is chosen such that

Vn = dκ∇⊥u · ∇⊥w + n · ∇u+n ·D∇w+ − n · ∇u−n ·D∇w− − ακ,

where w solves an adjoint equation.

Combined with a level-set approach, it allows us to construct velocity

fields and to numerically move a guessed interface (assuming that d(x)

is known) so as to lower the discrepancy with the measured data.

The method was first proposed by F. Santosa to image the interface

between two areas with known (and different) diffusion coefficients.

Simulations show how noise in the data degrades the reconstruction.

Ellipse 0% noise Ellipse 5% noise Star 0% noise Star 2% noise

file:C:/localtexmf/Latex/TALKS/UK-2005/Ellipse_00noise.avi
file:C:/localtexmf/Latex/TALKS/UK-2005/Ellipse_05noise.avi
file:C:/localtexmf/Latex/TALKS/UK-2005/StarShape_00noise.avi
file:C:/localtexmf/Latex/TALKS/UK-2005/StarShape_02noise.avi
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Conclusions.

Assuming the conductivity is known between ∂Ω and Σ and a lower

bound is known on Ω, we can reconstruct the singular interface Σ, the

tangential diffusion tensor d(x), and a scalar-valued conductivity on the

region enclosed by Σ.

The method to obtain Σ is constructive.

This means that we can image Σ and through Σ. This a positive result.

The extension to Optical Tomography is straightforward.

Numerical simulations (based on shape derivatives and the level set method)

show reconstructions of the interface from boundary measurements.
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