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Outline for the three lectures

I. Inverse problems in integral geometry

Radon transform and attenuated Radon transform

Ray transforms in hyperbolic geometry

II. Forward and Inverse problems in highly scattering media

Photon scattering in tissues within diffusion approximation

Inverse problems in Optical tomography

III. Inverse transport problems

Singular expansion of albedo operator

Perturbations about “scattering-free” problems

Unsolved practical inverse problems.
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Outline for Lecture III

1. Applications in imaging

Optical tomography and molecular imaging

Waves in random media

2. Inverse problems based on phase-space measurements

Singular decomposition of albedo (response) operator

Perturbations of scattering-free problems

3. Inverse transport problem with “diffusion measurements”

What’s wrong with full transport measurements?

Ideas in diffusion theory that may work in transport.
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Applications in Optical Tomography

Brain with clear ventricle in neonate. (A.H.Hielscher, Columbia biomed.)
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Applications in Optical Tomography

Brain with blood-filled ventricle in neonate. (A.H. Hielscher)
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Applications in Optical Tomography

Detection of Rheumatoid arthritis. (A.H. Hielscher)
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Applications in Optical Tomography

Optical imaging of Rheumatoid arthritis. (A.H. Hielscher)
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Applications in Optical Molecular Imaging

Optical fluorescence imaging in small animals.
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Applications in Waves in random media

Numerical and experimental validations of radiative transfer
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Transport equations in optical tomography

In optical tomography the forward problem is

θ · ∇u(x, θ) + a(x)u(x, θ) =
∫
S2
k(x, θ′, θ)u(x, θ′)dθ′, (x, θ) ∈ Ω× S2

u(x, θ) = g(x, θ), (x, θ) ∈ Γ−(Ω),

where the domains Γ±(Ω) are defined by

Γ±(Ω) = {(x, θ) ∈ ∂Ω× S2, such that ± θ · n(x) > 0},

where n(x) is the outward normal to Ω at x ∈ ∂Ω. The Albedo operator

maps the incoming conditions to the outgoing radiation:

A : g 7→ u|Γ+(Ω).

The inverse problem consists of reconstructing a(x) and k(x, θ′, θ) from

knowledge of A.
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Transport equations in optical molecular imaging

In optical molecular imaging the forward problem is

θ · ∇u(x, θ) + a(x)u(x, θ)=
∫
Sd−1
k(x, θ′, θ)u(x, θ′)dθ′ + f(x), (x, θ) ∈ Ω×Sd−1

u(x, θ) = 0, (x, θ) ∈ Γ−(Ω),

where a(x) and k(x, θ′, θ) are assumed to be known.

The inverse problem consists of reconstructing f(x) from knowledge of

u|Γ+(Ω).

In both the optical tomography and the optical molecular imaging prob-

lems,
∫
Sd−1 k(x, θ′, θ)dθ′ ≤ a(x) for the forward problem to be well-posed.
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Singular decomposition of the Albedo operator

In the optical tomography framework, define u1(x, θ;x0, θ0) as

θ · ∇u1 + a(x)u1 = 0 (x, θ) ∈ Ω× Sd−1

u1(x, θ;x0, θ0) = δ(x− x0)δ(θ − θ0), (x, θ) ∈ Γ−(Ω),

and u2(x, θ;x0, θ0) as

θ · ∇u2 + a(x)u2 =
∫
Sd−1

k(x, θ′, θ)u1(x, θ
′)dθ′, (x, θ) ∈ Ω× Sd−1

u2(x, θ;x0, θ0) = 0, (x, θ) ∈ Γ−(Ω),

Let u(x, θ;x0, θ0) = u1 + u2 + v be the solution of the full transport

equation (replace u2 and u1 in the above equation by u and the boundary

conditions by δ(x− x0)δ(θ − θ0)).

Knowledge of A is equivalent to that of u(x, θ;x0, θ0). In any dimension,

u1 is more singular than u2 + v. In dimension d ≥ 3, u2 is more singular

that v.
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Inverse Transport Problem

Theorem[Choulli-Stefanov].

In any space dimension, knowledge of A implies that of u1(x, θ;x0, θ0) on

Γ+ × Γ−, which uniquely determines a(x) by inverse Radon transform.

In dimension d ≥ 3, knowledge of A implies that of u2(x, θ;x0, θ0) on

Γ+ × Γ−, which uniquely determines k(x, θ, θ′). More precisely, we have

the formula

u2(y + sθ, θ;y − tθ0, θ0)

=
exp

(
−

∫ s

0
a(y + pθ)dp−

∫ t

0
a(y − pθ0)dp

)
√

1− (θ · θ0)
2

k(y, θ0, θ).

Here s and t are chosen so that u2 is evaluated at the domain boundary.

The inverse transport problem for d ≥ 3 is thus solved.
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Two-dimensional inverse transport problem

In dimension d = 2, we can reconstruct a(x) from the singularities of

A but not k(x, θ, θ′). We may however uniquely reconstruct k provided

that k(x, θ, θ′) is sufficiently small [Stefanov-Uhlmann]. The method is

perturbative. We now propose an iterative method based on the same

perturbative ideas.

Introduce some notation:

Tu = θ · ∇u+ a(x)u, Ku =
∫
Sd−1

k(x, θ′, θ)u(x, θ′)dθ′,

L : g|Γ− 7→ u|Ω×V solution of Tu = 0, u = g on Γ−.

Then the transport solution of Tu = Ku, u|Γ− = g is given by

u = T−1Ku+ Lg = (I − T−1K)−1Lg = Lg+ T−1KLg+ (T−1K)2u.

The second term is linear in k while the last term is quadratic in k.
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Two-dimensional inverse transport problem (ii)

The transport solution of Tu = Ku, u|Γ− = g is given by

u = T−1Ku+ Lg = (I − T−1K)−1Lg = Lg+ T−1KLg+ (T−1K)2u.

Let g0 = δ(x−x0)δ(θ−θ0) on Γ−. Then knowledge of A is equivalent to

that of its kernel d(x, θ;x0, θ0) and we have

d(x, θ;x0, θ0) = FT−1KLg0(x, θ;x0, θ0)

+F
(
Lg0 + (T−1K)2(I − T−1K)−1Lg0

)
(x, θ;x0, θ0),

where F is restriction on Γ+.

In d ≥ 3, the first term (u2) on the r.h.s. is more singular than the second

term (v) of the r.h.s. for θ 6= θ0. In d = 2, the latter is smaller than the

former when k is sufficiently small.
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Two-dimensional inverse transport problem (iii)

Recall that for θ 6= θ0,

d(x, θ;x0, θ0) = FT−1KLg0(x, θ;x0, θ0)
+F(T−1K)2(I − T−1K)−1Lg0(x, θ;x0, θ0).

Define k = Bd the solution of d(x, θ;x0, θ0) = FT−1KLg0(x, θ;x0, θ0).

(This is how k is reconstructed from u2 in dimension d ≥ 3.) Then we

can recast the above expression as:

k = Bd− G(k), G = BF
( ∞∑
n=2

(T−1K)n
)
Lg0.

The leading term in G is quadratic in K so that morally |G(k1)−G(k2)| .
ρ‖k1 − k2‖, where ρ is an a priori bound on k. This shows uniqueness of

the reconstruction when ρ is small; see [Stefanov-Uhlmann].
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An iterative reconstruction algorithm

Recall that

k = Bd− G(k), G = BF
( ∞∑
n=2

(T−1K)n
)
Lg0.

Let us assume that 0 ≤ k(x, θ, θ′) ≤ 1 (to simplify) and define

Pk = (0 ∨ k) ∧ 1, so that k = P(Bd− G(k)) ≡ H(k).

Define now the iterative algorithm

kn = H(kn−1), k0 = 0.

We can show that H is continuous on L∞(Ω × S1 × S1). Since kn is

bounded in that space and thus converges weakly (*) to k∞, we find

that H(kn−1) converges (weakly *) to H(k∞) so that

k∞ = H(k∞) is a solution.
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More general Riemannian geometries

Both results (singular expansion in dimension d ≥ 3 and perturbative

argument in dimension d = 2) have been extended to the case of free

transport along the geodesics of a Riemannian manifold [S. McDowall].

Let (M, g) be a Riemannian manifold with boundary ∂M and let u be the

solution of the transport equation

Xu+ a(x)u =
∫
ΩxM

k(x, θ, θ′)u(x, θ′)dθ′.

Then knowledge of the corresponding albedo operator uniquely deter-

mines a(x) and k(x, θ, θ′) when the metric is known. In two space dimen-

sions, simple metrics are also uniquely determined by the albedo operator

(which determines the scattering relation).

This has interesting applications in geophysical imaging, as well in optical

tomography when variations in the index of refraction are not neglected.
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Inverse source problem in OMI (i)

Recall that the inverse problem in optical molecular imaging consists of

reconstructing the source term f(x) from uΓ+
, where

θ · ∇u(x, θ) + a(x)u(x, θ)=
∫
Sd−1
k(x, θ′, θ)u(x, θ′)dθ′ + f(x), (x, θ) ∈ Ω×Sd−1

u(x, θ) = 0, (x, θ) ∈ Γ−(Ω).

No singularity analysis can be used for general f(x). In the absence of

scattering, the problem becomes

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x),

which considered two-dimensional slice by two-dimensional slice, is the

attenuated Radon transform, for which we have an inversion formula.
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Inverse source problem in OMI (ii)

Since we can invert the source problem in the absence of scattering, we

also should be able to do it in the presence of little scattering.

Recall the notation of the attenuated Radon transform. We define the

symmetrized beam transform:

Dθa(x) =
1

2

∫ ∞

0
[a(x− tθ)− a(x + tθ)]dt,

such that θ · ∇Dθa = a and the attenuated Radon transform as

Raf(s, θ) =
∫
R
(eDθaf)(sθ⊥ + tθ, θ)dt

We recall the existence of an operator N (Novikov formula) such that

f(x) = N [Raf(s, θ)](x).
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Inverse source problem in OMI (iii)

In the presence of scattering, the attenuated Radon transform is replaced

by the measurements

g(s, θ) = Raf(s, θ) +ReDaKe−DaTf(s, θ).

Above, R is the usual Radon transform. Applying the Novikov inversion

operator, we thus obtain

Ng(x) = f(x) +NReDaKe−DaTf(x) = (I −NK)f(x).

Provided NK is sufficiently small, the following algorithm converges

f(n) = Ng(x) +NKf(n−1), f0 = 0.
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Remark on the Inverse source problem in OMI

The above algorithm can be improved upon by remarking that the Novikov

formula can be used in the case of isotropic scattering. Recall the trans-

port equation in that case

θ · ∇u+ a(x)u = σ(x)
∫
Sn−1

u(x, θ′)dθ′ + f(x) ≡ F (x).

The Novikov formula allows to construct

F (x) = Ng(x).

We then solve the transport equation for u(x, θ) and obtain

f(x) = F (x)− σ(x)
∫
Sn−1

u(x, θ′)dθ′.

The perturbative algorithm shown earlier can be adapted [Bal-Tamasan]

to solve the inverse transport source problem when anisotropic scattering

is sufficiently small.
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Diffusion-type measurements

In practice, angularly dependent measurements at the domain boundary

may not be available. In OMI, angular measurements are necessary as

the dimension of the source term is d whereas that of the measurements

is (d− 1)× (d− 1).

However in optical tomography, the dimension of measurements is (d −
1)4, whereas a(x) is typically d-dimensional and k(x, θ, θ′) typically d ×
(d−1)2-dimensional. Thus there is room for less accurate measurements

to still uniquely define the coefficients a and k.
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Diffusion-type measurements

In practice, the outgoing distribution u|Γ+
(x, θ) cannot be measured.

Only the current ∫
Sd−1

θ · n(x)u(x, θ)dθ ≈ D(x)
∂U

∂n
(x)

is measured.

In the diffusive regime, both expressions above agree (for x away from

the boundary) up to a error term O(ε), i.e., proportional to the mean

free path. Recall that for isotropic scattering (k = k(x)) we have

uε(x, θ) = U(x)− εdD(x)θ · ∇U(x) +O(ε2).
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Diffusion-type measurements

For incoming boundary conditions of the form g0(x, θ) = δ(x−x0)δ(θ−θ0),

we have access to measurements of the form J(x;x0, θ0). The latter

kernel is still singular in the x variable. This singularity is sufficient to

reconstruct a(x) by inverse Radon transform. However the scattering ker-

nel k(x) (even assumed independent of angular variables) can no longer

be obtained by the analysis of straightforward singularities of the kernel

J(x;x0, θ0).

We may even further restrict measurements by assuming that the il-

lumination is either isotropic g(x, θ) = g(x) or that it is unidirectional

g(x, θ) = g(x)δ(θ−θ0(x)), where θ0 is normal (θ0 = −n(x)). Both situa-

tions are realistic (the latter more so than the former). There, even a(x)

may no longer be reconstructed from singularities of the measurement

kernel J(x;x0). The latter measurements have the same dimension as in

diffusion theory.
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Inverse Transport versus inverse Diffusion

Consider the diffusion equation

iωU −∇ ·D(x)∇U + σa(x)U = 0, Ω

with all possible Cauchy data on ∂Ω known. When ω = 0, theory says

that either D(x) or σa(x) can be reconstructed, and that when ω 6= 0,

both can be reconstructed [e.g. Sylvester-Uhlmann].

In the diffusion approximation, the transport and diffusion coefficients

are related by (in the isotropic scattering case)

D(x) =
1

dk(x)
, σa(x) = a(x)− k(x).

So we expect that diffusion-type measurements allow us to reconstruct

both a(x) and k(x) when ω 6= 0 and one of them when ω = 0. No such

theory exists.
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Inverse transport, a summary of results

Knowledge of the full albedo operator A allows us to uniquely reconstruct

a(x) and k(x, θ, θ′) in dimension d ≥ 3. In dimension d = 2, k is uniquely

defined provided that it is sufficiently small. In OMI, the source term is

also uniquely determined by boundary measurements provided that the

the anisotropic part of the scattering coefficient k(x, θ, θ′) is sufficiently

small.

All the results are based on the singular decomposition of the albedo

operator (OT), the Novikov formula (OMI), and perturbative arguments.

There is no theory of uniqueness of reconstruction in the case of diffusion-

type measurements (i.e., the ones available in practice).

Can the theories developed for the diffusion equation be extended to the

transport equations?
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Complex exponentials
Consider the solutions to two Schrödinger equations in Rd, d ≥ 3,

(∆ + qi)ui = 0, on Ω, i = 1,2

with identical Cauchy data so that∫
Ω
(q1 − q2)u1u2dx =

∫
∂Ω

(
∂u1

∂ν
u2 −

∂u2

∂ν
u1

)
dσ(x) = 0.

Then for all k ∈ Rd, we can find u1(k; l) and u2(k, l) such that

0 =
∫
Ω
(q1 − q2)u1u2 =

∫
Ω
(q1 − q2)e

ik·x + o(1) as |l| → ∞.

The reason is the existence of a sufficiently rich family of complex expo-

nentials

u(x;m) = eim·x, m ∈ Cd, m·m = 0, which are harmonic:∆u(x;m) = 0.

Is there an equivalent notion in transport theory and which type of per-

turbations does it allow us to reconstruct?
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Identification of boundary values; diffusion
Consider the problem ∇γ(x)∇u = 0, u|∂Ω = φ and the quadratic form

Qγ(φ) ≡
∫
Ω
γ|∇u|2dx =

∫
∂Ω

uγ
∂u

∂n
dσ(x).

Knowledge of the Dirichlet-to-Neumann map is equivalent to that of φ 7→
Qγ(φ). Moreover the solution u minimizes

∫
Ω γ|∇u|2dx for a given set of

boundary conditions. This allows us to remark that for two conductivities

with the same boundary measurements,

0 = Qγ1(φ)−Qγ2(φ) ≥
∫
Ω
(γ1 − γ2)|∇u1|2dx,

where ∇γk(x)∇uk = 0, uk|∂Ω = φ k = 1,2.

Appropriate choices of φ are used to show [Kohn-Vogelius] that

(ν · ∇)lγ1 = (ν · ∇)lγ2,

for all l ∈ N for which the above quantities make sense.



University of Washington August 4, 2005University of Washington August 4, 2005University of Washington August 4, 2005

Identification of boundary values; transport (i)
A similar theory should work in the framework of transport equations.

Consider isotropic transport in the even parity formulation. Let

ψ(x, θ) =
1

2

(
u(x, θ) + u(x,−θ)

)
, ψ =

∫
V
ψ(θ)dθ.

We can show that for g such that g(x, θ) = g(x,−θ),

−θ · ∇
1

Σ(x)
θ · ∇ψ+ σa(x)ψ+ σs(x)(ψ − ψ) = 0, Ω× V

ψ −
1

Σ
θ · ∇ψ = g, Γ−.

Here Σ(x) = σa(x) + σs(x). For σ = (σa, σs), define the quadratic form

Qσ(ψ) =
∫
Ω×V

1

Σ
(θ · ∇ψ)2 + σaψ

2 + σs(ψ−ψ)2dxdθ +
∫
∂Ω×V

ψ2|θ · ν|dσdθ.

We verify that for ψ solution of the above equation,

Qσ(ψ) =
∫
∂Ω×V

gψ|θ · n|dσdθ.
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Identification of boundary values; transport (ii)

When g(x) is independent of θ, we observe that

Qσ(g) ≡ Qσ(ψ) =
∫
∂Ω

g(x)
( ∫

V
ψ|θ · n|dθ

)
dσ(x).

So knowledge of Qσ(g) involves diffusion-type measurements only. We

also verify that ψ minimizes

1

2
Qσ(ψ)−

∫
∂Ω×V

gψ|θ · n|dσdθ,

so that Qσ2(ψ2) ≤ Qσ1(ψ1). As a consequence, if diffusion-type boundary

measurements of two configurations agree, we have

0 = Qσ1(g)−Qσ2(g)

≥
∫
Ω×V

(
[
1

Σ1
−

1

Σ2
](θ · ∇ψ1)

2 + [σ1
a − σ2

a ]ψ
2
1 + (σ1

s − σ2
s )(Qψ1)

2
)
dxdθ.
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Identification of boundary values; transport (iii)

In the simplified setting where Σ1 = Σ2 and σs is unknown, we have

0 = Qσ1(g)−Qσ2(g) ≥
∫
Ω×V

[σ2
s − σ1

s ](ψ1)
2dxdθ.

When σa ≡ 0, we find that

0 = Qσ1(g)−Qσ2(g) ≥
∫
Ω×V

(
[
1

Σ1
−

1

Σ2
](θ·∇ψ1)

2+(Σ1−Σ2)(Qψ1)
2
)
dxdθ.

It remains to find a sequence of boundary conditions g(x) such that

ψ1 or θ · ∇ψ1 localizes sufficiently well in the vicinity of x0 ∈ ∂Ω so

that 0 ≥ σ2
s (x0) − σ1

s (x0), whence σ2
s (x0)− σ1

s (x0) = 0 since the reverse

inequality holds; or 0 ≥ Σ−1
1 (x0) − Σ−2

2 (x0), whence Σ1(x0) = Σ2(x0).

Similar methods show the same results for partial derivatives of σs or Σ.

Note that the procedure solves the identification of real-analytic coeffi-

cients σs or Σ (as in [Kohn-Vogelius] for diffusion equations).
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Ultimate inverse transport theory
In certain regimes of approximation of transport (such as highly peaked-

forward scattering) or as a model for the energy density of waves prop-

agating in random media, the radiative transfer equation takes the form

of the following Fokker-Planck equation

θ · ∇u+ σa(x)u−D(x)∆θu = 0 in Ω× V,
u = g on Γ−.

Here ∆θ is the Laplace-Beltrami operator on the unit sphere Sd−1.

The inverse problem is to reconstruct σa(x) and D(x) from the albedo

operator (boundary measurements).

One of the main difficulties is that D(x)∆θ smoothes out any singularity

at the domain boundary so that the method of decomposition of the

albedo operator into terms of decreasing singularity does not apply.

Can complex exponentials of some sort be useful there? Is there a vari-

ational formulation that one can use to evaluate coefficients on ∂Ω?
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Conclusions

There are many applications in inverse transport theory.

Many of these applications involve angularly averaged measurements that

are not accounted for by existing transport theories.

Inverse transport with “diffusion-type” measurements precisely looks like

diffusion (and is diffusion in the limit of small mean free paths). Can

well-established techniques in diffusion theory be extended to transport

and Fokker-Planck equations?

Expansions in singular terms are still very useful: when they apply, they

show that the inverse problem is mildly ill-posed (i.e., noise is differenti-

ated a finite number of times in the reconstruction).

When such expansions do not hold, chances are that the inverse problem

is severely ill-posed (noise in differentiated an infinite number of times

during reconstruction), which equally severely limits its practical useful-

ness.
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