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Abstract Oriented closed curves on an orientable surface with boundary are
described up to continuous deformation by reduced cyclic words in the gener-
ators of the fundamental group and their inverses. By self-intersection num-
ber one means the minimum number of transversal self-intersection points
of representatives of the class. We prove that if a class is chosen at random
from among all classes of m letters, then for large m the distribution of the
self-intersection number approaches the Gaussian distribution. The theorem
was strongly suggested by a computer experiment with four million curves
producing a very nearly Gaussian distribution.
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1 Introduction

Oriented closed curves in a surface with boundary are, up to continuous
deformation, described by reduced cyclic words in a set of free generators
of the fundamental group and their inverses. (Recall that such words repre-
sent the conjugacy classes of the fundamental group.) Given a reduced cyclic
word α, define the self-intersection number N(α) to be the minimum number
of transversal double points among all closed curves represented by α. (See
Fig. 1.) Fix a positive integer n and consider how the self-intersection number
N(α) varies over the population Fn of all reduced cyclic words of length n.
The value of N(α) can be as small as 0, but no larger than O(n2). See [6, 7]
for precise results concerning the maximum of N(α) for α ∈ Fn, and [14] for
sharp results on the related problem of determining the growth of the num-
ber of non self-intersecting closed geodesics up to a given length relative to a
hyperbolic metric.

For small values of n, using algorithms in [8], and [5], we computed the
self-intersection counts N(α) for all words α ∈ Fn (see [4]). Such computa-
tions show that, even for relatively small n, the distribution of N(α) over Fn

Fig. 1 Two representatives of aab̄b̄ in the doubly punctured plane. The second curve has
fewest self-intersections in its free homotopy class
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Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced
cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the
self-intersection count k; the vertical coordinate shows the number of cyclic reduced words
for which the self-intersection number is k

is very nearly Gaussian. (See Fig. 2.) The purpose of this paper is to prove that
as n → ∞ the distribution of N(α) over the population Fn, suitably scaled,
does indeed approach a Gaussian distribution:

Main Theorem Let � be an orientable, compact surface with boundary and
negative Euler characteristic χ , and set

κ = κ� = χ

3(2χ − 1)
and σ 2 = σ 2

� = 2χ(2χ2 − 2χ + 1)

45(2χ − 1)2(χ − 1)
. (1)

Then for any a < b the proportion of words α ∈ Fn such that

a <
N(α) − κn2

n3/2
< b

converges, as n → ∞, to

1√
2πσ

∫ b

a

exp{−x2/2σ 2}dx.
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Observe that the limiting variance σ 2 is positive if the Euler character-
istic is negative. Consequently, the theorem implies that (i) for most words
α ∈ Fn the self-intersection number N(α) is to first order well-approximated
by κn2; and (ii) typical variations of N(α) from this first-order approximation
(“fluctuations”) are of size n3/2.

It is relatively easy to understand (if not to prove) why the number of self-
intersections of typical elements of Fn should grow like n2. Here follows a
short heuristic argument: consider the lift of a closed curve with minimal self-
intersection number in its class to the universal cover of the surface �. This
lift will cross n images of the fundamental polygon, where n is the corre-
sponding word length, and these crossings can be used to partition the curve
into n nonoverlapping segments in such a way that each segment makes one
crossing of an image of the fundamental polygon. The self-intersection count
for the curve is then the number of pairs of these segments whose images
in the fundamental polygon cross. It is reasonable to guess that for typical
classes α ∈ Fn (at least when n is large) these segments look like a random
sample from the set of all such segments, and so the law of large numbers
then implies that the number of self-intersections should grow like n2κ ′/2
where κ ′ is the probability that two randomly chosen segments across the
fundamental polygon will cross. The difficulty in making this argument pre-
cise, of course, is in quantifying the sense in which the segments of a typical
closed curve look like a random sample of segments. The arguments below
(see Sect. 4) will make this clear.

The mystery, then, is not why the mean number of self-intersections grows
like n2, but rather why the size of typical fluctuations is of order n3/2 and why
the limit distribution is Gaussian. This seems to be connected to geometry. If
the surface � is equipped with a finite-area Riemannian metric of negative
curvature, and if the boundary components are (closed) geodesics then each
free homotopy class contains a unique closed geodesic (except for the free ho-
motopy classes corresponding to the punctures). It is therefore possible to or-
der the free homotopy classes by the length of the geodesic representative. Fix
L, and let GL be the set of all free homotopy classes whose closed geodesics
are of length ≤ L. The main result of [12] (see also [13]) describes the varia-
tion of the self-intersection count N(α) as α ranges over the population GL:

Geometric Sampling Theorem If the Riemannian metric on � is hyperbolic
(i.e., constant-curvature −1) then there exists a possibly degenerate proba-
bility distribution G on R such that for all a < b the proportion of words
α ∈ GL such that

a <
N(α) + L2/(π2χ)

L
< b

converges, as L → ∞, to G(b) − G(a).
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The limit distribution is not known, but is likely not Gaussian. The result
leaves open the possibility that the limit distribution is degenerate (that is,
concentrated at a single point); if this were the case, then the true order of
magnitude of the fluctuations might be a fractional power of L. The Geomet-
ric Sampling Theorem implies that the typical variation in self-intersection
count for a closed geodesic chosen randomly according to hyperbolic length
is of order L. Together with the Main Theorem, this suggests that the much
larger variations that occur when sampling by word length are (in some sense)
due to

√
n-variations in hyperbolic length over the population Fn.

The Main Theorem can be reformulated in probabilistic language as fol-
lows (see Appendix B for definitions):

Main Theorem∗ Let � be an orientable, compact surface with boundary
and negative Euler characteristic χ , and let κ and σ be defined by (1). Let Nn

be the random variable obtained by evaluating the self-intersection function
N at a randomly chosen α ∈ Fn. Then as n → ∞,

Nn − n2κ

σn3/2
=⇒ Normal(0,1) (2)

where Normal(0,1) is the standard Gaussian distribution on R and ⇒ de-
notes convergence in distribution.

2 Combinatorics of self-intersection counts

Our analysis is grounded on a purely combinatorial description of the self-
intersection counts N(α), due to [3, 5, 8]. For an example of this analysis, see
Appendix A.

Since � has non-empty boundary, its fundamental group π1(�) is free. We
will work with a generating set of π1(�) such that each element has a non-
self-intersecting representative. (Such a basis is a natural choice to describe
self-intersections of free homotopy classes.) Denote by G the set containing
the elements of the generating set and their inverses and by g the cardinality
of G . Thus, g = 2 − 2χ , where χ denotes the Euler characteristic of �. We
shall assume throughout the paper that χ ≤ −1, and so g ≥ 4. It is not hard
to see that there exists a (non-unique and possibly non-reduced) cyclic word
O of length g such that

(1) O contains each element of G exactly once.
(2) The surface � can be obtained as follows: label the edges of a polygon

with 2g sides, alternately (so every other edge is not labelled) with the
letters of O and glue edges labeled with the same letter without creating
Moebius bands.
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This cyclic word O encodes the intersection and self-intersection structure of
free homotopy classes of curves on �.

Since π1(�) is a free group, the elements of π1(�) can be identified with
the reduced words (which we will also call strings) in the generators and
their inverses. A string is joinable if each cyclic permutation of its letters
is also a string, that is, if its last letter is not the inverse of its first. A re-
duced cyclic word (also called a necklace ) is an equivalence class of joinable
strings, where two such strings are considered equivalent if each is a cyclic
permutation of the other. Denote by Sn, Jn, and Fn the sets of strings, join-
able strings, and necklaces, respectively, of length n. Since necklaces corre-
spond bijectively with the conjugacy classes of the fundamental group, the
self-intersection count α �→ N(α) can be regarded as a function on the set
Fn of necklaces. This function pulls back to a function on the set Jn of join-
able strings, which we again denote by N(α), that is constant on equivalence
classes. By [5] this function has the form

N(α) =
∑

1≤i<j≤n

H(σ iα, σ jα), (3)

where H = H(O) is a symmetric function with values in {0,1} on Jn × Jn

and σ iα denotes the ith cyclic permutation of α. (Note: σ 2 also denotes the
limiting variance in (1), but it will be clear from the context which of the two
meanings is in force.)

To describe the function H in the representation (3), we must explain the
cyclic ordering of letters. For a cyclic word α (not necessarily reduced),
set o(α) = 1 if the letters of α occur in cyclic (clockwise) order in O, set
o(α) = −1 if the letters of α occur in reverse cyclic (anti-clockwise) or-
der, and set o(α) = 0 otherwise. Consider two (finite or infinite) strings,
ω = c1c2 . . . and ω′ = d1d2 . . . . For each integer k ≥ 2 define functions uk

and vk of such pairs (ω,ω′) as follows: First, set uk(ω,ω′) = 0 unless

(a) both ω and ω′ are of length at least k; and
(b) c1 �= d1, ck �= dk , and cj = dj for all 1 < j < k.

For any pair (ω,ω′) such that both (a) and (b) hold, define

uk(ω,ω′) =

⎧⎪⎨
⎪⎩

1 if k = 2, and o(c̄1d̄1c2d2) �= 0;

1 if k ≥ 3, and o(c̄1d̄1c2) = o(ckdkc̄k−1); and

0 otherwise.

Finally, define v2(ω,ω′) = 0 for all strings ω,ω′, and for k ≥ 3 define
vk(ω,ω′) = 0 unless both ω and ω′ are of length at least k, in which case

vk(ω,ω′) = uk(c1c2 . . . ck, d̄kd̄k−1 . . . d̄1).
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(Note: The only reason for defining v2 is to avoid having to write sepa-
rate sums for the functions vj and uj in formula (4) and the arguments to
follow.) Observe that both uk and vk depend only on the first k letters of
their arguments. Furthermore, uk and vk are defined for arbitrary pairs of
strings, finite or infinite; for doubly infinite sequences x = . . . x−1x0x1 . . . and
y = . . . y−1y0y1 . . . we adopt the convention that

uk(x,y) = uk(x1x2 . . . xk, y1y2 . . . yk) and

vk(x,y) = vk(x1x2 . . . xk, , y1y2 . . . yk).

Proposition 2.1 (Chas [5]) Let α be a primitive necklace of length n ≥ 2.
Unhook α at an arbitrary location to obtain a string α∗ = a1a2 . . . an, and let
σ jα∗ be the j th cyclic permutation of α∗. Then

N(α) =
n∑

i=1

n∑
j=i+1

n∑
k=2

(uk(σ
iα∗, σ jα∗) + vk(σ

iα∗, σ jα∗)). (4)

3 Proof of the Main Theorem: strategy

Except for the exact values (1) of the limiting constants κ and σ 2, which of
course depend on the specific form of the functions uk and vk , the conclusions
of the Main Theorem hold more generally for random variables defined by
sums of the form

N(α∗) =
n∑

i=1

n∑
j=i+1

n∑
k=2

hk(σ
iα∗, σ jα∗) (5)

where hk are real-valued functions on the space of reduced sequences α∗
with entries in G satisfying the hypotheses (H0)–(H3) below. The function
N extends to necklaces in an obvious way: for any necklace α of length n,
unhook α at an arbitrary place to obtain a joinable string α∗, then define
N(α) = N(α∗). Denote by λn, μn, and νn the uniform probability distribu-
tions on the sets Jn, Fn, and Sn, respectively.

(H0) Each function hk is symmetric.
(H1) There exists C < ∞ such that |hk| ≤ C for all k ≥ 1.
(H2) For each k ≥ 1 the function hk depends only on the first k entries of its

arguments.
(H3) There exist constants C < ∞ and 0 < β < 1 such that for all n ≥ k ≥ 1

and 1 ≤ i < n,

Eλn |hk(α,σ iα)| ≤ Cβk
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In view of (H2), the function hk is well-defined for any pair of se-
quences, finite or infinite, provided their lengths are at least k. Hypotheses
(H0)–(H2) are clearly satisfied for hk = uk + vk , where uk and vk are as
in formula (4) and u1 = v1 = 0; see Lemma 4.8 of Sect. 4.5 for hypothe-
sis (H3).

Theorem 3.1 Assume that the functions hk satisfy hypotheses (H0)–(H3),
and let N(α) be defined by (5) for all necklaces α of length n. There exist
constants κ and σ 2 (given by (22) below) such that if Fn is the distribution of
the random variable (N(α) − n2κ)/n3/2 under the probability measure μn,
then as n → ∞,

Fn =⇒ Normal(0, σ 2). (6)

Formulas for the limiting constants κ,σ are given (in more general form)
in Theorem 5.1 below. In Sect. 6 we will show that in the case of particular
interest, namely hk = uk + vk where uk, vk are as in Proposition 2.1, the
constants κ and σ defined in Theorem 5.1 assume the values (1) given in the
statement of the Main Theorem.

Modulo the proof of Lemma 4.8 and the calculation of the constants
σ and κ , the Main Theorem follows directly from Theorem 3.1. The
proof of Theorem 3.1 will proceed roughly as follows. First we will prove
(Lemma 4.2) that there is a shift-invariant, Markov probability measure ν

on the space S∞ of infinite sequences x = x1x2 . . . whose marginals (that
is, the push-forwards under the projection mappings to Sn) are the uniform
distributions νn. Using this representation we will prove, in Sect. 4.4, that
when n is large the distribution of N(α) under μn differs negligibly from the
distribution of a related random variable defined on the Markov chain with
distribution ν. See Proposition 4.7 for a precise statement. Theorem 3.1 will
then follow from a general limit theorem for certain U-statistics of Markov
chains (see Theorem 5.1).

4 The associated Markov chain

4.1 Necklaces, strings, and joinable strings

Recall that a string is a sequence with entries in the set G of generators and
their inverses such that no two adjacent entries are inverses. A finite string is
joinable if its first and last entries are not inverses. The sets of length-n strings,
joinable strings, and necklaces are denoted by Sn, Jn, and Fn, respectively,
and the uniform distributions on these sets are denoted by νn, λn, and μn. Let
A be the involutive permutation matrix with rows and columns indexed by G
whose entries a(x, y) are 1 if x and y are inverses and 0 otherwise. Let B be



Self-intersections in combinatorial topology 437

the matrix with all entries 1. Then for any n ≥ 1,

|Sn| = 1T (B − A)n−11 and |Jn| = trace(B − A)n−1,

where 1 denotes the (column) vector all of where entries are 1. Similar formu-
las can be written for the number of strings (or joinable strings) with specified
first and/or last entry. The matrix B − A is a Perron–Frobenius matrix with
lead eigenvalue (g − 1); this eigenvalue is simple, so both |Sn| and |Jn| grow
at the precise exponential rate (g − 1), that is, there exist positive constants
CS = g/(g − 1) and CJ such that

|Sn| ∼ CS (g − 1)n and |Jn| ∼ CJ (g − 1)n.

Every necklace of length n can be obtained by joining the ends of a joinable
string, so there is a natural surjective mapping pn : Jn → Fn. This mapping
is nearly n to 1: In particular, no necklace has more than n pre-images, and
the only necklaces that do not have exactly n pre-images are those which are
periodic with some period d|n smaller than n. The number of these excep-
tional necklaces is vanishingly small compared to the total number of neck-
laces. To see this, observe that the total number of strings of length n ≥ 2 is
g(g − 1)n−1; hence, the number of joinable strings is between g(g − 1)n−2

and g(g − 1)n−1. The number of length-n strings with period < n is bounded
above by ∑

d|n
g(g − 1)d−1 ≤ constant × (g − 1)n/2.

This is of smaller exponential order of magnitude than |Jn|, so for large n

most necklaces of length n will have exactly n pre-images under the projec-
tion pn. Consequently, as n → ∞

|Fn| ∼ CJ (g − 1)n/n.

More important, this implies the following.

Lemma 4.1 Let λn be the uniform probability distribution on the set Jn, and
let μn ◦ p−1

n be the push-forward to Jn of the uniform distribution on Fn.
Then

lim
n→∞‖λn − μn ◦ pn−1‖TV = 0. (7)

Here ‖ · ‖TV denotes the total variation norm on measures—see the Ap-
pendix. By Lemma B.3 of the Appendix, it follows that the distributions of the
random variable N(α) under the probability measures λn and μn are asymp-
totically indistinguishable.
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4.2 The associated Markov measure

The matrix (B − A) has the convenient feature that its row sums and column
sums are all g −1. Therefore, the matrix P := (B −A)/(g −1) is a stochastic
matrix, with entries

p(a, b) =
{

θ if b �= a−1, and

0 otherwise,
(8)

where

θ = (g − 1)−1. (9)

In fact, P is doubly stochastic, that is, both its rows and columns sum to 1.
Moreover, P is aperiodic and irreducible, that is, for some k ≥ 1 (in this case
k = 2) the entries of P

k are strictly positive. It is an elementary result of prob-
ability theory that for any aperiodic, irreducible, doubly stochastic matrix P

on a finite set G there exists a shift-invariant probability measure ν on se-
quence space S∞, called a Markov measure, whose value on the cylinder set
C(x1x2 . . . xn) consisting of all sequences whose first n entries are x1x2 . . . xn

is

ν(C(x1x2 . . . xn)) = 1

|G|
n−1∏
i=1

p(xi, xi+1). (10)

Any random sequence X = (X1X2 . . .) valued in S∞, defined on any prob-
ability space (
,P ), whose distribution is ν is called a stationary Markov
chain with transition probability matrix P. In particular, the coordinate pro-
cess on (S∞, ν) is a Markov chain with t.p.m. P.

Lemma 4.2 Let X = (X1X2 . . . ) be a stationary Markov chain with transi-
tion probability matrix P defined by (8). Then for any n ≥ 1 the distribution
of the random string X1X2 . . .Xn is the uniform distribution νn on the set Sn.

Proof The transition probabilities p(a, b) take only two values, 0 and θ , so
for any n the nonzero cylinder probabilities (10) are all the same. Hence, the
distribution of X1X2 . . .Xn is the uniform distribution on the set of all strings
ξ = x1x2 . . . xn such that the cylinder probability ν(C(ξ)) is positive. These
are precisely the strings of length n. �

4.3 Mixing properties of the Markov chain

Because the transition probability matrix P defined by (8) is aperiodic and ir-
reducible, the m-step transition probabilities (the entries of the mth power P

m

of P) approach the stationary (uniform) distribution exponentially fast. The
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one-step transition probabilities (8) are simple enough that precise bounds
can be given:

Lemma 4.3 The m-step transition probabilities pm(a, b) of the Markov
chain with 1-step transition probabilities (8) satisfy

∣∣∣∣pm(a, b) − 1

g

∣∣∣∣ ≤ θm (11)

where θ = 1/(g − 1).

Proof Recall that P = θ(B − A) where B is the matrix with all entries 1
and A is an involutive permutation matrix. Hence, BA = AB = B and B2 =
gB = ((θ + 1)/θ)B . This implies, by a routine induction argument, that for
every integer m ≥ 1,

(B − A)m =
(

θ−m + 1

g

)
B − A if m is odd, and

](B − A)m =
(

θ−m − 1

g

)
B + I if m is even.

The inequality (11) follows directly. �

The next lemma is a reformulation of the exponential convergence (11). Let
X = (Xj )j∈Z be a stationary Markov chain with transition probabilities (8).
For any finite subset J ⊂ N, let XJ denote the restriction of X to the index
set J , that is,

XJ = (Xj )j∈J ;
for example, if J is the interval [1, n] := {1,2, . . . , n} then XJ is just the
random string X1X2 . . .Xn. Denote by νJ the distribution of XJ , viewed as a
probability measure on the set GJ ; thus, for any subset F ⊂ GJ ,

νJ (F ) = P {XJ ∈ F }. (12)

If J,K are non-overlapping subsets of N, then νJ∪K and νJ × νK are both
probability measures on GJ∪K , both with support set equal to the set of all
restrictions of infinite strings.

Lemma 4.4 Let J,K ⊂ N be two finite subsets such that max(J ) + m ≤
min(K) for some m ≥ 1. Then on the support of the measure νJ × νK ,

1 − gθm ≤ dνJ∪K

dνJ × νK

≤ 1 + gθm (13)
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where θ = 1/(g − 1) and dα/dβ denotes the Radon–Nikodym derivative
(“likelihood ratio”) of the probability measure α and β .

Proof It suffices to consider the special case where J and K are intervals,
because the general case can be deduced by summing over excluded variables.
Furthermore, because the Markov chain is stationary, the measures νJ are
invariant by translations (that is, νJ+n = νJ for any n ≥ 1), so we may assume
that J = [1, n] and K = [n + m,n + q]. Let xJ∪K be the restriction of some
infinite string to J ∪ K ; then

νJ × νK(xJ∪K)π(x1)

(
n−1∏
j=1

p(xj , xj+1)

)
π(xn+m)

(
m+q−1∏
j=n+m

p(xj , xj+1)

)

and

νJ∪K(xJ∪K)

= π(x1)

(
n−1∏
j=1

p(xj , xj+1)

)
pm(xn, xn+m)

(
m+q−1∏
j=n+m

p(xj , xj+1)

)
.

The result now follows directly from the double inequality (11), as this im-
plies that for any two letters a, b,

∣∣∣∣pm(a, b)

π(b)
− 1

∣∣∣∣ ≤ gθm. �

4.4 From random joinable strings to random strings

Since Jn ⊂ Sn, the uniform distribution λn on Jn is gotten by restricting the
uniform distribution νn on Sn to Jn and then renormalizing:

λn(F ) = νn(F ∩ Jn)

νn(Jn)
.

Equivalently, the distribution of a random joinable string is the conditional
distribution of a random string given that its first and last entries are not in-
verses. Our goal here is to show that the distributions of the random variable
N(α) defined by (5) under the probability measures λn and νn differ negligi-
bly when n is large. For this we will show first that the distributions under λn

and νn, respectively, of the substring gotten by deleting the last n1/2−ε letters
are close in total variation distance; then we will show that changing the last
n1/2−ε letters has only a small effect on the value of N(α).
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Lemma 4.5 Let X1X2 . . .Xn be a random string of length n, and Y1Y2 . . . Yn

a random joinable string. For any integer m ∈ [1, n − 1] let νn,m and
λn,m denote the distributions of the random substrings X1X2 . . .Xn−m and
Y1Y2 . . . Yn−m. Then the measure λn,m is absolutely continuous with respect
to νn,m, and the Radon–Nikodym derivative satisfies

1 − gθm

1 + gθm
≤ dλn,m

dνn,m

≤ 1 + gθm

1 − gθm
(14)

where θ = 1/(g − 1). Consequently, the total variation distance between the
two measures satisfies

‖νn,m − λn,m‖TV ≤ 2

(
1 + gθm

1 − gθm
− 1

)
. (15)

Proof The cases m = 0 and m = 1 are trivial, because in these cases the lower
bound is non-positive and the upper bound is at least 2. The general case
m ≥ 2 follows from the exponential ergodicity estimates (11) by an argument
much like that used to prove Lemma 4.4. For any string x1x2 . . . xn−m with
initial letter x1 = a,

νn,m(x1x2 . . . xn−m) = 1

g

n−m−1∏
i=1

p(xi, xi+1).

Similarly, by Lemma 4.2,

λn,m(x1x2 . . . xn−m) = 1

g

(
n−m−1∏

i=1

p(xi, xi+1)

) ∑
b �=x−1

1
pm(xn−m,b)

g−1
∑

a

∑
b �=a−1 pn(a, b)

.

Inequality (11) implies that the last fraction in this expression is between the
bounding fractions in (14). The bound on the total variation distance between
the two measures follows routinely. �

Corollary 4.6 Let X be a stationary Markov chain with transition probabil-
ity matrix P. Assume that the functions hk satisfy hypotheses (H0)–(H3) of
Sect. 3. Then for all k, i ≥ 1,

E|hk(X, τ iX)| ≤ Cβk. (16)

Proof The function hk(x, τ ix) is a function only of the coordinates
x1x2 . . . xi+k , and so for any joinable string X of length > i + k,

hk(x, τ ix) = hk(x, σ ix).
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By Lemma 4.5, the difference in total variation norm between the distribu-
tions of the substring x1x2 . . . xi+k under the measures λn and νn converges
to 0 as n → ∞. Therefore,

E|hk(X, τ iX)| = lim
n→∞Eλn |hk(α,σ iα)| ≤ Cβk. �

Now we are in a position to compare the distribution of the random vari-
able N(α) under μn with the distribution of a corresponding random variable
NS

n on the sequence space S∞ under the measure ν. (Recall that the distri-
bution of a random variable Z defined on a probability space (
, F ,P ) is
the pushforward measure P ◦ Z−1. See the Appendix for a resume of com-
mon terminology from the theory of probability and basic results concerning
convergence in distribution.) The function NS

n is defined by

NS
n (x) =

n∑
i=1

n∑
j=i+1

∞∑
k=1

hk(τ
ix, τ j x). (17)

Proposition 4.7 Assume that the functions hk satisfy hypotheses (H0)–(H3),
and let κ = ∑∞

k=1 EHk(X). Let Fn be the distribution of the random variable
(N(α)−n2κ)/n3/2 under the uniform probability measure μn on Fn, and Gn

the distribution of (NS
n (x) − κn2)/n3/2 under ν. Then for any metric � that

induces the topology of weak convergence on probability measures,

lim
n→∞�(Fn,Gn) = 0. (18)

Consequently, Fn ⇒ �σ if and only if Gn ⇒ �σ .

Proof Let F ′
n be the distribution of the random variable (N(α) − n2κ)/n3/2

under the uniform probability measure λn on Jn. By Lemma 4.1, the total
variation distance between λn and μn ◦ p−1

n is vanishingly small for large n.
Hence, by Lemma B.3 and the fact that total variable distance is never in-
creased by mapping (cf. inequality (47) of the Appendix),

lim
n→∞�(Fn,F

′
n) = 0.

Therefore, it suffices to prove (18) with Fn replaced by F ′
n.

Partition the sums (5) and (17) as follows. Fix 0 < δ < 1/2 and set
m = m(n) = [nδ]. By hypothesis (H3) and Corollary (4.6),

Eμ

n∑
i=1

n∑
j=i+1

∑
k>m(n)

|hk(τ
ix, τ j x)| ≤ Cn2βm(n) and
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Eλn

n∑
i=1

n∑
j=i+1

∑
k>m(n)

|hk(σ
iα, σ jα)| ≤ Cn2βm(n).

These upper bounds are rapidly decreasing in n. Hence, by Markov’s inequal-
ity (i.e., the crude bound P {|Y | > ε} ≤ E|Y |/ε), the distributions of both of
the sums converge weakly to 0 as n → ∞. Thus, by Lemma B.3, to prove the
proposition it suffices to prove that

lim
n→∞�(FA

n ,GA
n ) = 0

where FA
n and GA

n are the distributions of the truncated sums obtained by
replacing the inner sums in (5) and (17) by the sums over 1 ≤ k ≤ m(n).

The outer sums in (5) and (17) are over pairs of indices 1 ≤ i < j ≤ n.
Consider those pairs for which j > n − 2m(n): there are only 2nm(n) of
these. Since nm(n) = O(n1+δ) and δ < 1/2, and since each term in (5) and
(17) is bounded in absolute value by a constant C (by Hypothesis (H1)), the
sum over those index pairs i < j with n − 2m(n) < j ≤ n is o(n3/2). Hence,
by Lemma B.3, it suffices to prove that

lim
n→∞�(FB

n ,GB
n ) = 0

where FB
n and GB

n are the distributions under λn and ν of the sums (5)
and (17) with the limits of summation changed to i < j < n − 2m(n) and
k ≤ m(n). Now if i < j < n − 2m(n) and k ≤ m(n) then hk(τ

ix, τ j x) and
hk(σ

iα, σ jα) depend only on the first n − n(m) entries of x and α. Conse-
quently, the distributions FB

n and GB
n are the distributions of the sums

n−2m(n)∑
i=1

n−2m(n)∑
j=i+1

∑
k≤m(n)

hk(τ
ix, τ j x)

under the probability measures λn,m and νn,m, respectively, where λn,m and
νn,m are as defined in Lemma 4.5. But the total variation distance between
λn,m and νn,m converges to zero, by Lemma 4.5. Therefore, by the mapping
principle (47) and Lemma B.3,

�(FB
n ,GB

n ) −→ 0. �

4.5 Mean estimates

In this section we show that the hypothesis (H3) is satisfied by the functions
hk = uk + vk , where uk and vk are as in Proposition 2.1.
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Lemma 4.8 Let σ i be the ith cyclic shift on the set Jn of joinable se-
quences α. There exists C < ∞ such that for all 2 ≤ k ≤ n and 0 ≤ i < j < n,

Eλnuk(σ
iβ, σ jβ) ≤ Cθk/2 and

Eλnvk(σ
iβ, σ jβ) ≤ Cθk/2.

(19)

Proof Because the measure λn is invariant under both cyclic shifts and the
reversal function, it suffices to prove the estimates only for the case where
one of the indices i, j is 0. If the proper choice is made (i = 0 and j ≤ n/2),
then a necessary condition for uk(α,σ jα) �= 0 is that the strings α and σ jα

agree in their second through their (k − 1)/2th slots. By routine counting
arguments (as in Sect. 4.1) it can be shown that the number of joinable strings
of length n with this property is bounded above by C(g − 1)n−k/2, where
C < ∞ is a constant independent of both n and k ≤ n. This proves the first
inequality. A similar argument proves the second. �

5 U-statistics of Markov chains

Proposition 4.7 implies that for large n the distribution Fn considered in The-
orem 3.1 is close in the weak topology to the distribution Gn of the random
variable NS

n defined by (17) under the Markov measure ν. Consequently, if it
can be shown that Gn ⇒ �σ then the conclusion Fn =⇒ �σ will follow, by
Lemma B.3 of the Appendix. This will prove Theorem 3.1.

Random variables of the form (17) are known generically in probability
theory as U-statistics (see [10]). Second order U -statistics of Markov chains
are defined as follows. Let Z = Z1Z2 . . . be a stationary, aperiodic, irreducible
Markov chain on a finite state space A with transition probability matrix Q

and stationary distribution π . Let τ be the forward shift on the sequence space
AN. The U -statistics of order 2 with kernel h : AN × AN → R are the random
variables

Wn =
n∑

i=1

n∑
j=i+1

h(τ iZ, τ j Z).

The Hoeffding projection of a kernel h is the function H : AN → R defined
by

H(z) = Eh(z,Z).

Theorem 5.1 Suppose that h = ∑∞
k=1 hk where {hk}k≥1 is a sequence of ker-

nels satisfying hypotheses (H0)–(H2) and the following: There exist constants
C < ∞ and 0 < β < 1 such that for all k, i ≥ 1,

E|hk(Z, τ iZ)| ≤ Cβk. (20)
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Then as n → ∞,

Wn − n2κ

n3/2
=⇒ �σ (21)

where the constants κ and σ 2 are

κ =
∞∑

k=1

EHk(Z) and σ 2 = lim
n→∞

1

n
E

(
n∑

i=1

∞∑
k=1

Hk(τ
iZ) − nκ

)2

. (22)

There are similar theorems in the literature, but all require some degree of
additional continuity of the kernel h. In the special case where all but finitely
many of the functions hk are identically 0 the result is a special case of Theo-
rem 1 of [9] or Theorem 2 of [11]. If the functions hk satisfy the stronger hy-
pothesis that |hk| ≤ Cβk pointwise then the result follows (with some work)
from Theorem 2 of [11]. Unfortunately, the special case of interest to us,
where hk = uk + vk and uk, vk are the functions defined in Sect. 2, does not
satisfy this hypothesis.

The rest of Sect. 5 is devoted to the proof. The main step is to reduce the
problem to the special case where all but finitely many of the functions hk

are identically 0 by approximation; this is where the hypothesis (20) will be
used. The special case, as already noted, can be deduced from the results of
[9] or [11], but instead we shall give a short and elementary argument.

In proving Theorem 5.1 we can assume that all of the Hoeffding projec-
tions Hk have mean

EHk(Z) = 0,

because subtracting a constant from both h and κ has no effect on the validity
of the theorem. Note that this does not imply that Ehk(τ

iZ, τ j Z) = 0, but it
does imply (by Fubini’s theorem) that if Z and Z′ are independent copies of
the Markov chain then

Ehk(Z,Z′) = 0.

5.1 Proof in the special case

If all but finitely many of the functions hk are 0 then for some finite value of
K the kernel h depends only on the first K entries of its arguments.

Lemma 5.2 Without loss of generality, we can assume that K = 1.

Proof If Z1Z2 . . . is a stationary Markov chain, then so is the sequence
ZK

1 ZK
2 . . . where

ZK
i = ZiZi+1 . . .Zi+K



446 M. Chas, S.P. Lalley

is the length-(K + 1) word obtained by concatenating the K + 1 states of the
original Markov chain following Zi . Hence, the U -statistics Wn can be repre-
sented as U -statistics on a different Markov chain with kernel depending only
on the first entries of its arguments. It is routine to check that the constants κ

and σ 2 defined by (22) for the chain ZK
n equal those defined by (22) for the

original chain. �

Assume now that h depends only on the first entries of its arguments. Then
the Hoeffding projection H also depends only on the first entry of its argu-
ment, and can be written as

H(z) = Eh(z,Z1) =
∑
z′∈A

h(z, z′)π(z′).

Since the Markov chain Zn is stationary and ergodic, the covariances
EH(Zi)H(Zi+n) = EH(Z1)H(Z1+n) decay exponentially in n, so the limit

σ 2 := lim
n→∞

1

n
E

(
n∑

j=1

H(Zj )

)2

(23)

exists and is nonnegative. It is an elementary fact that σ 2 > 0 unless H ≡ 0.
Say that the kernel h is centered if this is the case. If h is not centered then
the adjusted kernel

h∗(z, z′) := h(z, z′) − H(z) − H(z′) (24)

is centered, because its Hoeffding projection satisfies

H ∗(z) : = Eh∗(z,Z1)

= Eh(z,Z1) − EH(z) − EH(Z1)

= H(z) − H(z) − 0.

Define

Tn =
n∑

i=1

n∑
j=1

h(Zi,Zj ) and Dn =
n∑

i=1

h(Zi,Zi);

then since the kernel h is symmetric,

Wn = 1

2
(Tn − Dn). (25)



Self-intersections in combinatorial topology 447

Proposition 5.3 If h is centered, then

Tn/n =⇒ Q (26)

where Q is a quadratic form in no more than m = |A| independent, standard
normal random variables.

Proof Consider the linear operator Lh on �2(A, π) defined by

Lhf (z) :=
∑
z′∈A

h(z, z′)f (z′)π(z′).

This operator is symmetric (real Hermitean), and consequently has a complete
set of orthonormal real eigenvectors ϕj (z) with real eigenvalues λj . Since h is
centered, the constant function ϕ1 := 1/

√
m is an eigenvector with eigenvalue

λ1 = 0; therefore, all of the other eigenvectors ϕj , being orthogonal to ϕ1,
must have mean zero. Hence, since λ1 = 0,

h(z, z′) =
m∑

j=2

λjϕj (z)ϕj (z
′),

and so

Tn =
m∑

k=2

λk

n∑
i=1

n∑
j=1

ϕk(Zi)ϕk(Zj )

=
m∑

k=2

λk

(
n∑

i=1

ϕk(Zi)

)2

. (27)

Since each ϕk has mean zero and variance 1 relative to π , the central limit
theorem for Markov chains implies that as n → ∞,

1√
n

n∑
i=1

ϕk(Zi) =⇒ Normal(0, σ 2
k ), (28)

with limiting variances σ 2
k ≥ 0. In fact, these normalized sums converge

jointly1 (for k = 2,3, . . . ,m) to a multivariate normal distribution with

1Note, however, that the normalized sums in (28) need not be asymptotically independent for
different k, despite the fact that the different functions ϕk are uncorrelated relative to π . This is
because the arguments Zi are serially correlated: in particular, even though ϕk(Zi) and ϕl(Zi)

are uncorrelated, the random variables ϕk(Zi) and ϕl(Zi+1) might well be correlated.
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marginal variances σ 2
k ≥ 0. The result therefore follows from the spectral rep-

resentation (27). �

Corollary 5.4 If h is not centered, then with σ 2 > 0 as defined in (23),

Wn/n3/2 =⇒ Normal(0, σ 2). (29)

Proof Recall that Wn = (Tn − Dn)/2. By the ergodic theorem,
limn→∞ Dn/n = Eh(Z1,Z1) almost surely, so Dn/n3/2 ⇒ 0. Hence, by
Lemma B.3 of the Appendix, it suffices to prove that if h is not centered
then

Tn/n3/2 =⇒ Normal(0,4σ 2). (30)

Define the centered kernel h∗ as in (24). Since the Hoeffding projection of
H ∗ is identically 0,

Tn = T ∗
n + 2n

n∑
i=1

H(Zi) where

T ∗
n =

n∑
i=1

n∑
j=1

h∗(Zi,Zj ).

Proposition 5.3 implies that T ∗
n /n converges in distribution, and it follows

that T ∗
n /n3/2 converges to 0 in distribution. On the other hand, the central

limit theorem for Markov chains implies that

n−3/2

(
2n

n∑
i=1

H(Zi)

)
=⇒ Normal(0,4σ 2),

with σ 2 > 0, since by hypothesis the kernel h is not centered. The weak con-
vergence (30) now follows by Lemma B.3. �

5.2 Variance/covariance bounds

To prove Theorem 5.1 in the general case we will show that truncation of
the kernel h, that is, replacing h = ∑∞

k=1 hk by hK = ∑K
k=1 hk , has only a

small effect on the distributions of the normalized random variables Wn/n3/2

when K is large. For this we will use second moment bounds. To deduce
these from the first-moment hypothesis (20) we shall appeal to the fact that
any aperiodic, irreducible, finite-state Markov chain is exponentially mixing.
Exponential mixing is expressed in the same manner as for the Markov chain
considered in Sect. 4.3. For any finite subset J ⊂ N, let ZJ = (Zj )j∈J denote



Self-intersections in combinatorial topology 449

the restriction of Z to the index set J , and denote by μJ the distribution
of ZJ . If I, J are nonoverlapping subsets of N then both μI∪J and μI × μJ

are probability measures supported by AI∪J . If the distance between the sets
I and J is at least m∗, where m∗ is the smallest integer such that all entries of
Q

m∗ are positive, then μI∪J and μI ×μJ are mutually absolutely continuous.

Lemma 5.5 There exist constants C < ∞ and 0 < δ < 1 such that for any
two subsets I, J ⊂ N satisfying min(J ) − max(I ) = m ≥ m∗,

1 − Cδm ≤ dμI∪J

dμI × μJ

≤ 1 + Cδm.

The constant C need not be the same as the constant in the hypothesis
(20); however, the exact values of these constants are irrelevant to our pur-
poses, and so we shall minimize notational clutter by using the letter C gener-
ically for such constants. The proof of the lemma is nearly identical to that of
Lemma 4.4, except that the exponential convergence bounds of Lemma 4.3
must be replaced by corresponding bounds for the transition probabilities
of Z. The corresponding bounds are gotten from the Perron–Frobenius theo-
rem.

For any two random variables U,V denote by cov(U,V ) = E(UV ) −
EUEV their covariance. (When U = V the covariance cov(U,V ) = Var(U).)

Lemma 5.6 For any two pairs i < j and i′ < j ′ of indices, let � =
�(i, i ′, j, j ′) be the distance between the sets {i, j} and {i′, j ′} (that is, the
minimum distance between one of i, j and one of i ′, j ′). Then for suitable
constants 0 < C,C′ < ∞, for all � ≥ max(k, k′) + m∗,

| cov(hk(τ
iZ, τ j Z), hk′(τ i′Z, τ j ′

Z))| ≤ C′βk+k′−4��−max(k,k′) (31)

where

�m = (1 + Cδm)5 for m ≥ m∗
and β is the exponential decay rate in (20).

Remark 5.7 What is important is that the covariances decay exponentially
in both k + k′ and �; the rates will not matter. When � ≤ max(k, k′) + m∗
the bounds (31) do not apply. However, in this case, since the functions hk

are bounded above in absolute value by a constant C < ∞ independent of k

(hypothesis (H1)), the Cauchy–Schwartz inequality implies

| cov(hk(τ
iZ, τ j Z), hk′(τ i′Z, τ j ′

Z))|2
= (Ehk(τ

iZ, τ j Z)hk′(τ i′Z, τ j ′
Z))2
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≤ (Ehk(τ
iZ, τ j Z)Ehk′(τ i′Z, τ j ′

Z))2

≤ C2Ehk(τ
iZ, τ j Z)Ehk′(τ i′Z, τ j ′

Z)

≤ C∗βk+k′
,

the last by the first moment hypothesis (20).

Proof of Lemma 5.6 Since the random variables hk are functions only of
the first k letters of their arguments, the covariances can be calculated by
averaging against the measures μJ∪K , where

J = [i, i + k] ∪ [j, j + k] and K = [i ′, i ′ + k′] ∪ [j ′, j + k′].
The simplest case is where j + k < i ′; in this case the result of Lemma 5.5
applies directly, because the sets J and K are separated by m = � − k. Since
the functions hk are uniformly bounded, Lemma 5.5 implies

1 − Cδm ≤ Ehk(τ
iZ, τ j Z)hk′(τ i′Z, τ j ′

Z)

Ehk(τ iZ, τ j Z)Ehk′(τ i′Z, τ j ′Z)
≤ 1 + Cδm.

The inequalities in (31) now follow, by the assumption (20). (In this special
case the bounds obtained are tighter that those in (31).)

The other cases are similar, but the exponential ergodicity estimate (13)
must be used indirectly, since the index sets J and K need not be ordered as
required by Lemma 4.4. Consider, for definiteness, the case where

i + k ≤ i ′ ≤ i ′ + k′ ≤ j ≤ j + k ≤ j ′ ≤ j ′ + k′.

To bound the relevant likelihood ratio in this case, use the factorization

dμJ∪K

dμJ × μK

= dμJ∪K

dμJ−∪K− × μJ+∪K+
× dμJ−∪K− × μJ+∪K+

dμJ− × μK− × μJ+ × μK+

× dμJ− × μK− × μJ+ × μK+

dμJ × μK

where J− = [i, i + k], J+ = [j, j + k], K− = [i ′, i ′ + k′], and K+ =
[j ′, j ′ + k′]. For the second and third factors, use the fact that Radon–
Nikodym derivatives of product measures factor, e.g.,

dμJ− × μK− × μJ+ × μK+

dμJ × μK

(xJ , xK)

= dμJ− × μJ+

dμJ

(xJ ) × dμK− × μK+

dμK

(xK)
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Now Lemma 5.5 can be used to bound each of the resulting five factors. This
yields the following inequalities:

(1 − Cδm)5 ≤ dμJ∪K

dμJ × μK

≤ (1 + Cδm)5,

and so by the same reasoning as used earlier,

(1 − Cδm)5 ≤ Ehk(τ
iZ, τ j Z)hk′(τ i′Z, τ j ′

Z)

Ehk(τ iZ, τ j Z)Ehk′(τ i′Z, τ j ′Z)
≤ (1 + Cδm)5.

The remaining cases can be handled in the same manner. �

Corollary 5.8 There exist C,C′ < ∞ such that for all n ≥ 1 and all
1 ≤ K ≤ L ≤ ∞,

Var

(
n∑

i=1

n∑
j=i+1

L∑
k=K

hk(τ
iX, τ j Z)

)

≤ Cn3
∞∑

k=K

∞∑
k′=K

{
(k′ + k + C′)βk+k′}

. (32)

Consequently, for any ε > 0 there exists K < ∞ such that for all n ≥ 1,

Var

(
n∑

i=1

n∑
j=i+1

∞∑
k=K+1

hk(τ
iZ, τ j Z)

)
≤ εn3. (33)

Proof The variance is gotten by summing the covariances of all possible
pairs of terms in the sum. Group these by size, according to the value
of �(i, i ′, j, j ′): for any given value of � ≥ 2, the number of quadruples
i, i′, j, j ′ in the range [1, n] with �(i, i ′, j, j ′) = � is no greater than 24n3.
For each such quadruple and any pair k, k′ such that K < k ≤ k′ Lemma 5.6
implies that if � ≥ k + m∗ then

| cov(hk(τ
iZ, τ j Z), hk′(τ i′Z, τ j ′

Z))| ≤ Cβk+k′
��−k′ .

If � ≤ m∗ +k′ then the crude Cauchy–Schwartz bounds of Remark 5.7 imply
that

| cov(hk(τ
iZ, τ j Z), hk′(τ i′Z, τ j ′

Z))| ≤ Cβk+k′
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where C < ∞ is a constant independent of i, i ′, j, j ′, k, k′. Summing these
bounds we find that the variance on the left side of (32) is bounded by

Cn3
L∑

k=K

L∑
k=K

βk+k′
(

m∗ + k + k′ +
∞∑

�=m∗
��

)
.

Since �j is exponentially decaying in j , the inner sum is finite. This proves
the inequality (32). The second assertion now follows. �

5.3 Proof of Theorem 5.1

Given Corollary 5.8—in particular, the assertion (33)—Theorem 5.1 follows
from the special case where all but finitely many of the functions hk are iden-
tically zero, by Lemma B.4 of the Appendix. To see this, observe that under
the hypotheses of Theorem 5.1, the random variable Wn can be partitioned as

Wn = WK
n + RK

n

where

WK
n =

n∑
i=1

n∑
j=i+1

K∑
k=1

hk(τ
iZ, τ j Z) and

RK
n =

n∑
i=1

n∑
j=i+1

∞∑
k=K+1

hk(τ
iZ, τ j Z).

By Proposition 5.3 and Corollary 5.4, for any finite K the sequence WK
n /n3/2

converges to a normal distribution with mean 0 and finite (but possi-
bly zero) variance σ 2

K . By (33), for any ε > 0 there exists K < ∞ such

that E|RK
n |2/n3 < ε for all n ≥ 1. Consequently, by Lemma B.4, σ 2 =

limK→∞ σ 2
K exists and is finite, and

Wn/n3/2 =⇒ Normal(0, σ 2).

6 Mean/variance calculations

In this section we verify that in the special case hk = uk + vk , where uk and
vk are the functions defined in Sect. 2 and h1 ≡ 0, the constants κ and σ 2

defined by (22) coincide with the values (1).
Assume throughout this section that X = X1X2 . . . and X′ = X′

1X
′
2 . . . are

two independent stationary Markov chains with transition probabilities (8),
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both defined on a probability space (
,P ) with corresponding expectation
operator E. Set hk = uk + vk . For each fixed (nonrandom) string x1x2 . . . of
length ≥ k define

Hk = Uk + Vk where (34)

Uk(x1x2 . . .) = Euk(x1x2 . . . xk,X
′
1X

′
2 . . .) and

(35)
Vk(x1x2 . . .) = Evk(x1x2 . . . xk,X

′
1X

′
2 . . .),

and set

Sk(x1x2 . . .) = U2(x1x2) +
k∑

l=3

(Ul + Vl)(x1x2 . . . xl). (36)

Since the summands are all nonnegative and satisfy hypotheses (H0)–(H3),
the last sum is well-defined and finite even for k = ∞. The restrictions of Uk

and Vk to the space of infinite sequences are the Hoeffding projections of the
functions uk and vk (see Sect. 3). Note that each of the functions Uk,Vk,Hk

depends only on the first k letters of the string x1x2 . . . . By (22) of Theo-
rem 5.1, the limit constants κ and σ 2 are

κ =
∞∑

k=2

EHk(X) and σ 2 = lim
n→∞

1

n
E

(
n∑

i=1

∞∑
k=2

Hk(τ
iX) − nκ

)2

.

We will prove (Corollary 6.4) that in the particular case of interest here, where
hk = uk + vk , the random variables Hk(τ

iX) and Hk′(τ i′X) are uncorrelated
unless i = i ′ and k = k′. It then follows that the terms of the sequence defining
σ 2 are all equal, and so

σ 2 =
∞∑

k=2

Var(Hk(X)).

Lemma 6.1 For each string x1x2 . . . xk of length k ≥ 2 and each index
i ≤ k − 1, define ji = ji(x1x2 . . . xk) to be the number of letters between x̄i

and xi+1 in the reference word O in the clockwise direction (see Fig. 3).
Then

V2 = 0 and Uk = Vk for all k ≥ 3, (37)

and

Uk(x1x2 . . .) = t (j1, jk−1)

g(g − 1)k−1
(38)
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Fig. 3 The interval of
length ji in O

where t (a, b) = a(g − 2 − b) + b(g − 2 − a).

Therefore,

SK(x1x2 . . .) = t (j1, j1)

g(g − 1)
+ 2

K∑
k=3

t (j1, jk−1)

g(g − 1)k−1
. (39)

Proof The Markov chain with transition probabilities (8) is reversible (the
transition probability matrix (8) is symmetric), and the transition probabilities
are unchanged by inversion a �→ ā and a′ �→ ā′. Hence, the random strings
X′

1X
′
2 . . .X′

k and X̄′
kX̄

′
k−1 . . . X̄′

1 have the same distribution. It follows that for
each k ≥ 2,

Uk(x1x2 . . .) = Vk(x1x2 . . .).

Consider the case k = 2. In order that u2(x1x2,X
′
1X

′
2) �= 0 it is necessary

and sufficient that the letters x̄1X̄
′
1x2X

′
2 occur in cyclic order (either clock-

wise or counterclockwise) in the reference word O. For clockwise cyclic or-
dering, the letter X̄′

1 must be one of the j1 letters between x̄1 and x2, and
X′

2 must be one of the g − 2 − j1 letters between x2 and x̄1. Similarly, for
counterclockwise cyclic ordering, X̄′

1 must be one of the g − 2 − j1 letters
between x2 and x̄1, and X2 one of the j1 letters between x̄1 and x2. But X′

1,
and hence also its inverse X̄′

1, is uniformly distributed on the g letters, and
given the value of X̄′

1 the random variable X′
2 is uniformly distributed on the

remaining (g − 1) letters. Therefore,

U2(x1x2) = t (j1, j1)

g(g − 1)
.

The case k ≥ 3 is similar. In order that uk(x1x2 . . . ,X′
1X

′
2 . . .) be nonzero

it is necessary and sufficient that the strings x1x2 . . . xk and X′
1X

′
2 . . .X′

k differ
precisely in the first and kth entries, and that the letters x̄1X̄

′
1x2 occur in the

same cyclic order as the letters xkX
′
kx̄k−1. This order will be clockwise if and

only if X̄′
1 is one of the j1 letters between x̄1 and x2 and X′

k is one of the
g − 2 − jk−1 letters between xk and x̄k−1. The order will be counterclockwise
if and only if X̄′

1 is one of the g − 2 − j1 letters between x2 and x̄2 and X′
k is

one of the jk−1 letters between x̄k−1 and xk . Observe that all of these possible
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choices will lead to reduced words X′
1x2x3 . . . xk−1X

′
k . By (8), the probability

of one of these events occurring is

Uk(x1x2 . . . xk) = t (j1, jk−1)

g(g − 1)k−1
. �

For i = 1,2, . . . , define Ji = ji(X1X2 . . .) to be the random variable ob-
tained by evaluating the function ji at a random string generated by the
Markov chain, that is, Ji is the number of letters between X̄i and Xi+1 in the
reference word O in the clockwise direction. Because Xi+1 is obtained by
randomly choosing one of the letters of G other than X̄i , the random variable
Ji is independent of Xi . Since these random choices are all made indepen-
dently, the following is true:

Lemma 6.2 The random variables X1, J1, J2, . . . are mutually independent,
and each Ji has the uniform distribution on the set {0,1,2, . . . , g − 2}. Con-
sequently,

EJi = (g − 2)/2,

EJ 2
i = (g − 2)(2g − 3)/6,

EJ 3
i = (g − 2)2(g − 1)/4, (40)

EJ 4
i = (g − 2)(2g − 3)(3g2 − 9g + 5)/30 and

EJiJi′ = EJiEJi′ = (g − 2)2/4 for i �= i′.

By Lemma 6.1, the conditional expectations Uk,Vk are quadratic functions
of the cycle gaps J1, J2, . . . . Consequently, the unconditional expectations

Euk(X,X′) = EUk(X)

can be deduced from the elementary formulas of Lemma 6.2 by linearity of
expectation. Consider first the case k ≥ 3:

g(g − 1)k−1EUk(X) = Et(J1, Jk−1)

= 2EJ1(g − 2 − Jk−1)

= 2(g − 2)EJ1 − 2EJ1Jk−1

= (g − 2)2 − (g − 2)2/2

= (g − 2)2/2.

For k = 2:

g(g − 1)EU2(X) = Et(J1, J1)

= 2EJ1(g − 2 − J1)
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= 2(g − 2)EJ1 − 2EJ 2
1

= (g − 2)2 − (g − 2)(2g − 3)/3

= (g − 2)(g − 3)/3.

Corollary 6.3 If X = X1X2 . . . and X′ = X′
1X

′
2 . . . are independent realiza-

tions of the stationary Markov chain with transition probabilities (8), then

Eu2(X,X′) = EU2(X) = (g − 2)(g − 3)

3g(g − 1)
, (41)

Euk(X,X′) = EUk(X) = (g − 2)2

2g(g − 1)k−1
for k ≥ 3, and (42)

ES∞(X) = Eu2(X,X′) +
∞∑

k=3

E(uk + vk)(X,X′) = (g − 2)

3(g − 1)
. (43)

The variances and covariances of the random variables Uk(X) can be cal-
culated in similar fashion, using the independence of the cycle gaps Jk and the
moment formulas in Lemma 6.2. It is easier to work with the scaled variables
t (J1, Jk) = g(g − 1)kUk+1 rather than with the variables Uk , and for conve-
nience we will write JR

i = g −2−Ji . Note that by definition and Lemma 6.2
the random variables Ji and JR

i both have the same distribution (uniform on
the set {0,1, . . . , g − 2}), and therefore also the same moments.

Case 0: If i, j, k,m are distinct, or if i = j and i, k,m are distinct, then

Et(Ji, Jj )t (Jk, Jm) = Et(Ji, Jj )Et(Jk, Jm),

since the random variables Ji, Jj , Jk, Jm (or in the second case Ji, Jk, Jm)
are independent. It follows that for any indices i, j, k,m such that and i + k �=
j + m, the random variables Uk(τ

iX) and Um(τ j X) are uncorrelated. (Here,
as usual, τ is the forward shift operator.)

Case 1: If i, k,m ≥ 1 are distinct then

Et(Ji, Jk)t (Ji, Jm) = E(JiJ
R
k + JkJ

R
i )(JiJ

R
m + JmJR

i )

= EJiJ
R
k JiJ

R
m + EJiJ

R
k JR

i Jm + EJR
i JkJiJ

R
m

+ EJR
i JkJ

R
i Jm

= ((g − 2)2/4)(EJ 2
i + EJiJ

R
i + EJR

i Ji + EJR
i JR

i )

= ((g − 2)2/4)E(Ji + JR
i )2
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= (g − 2)4/4

= Et(Ji, Jk)Et(Ji, Jm).

Thus, the random variables t (Ji, Jk) and t (Ji, Jm) are uncorrelated. Conse-
quently, for all choices of i, j, k ≥ 1 such that j �= k, the random variables
Uj(τ

iX) and Um(τ iX) are uncorrelated.
Case 2: If i �= k then

Et(Ji, Ji)t (Ji, Jk) = EJiJ
R
i JiJ

R
k + EJiJ

R
i JR

i Jk

+ EJR
i JiJiJ

R
k + EJR

i JiJ
R
i Jk

= ((g − 2)/2)(2EJiJiJ
R
i + 2EJiJ

R
i JR

i )

= 2(g − 2)(EJiJi(g − 2 − Ji))

= 2(g − 2)((g − 2)EJ 2
i − EJ 3

i )

= (g − 2)3(g − 3)/6

= Et(Ji, Jk)Et(Ji, Ji)

Once again, the two random variables are uncorrelated. It follows that for all
i ≥ 1 and m ≥ 3 the random variables U2(τ

iX) and Um(τ iX) are uncorre-
lated.

Case 3: If k ≥ 2 then

Et(J1, Jk)
2 = EJ1J1J

R
k JR

k + EJR
1 JR

1 JkJk + 2EJR
1 J1J

R
k Jk

= 2(EJ 2
1 )2 + 2(EJ1J

R
1 )2

= (g − 2)2(2g − 3)2/18 + (g − 2)2(g − 3)2/18

and so

var(t (J1, Jk)) = Et(J1, Jk)
2 − (Et (J1, Jk))

2

= (g − 2)2(2g − 3)2/18 + (g − 2)2(g − 3)2/18 − (g − 2)4/4

= g2(g − 2)2/36.

Case 4: When k = 1:

Et(J1, J1)
2 = 4EJ1J1J

R
1 JR

1

= 4((g − 2)2EJ 2
1 − 2(g − 2)EJ 3

1 + EJ 4
1 )

= 2(g − 2)(g − 3)(g2 − 4g + 5)/15,
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so

var(t (J1, J1)) = Et(J1, J1)
2 − (Et (J1, J1))

2

= 2(g − 2)(g − 3)(g2 − 4g + 5)/15 − (g − 2)2(g − 3)2/9

= g(g − 2)(g − 3)(g + 1)/45.

This proves:

Corollary 6.4 The random variables Uk(τ
iX), where i ≥ 0 and k ≥ 2, are

uncorrelated, and have variances

Var(Uk(τ
iX)) = (g − 2)2

36(g − 1)2k−2
for k ≥ 3, (44)

Var(U2(τ
iX)) = (g − 2)(g − 3)(g + 1)

45g(g − 1)2
.

Consequently,

Var(S∞(τ iX)) = Var(U2(X)) +
∞∑

k=3

Var(2Uk(X))

= Var(U2(X)) + lim
K→∞

K∑
k=3

Var(2Uk(X))

= (g − 2)(g − 3)(g + 1)

45g(g − 1)2
+ g − 2

9g(g − 1)2

= (g − 2)(g2 − 2g + 2)

45g(g − 1)2

= 2χ(2χ2 − 2χ + 1)

45(2χ − 1)2(χ − 1)
. (45)

Appendix A: An example of the combinatorics of self-intersection
counts

The counting of self-intersection numbers is based on the following idea:
Two strands on a surface come close, stay together for some time and then
separate. If one strand enters the strip from “above” and exits “below” and the
other vice versa there must be an intersection. This intersection is measured
by the functions uk and vk where k gives the “length of the time” that the
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strands stay together. (See Fig. 1 showing pairs of subwords for which u2 �= 0
and u3 �= 0.)

Example A.1 Let O denote the cyclic word of Fig. 4. Consider a 16-gon with
alternate sides labeled with the letters of O as in Fig. 1(I). By “glueing” the
sides of this polygon labeled by the same letter, one obtains a surface � of
genus two and one boundary component.

Let α be a necklace which can be unhooked to α∗ = abcaacba. There is
a one to one correspondance between the self-intersection points of a repre-
sentative of α with minimal self-intersection and the pairs of subwords of α

listed in (a), (b) and (c).

(a) (bc, ca), (bc, ac), (ca, cb) and (ac, cb). (These are the all the pairs of
the form (c1c2, d1d2) such that if w and w′ are words with finite or
infinite letters, w = c1c2 . . . and w′ = d1d2 . . . then u2(w,w′) = 1 and
u2(w

′,w) = 1.)
(b) (caa, aac) and (baa, aab). (These are all the pairs (c1c2 . . . ck,

d1d2 . . . dk) of subwords of α, with k ≥ 3 such that if w = c1c2 . . . ck . . .

and w′ = d1d2 . . . dk . . . then uk(w,w′) = 1 and uk(w
′,w) = 1.)

(c) (abca, acba). (This is the only pair of subwords (c1c2 . . . ck . . . ,

d1d2 . . . dk . . . ) of α of more than two letters such that if w = c1c2 . . . ck . . .

and w′ = d1d2 . . . dk . . . vk(w,w′) = 1 and vk(w
′,w) = 1.)

Since there are seven pairs listed in (a), (b) and (c), the self-intersection
number of α equals to seven.

Clearly the arcs corresponding to the subwords of α, bc and ca intersect
in the polygon (see Fig. 5(I)). This suggests that the occurrence of bc and
ca as subwords of a cyclic word will imply a self-intersection point in every
representative of the cycled word.

Now, consider the pair of subwords of α, aa and ca (see Fig. 5(II)). Since
both of the corresponding arcs land in the edge a of the polygon, the occur-
rence of these two subwords does not provide enough information to deduce
the existence of a self-intersection point. In order to understand better this
configuration of segments, we prolong the subwords starting with aa and ca

until they have different letters at the beginning and at the end. Then we study
how the arcs corresponding to these subwords intersect. So in our example we
get caa and aac, implying a self-intersection point (Fig. 5(II)).

Fig. 4 An example of a
word O
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Fig. 5 Example

Appendix B: Background: probability, Markov chains, weak
convergence

For the convenience of the reader we shall review some of the terminology of
the subject here. (All of this is standard, and can be found in most introductory
textbooks, for instance, [1, 2].)

A probability space is a measure space (
, B,P ) with total mass 1. Inte-
grals with respect to P are called expectations and denoted by the letter E,
or by EP if the dependence on P must be emphasized. A random variable
is a measurable, real-valued function on 
; similarly, a random vector or a
random sequence is a measurable function taking values in a vector space or
sequence space. The distribution of a random variable, vector, or sequence X

is the induced probability measure P ◦ X−1 on the range of X. Most ques-
tions of interest in the subject concern the distributions of various random
objects, so the particular probability space on which these objects are defined
is usually not important; however, it is sometimes necessary to move to a
“larger” probability space (e.g., a product space) to ensure that auxiliary ran-
dom variables can be defined. This is the case, for instance, in sec. 6, where
independent copies of a Markov chain are needed.

Definition B.1 A sequence . . . ,X−1,X0,X1, . . . of G -valued random vari-
ables defined on some probability space (X , B,P ) is said to be a station-
ary Markov chain with stationary distribution π and transition probabilities
p(a, a′) if for every finite sequence w = w0w1 . . .wk of elements of G and
every integer m,

P {Xm+j = wj for each 0 ≤ j ≤ k} = π(w0)

k−1∏
j=0

p(wj ,wj+1). (46)
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If p(a, a′) is a stochastic matrix on set G and π satisfies the stationarity
condition π(a) = ∑

a′ π(a′)p(a′, a) then there is a probability measure on
the sequence space G Z under which the coordinate variables form a Markov
chain with transition probabilities p(a, a′) and stationary distribution π . This
follows from standard measure extension theorems—see, e.g., [1], Sect. 1.8.

Definition B.2 A sequence of random variables Xn (not necessarily all de-
fined on the same probability space) is said to converge weakly or in distribu-
tion to a limit distribution F on R (denoted by Xn ⇒ F ) if the distributions
Fn of Xn converge to F in the weak topology on measures, that is, if for
every bounded, continuous function ϕ : R → R (or equivalently, for every
continuous function ϕ with compact support),

lim
n→∞

∫
ϕ dFn =

∫
ϕ dF

as n → ∞.

It is also customary to write Fn =⇒ F for this convergence, since it is re-
ally a property of the distributions. When the limit distribution F is the point
mass δ0 at 0 we may sometimes write Xn ⇒ 0 instead of Xn ⇒ δ0. The weak
topology on probability measures is metrizable; when necessary we will de-
note by � a suitable metric. It is an elementary fact that weak convergence
of probability distributions on R is equivalent to the pointwise convergence
of the cumulative distribution functions at all points of continuity of the limit
cumulative distribution function. Thus, Theorem 3.1 is equivalent to the asser-
tion that the random variables (N(α) − n2κ)/n3/2 on the probability spaces
(Fn,μn) converge in distribution to �σ .

We conclude with several elementary tools of weak convergence that will
be used repeatedly throughout the paper. First, given any countable family Xn

of random variables, possibly defined on different probability spaces, there
exist on the Lebesgue space ([0,1],Lebesgue) random variables Yn such that
for each n the random variables Xn and Yn have the same distribution. Fur-
thermore, the random variables Yn can be constructed in such a way that if
the random variables Xn converge in distribution then the random variables
Yn converge pointwise on [0,1] (the converse is trivial). Next, define the total
variation distance between two probability measures μ and ν defined on a
common measurable space (
, B) by

‖μ − ν‖TV = max(μ(A) − ν(A))

where A ranges over all measurable subsets (events) of 
. Total variation
distance is never increased by mapping, that is, if T : 
 → 
′ is a measurable
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transformation then

‖μ ◦ T −1 − ν ◦ T −1‖TV ≤ ‖μ − ν‖TV . (47)

Also, if μ and ν are mutually absolutely continuous, with Radon–Nikodym
derivative dμ/dν, then

‖μ − ν‖TV = 1

2
Eν

∣∣∣∣dμ

dν
− 1

∣∣∣∣. (48)

It is easily seen that if a sequence of probability measures {μn}n≥1 on R is
Cauchy in total variation distance then the sequence converges in distribution.
The following lemma is elementary:

Lemma B.3 Let Xn and Yn be two sequences of random variables, all defined
on a common probability space, let an be a sequence of scalars, and fix r > 0.
Denote by Fn and Gn the distributions of Xn and Yn, respectively. Then the
equivalence

Yn − an

nr
=⇒ F if and only if

Xn − an

nr
=⇒ F (49)

holds if either

(Xn − Yn)/nr =⇒ 0 or (50)

‖Fn − Gn‖TV −→ 0 (51)

as n → ∞. Furthermore, (51) implies (50).

The following lemma is an elementary consequence of Chebyshev’s in-
equality and the definition of weak convergence.

Lemma B.4 Let Xn be a sequence of random variables. Suppose that for
every ε > 0 there exist random variables Xε

n and Rε
n such that

Xn = Xε
n + Rε

n, (52)

Xε
n =⇒ Normal(0, σ 2

ε ), and

E|Rε
n|2 ≤ ε.

Then limε→0 σ 2
ε := σ 2 ≥ 0 exists and is finite, and

Xn =⇒ Normal(0, σ 2). (53)
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