Wavelet Sets and the Harmonic Analysis of a Discrete Affine Group

Lek-Heng Lim
October 21, 2000

## The Discrete Affine Group

Let $\mathbb{D}:=\left\{m 2^{n} \in \mathbb{Q} \mid m, n \in \mathbb{Z}\right\}$ and $\vartheta: \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{D})$ be defined by

$$
\vartheta(m) \beta=2^{-m} \beta
$$

for $\beta \in \mathbb{D}, m \in \mathbb{Z}$.

Semi-direct product $\mathbb{D} \rtimes_{\vartheta} \mathbb{Z}$ is a discrete subgroup of the onedimensional affine group (a.k.a. $a x+b$ group).

## Dilation and Translation Operators

For $\beta \in \mathbb{D}$, let $D, T_{\beta}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by

$$
\begin{aligned}
D f(t) & :=\sqrt{2} f(2 t) \\
T_{\beta} f(t) & :=f(t-\beta)
\end{aligned}
$$

for $f \in L^{2}(\mathbb{R})$.
Clearly, $D, T_{\beta} \in \mathcal{U}\left(L^{2}(\mathbb{R})\right)$.
Usual Notation: $T=T_{1}$.

## Wavelet

Definition (Franklin-Strömberg). An (orthonormal) wavelet is a unit vector $\psi \in L^{2}(\mathbb{R})$ such that

$$
\left\{D^{n} T^{m} \psi \mid n, m \in \mathbb{Z}\right\}
$$

forms an orthonormal basis of $L^{2}(\mathbb{R})$.

Note

$$
D^{n} T^{m} \psi(t)=2^{n / 2} \psi\left(2^{n} t-m\right)
$$

## The Wavelet Group

It may be interesting to look at

$$
\begin{aligned}
\operatorname{Group}(D, T) & =\text { group generated by } D, T \text { in } \mathcal{U}\left(L^{2}(\mathbb{R})\right) \\
& =\left\{T_{\beta} D^{n} \mid \beta \in \mathbb{D}, n \in \mathbb{Z}\right\} .
\end{aligned}
$$

Easy to see that

$$
\operatorname{Group}(D, T) \cong \mathbb{D} \rtimes_{\vartheta} \mathbb{Z}
$$

## Wavelet Representation of $\mathbb{D} \rtimes_{\vartheta} \mathbb{Z}$

Look at the natural representation

$$
\begin{aligned}
\pi: \mathbb{D} \rtimes_{\vartheta} \mathbb{Z} & \rightarrow \mathcal{U}\left(L^{2}(\mathbb{R})\right) \\
(\beta, n) & \mapsto T_{\beta} U^{n}
\end{aligned}
$$

- $\pi\left(\mathbb{D} \rtimes_{\vartheta} \mathbb{Z}\right)=\operatorname{Group}(D, T)$
- $\pi$ faithful
- $\pi$ cyclic (e.g. any wavelet is a cyclic vector)
(Recall $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ cyclic means $\overline{\operatorname{span}}_{\mathbb{C}}\{\pi(x) \psi \mid x \in G\}=\mathcal{H}$ )


## Harmonic Analysis of $\mathbb{D} \rtimes_{\vartheta} \mathbb{Z}$

Objective: To decompose the representation $\pi: \mathbb{D} \rtimes_{\vartheta} \mathbb{Z} \rightarrow$ $\mathcal{U}\left(L^{2}(\mathbb{R})\right),(\beta, n) \mapsto T_{\beta} D^{n}$.

Result: $\pi$ is unitarily equivalent to a direct integral of irreducible monomial representations indexed by a wavelet set.

## Wavelet Sets

Definition (Dai and Larson). A measurable set $E \subseteq \mathbb{R}$ is called a wavelet set if

$$
\mathcal{F}^{-1}\left(\frac{1}{\sqrt{2 \pi}} \chi_{E}\right)
$$

is a wavelet.

Example. Littlewood-Paley wavelet $\psi_{L P}$ given by

$$
\psi_{L P}(t)=\frac{\sin 2 \pi t-\sin \pi t}{\pi t}
$$

satisfies

$$
\widehat{\psi}_{L P}=\frac{1}{\sqrt{2 \pi}} \chi_{[-2 \pi,-\pi) \cup[\pi, 2 \pi)} .
$$

Example. Journé wavelet $\psi_{J}$ satisfies

$$
\widehat{\psi}_{J}=\frac{1}{\sqrt{2 \pi}} \chi_{[-32 \pi / 7,-4 \pi) \cup[-\pi,-4 \pi / 7) \cup(4 \pi / 7, \pi] \cup(4 \pi, 32 \pi / 7]} .
$$

Theorem (Dai and Larson). $E \subseteq \mathbb{R}$ a measurable set. $E$ is a wavelet set iff
i. $2^{n} E \cap 2^{m} E=\varnothing$ and $(E+2 n \pi) \cap(E+2 m \pi)=\varnothing$ whenever $n \neq m$;
ii. $\mathbb{R} \backslash \cup_{n \in \mathbb{Z}} 2^{n} E$ and $\mathbb{R} \backslash \cup_{n \in \mathbb{Z}}(E+2 n \pi)$ are both null sets.

## Back to Our Result

Let $E \subseteq \mathbb{R}$ be a (any) wavelet set, say $E=[-2 \pi,-\pi) \cup[\pi, 2 \pi)$.
For $t \in E$, define character

$$
\begin{aligned}
\chi^{t}: \mathbb{D} & \rightarrow \mathbb{T} \\
\beta & \mapsto e^{-i \beta t}
\end{aligned}
$$

Then

$$
\pi \cong \int_{E}^{\oplus} \operatorname{Ind}_{\mathbb{D}}^{\mathbb{D} \not \rtimes_{\vartheta} \mathbb{Z}}\left(\chi^{t}\right) d \mu_{E}(t)
$$

## Sketch of Proof

Let $\omega^{t}:=\operatorname{Ind} \mathbb{D}_{\mathbb{D}}^{\mathbb{D} \rtimes_{\vartheta} \mathbb{Z}}\left(\chi^{t}\right): \mathbb{D} \rtimes_{\vartheta} \mathbb{Z} \rightarrow \mathcal{U}\left(l^{2}(\mathbb{Z})\right)$. Usual construction of induced representation for semi-direct product groups* gives

$$
\left[\omega^{t}(\beta, n) f\right](m)=e^{-i 2^{-m} \beta t} f(m+n)
$$

for $(\beta, n) \in \mathbb{D} \rtimes_{\vartheta} \mathbb{Z}, f \in l^{2}(\mathbb{Z})$.
(* see for example: A.A. Kirillov, Elements of the Theory of Representations, Grundlehren der mathematischen Wissenschaften, 220, Springer-Verlag, Berlin Heidelberg, 1976)

Note that $\cup_{n \in \mathbb{Z}} 2^{n} E=\mathbb{R}-\{0\}$.
$E \times \mathbb{Z} \rightarrow \mathbb{R},(t, n) \mapsto 2^{-m} t$ has inverse that is defined everywhere except 0 and so induces $\Phi: L^{2}(\mathbb{R}) \rightarrow L^{2}(E \times \mathbb{Z})$ where

$$
(\Phi f)(t, n)=2^{-m / 2} f\left(2^{-m} t\right)
$$

$$
\begin{array}{rll}
\mathcal{U}\left(L^{2}(\mathbb{R})\right) & \longrightarrow \mathcal{U}\left(L^{2}(\mathbb{R})\right) & \longrightarrow \mathcal{U}\left(L^{2}(E \times \mathbb{Z})\right) \\
A & \longmapsto \hat{A}=\mathcal{F} A \mathcal{F}^{-1} & \longmapsto \tilde{A}=\Phi \widehat{A} \Phi^{-1}
\end{array}
$$

For $f \in L^{2}(E \times \mathbb{Z})$,

$$
\begin{aligned}
\tilde{D}^{n} f(t, m) & =f(t, m+n) \\
\widetilde{T}_{\beta} f(t, m) & =e^{-i 2^{-m} \beta t} f(t, m) .
\end{aligned}
$$

Now look at $\tilde{\pi}: \mathbb{D} \rtimes_{\vartheta} \mathbb{Z} \rightarrow \mathcal{U}\left(L^{2}(E \times \mathbb{Z})\right),(\beta, n) \mapsto \tilde{T}_{\beta} \tilde{D}^{n}$. Clearly $\tilde{\pi} \cong \pi$.

$$
[\tilde{\pi}(\beta, n) f](t, m)=\tilde{T}_{\beta} \tilde{D}^{n} f(t, m)=e^{-i 2^{-m} \beta t} f(t, m+n)
$$

It remains to make the following identification

$$
L^{2}(E \times \mathbb{Z}) \cong \int_{E}^{\oplus}\left(l^{2}(\mathbb{Z})\right)_{t} d \mu_{E}(t)
$$

(roughly, given any $f \in L^{2}(E \times \mathbb{Z}), f(t, \cdot) \in l^{2}(\mathbb{Z})$ for each $t \in E$ ).

So

$$
\tilde{\pi} \cong \int_{E}^{\oplus} \omega^{t} d \mu_{E}(t)
$$

and

$$
\pi \cong \int_{E}^{\oplus} \operatorname{Ind}_{\mathbb{D}}^{\mathbb{D} x_{\vartheta} \mathbb{Z}}\left(\chi^{t}\right) d \mu_{E}(t)
$$

## Generalization to Higher Dimensions

L., J. Packer and K. Taylor, "Direct integral decomposition of the wavelet representation," to appear in PAMS, preprint available from http://xxx.lanl.gov/ps/math.FA/0003067.
$A$ a dilation matrix, ie. $A \in M(n, \mathbb{Z}) \cap \mathrm{GL}(n, \mathbb{Q})$ and all eigenvalues of $A$ have absolute value $>1 . v \in \mathbb{Z}^{n}$.

- The affine group is $\mathbb{Q}_{A} \rtimes_{\vartheta} \mathbb{Z}$ where

$$
\mathbb{Q}_{A}=\bigcup_{j=0}^{\infty}\left\{A^{-j} v \mid v \in \mathbb{Z}^{n}\right\} \subseteq \mathbb{Q}^{n}
$$

and

$$
\vartheta: \mathbb{Z} \rightarrow \operatorname{Aut}\left(\mathbb{Q}_{A}\right), \vartheta(m) \beta=A^{-m} \beta
$$

- Dilation and translation operators are

$$
\begin{aligned}
D_{A} f(t) & =|\operatorname{det} A|^{1 / 2} f(A t), \\
T_{v} f(t) & =f(t-v)
\end{aligned}
$$

for $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

- $\psi \in L^{2}\left(\mathbb{R}^{n}\right)$ is a wavelet iff $\left\{D_{A}^{m} T_{v} \psi \mid m \in \mathbb{Z}, v \in \mathbb{Z}^{n}\right\}$ is an orthonormal basis.
- A measurable $E \subseteq \mathbb{R}^{n}$ is a wavelet set iff

$$
\mathcal{F}^{-1}\left(\frac{1}{\sqrt{\mu(E)}} \chi_{E}\right)
$$

is a wavelet.

## Similar Results for Higher Dimensions

Theorem (Dai, Larson and Speegle). Wavelet set exists for any dilation matrix $A$.

Our Result: Let $\pi: \mathbb{Q}_{A} \rtimes_{\vartheta} \mathbb{Z} \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{n}\right)\right),(\beta, m) \mapsto T_{\beta} D_{A}^{m}$. Then

$$
\pi \cong \int_{E}^{\oplus} \operatorname{Ind}_{\mathbb{Q}_{A}}^{\mathbb{Q}_{A} \rtimes_{\vartheta} \mathbb{Z}}\left(\chi_{t}\right) d \mu_{E}(t)
$$

where $\chi^{t}: \mathbb{Q}_{A} \rightarrow \mathbb{T}, \beta \mapsto e^{-i\langle t, \beta\rangle}$.

