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We show that in finite-dimensional nonlinear approximations, the best r-term 
approximant of a function f almost always exists over C but that the same is not true 
over R, i.e., the infimum inff1,...,fr∈D‖f − f1 − · · · − fr‖ is almost always attainable 
by complex-valued functions f1, . . . , fr in D, a set (dictionary) of functions (atoms) 
with some desired structures. Our result extends to functions that possess properties 
like symmetry or skew-symmetry under permutations of arguments. When D is the 
set of separable functions, this is the best rank-r tensor approximation problem. We 
show that over C, any tensor almost always has a unique best rank-r approximation. 
This extends to other notions of ranks such as symmetric and alternating ranks, to 
best r-block-terms approximations, and to best approximations by tensor networks. 
Applied to sparse-plus-low-rank approximations, we obtain that for any given r and 
k, a general tensor has a unique best approximation by a sum of a rank-r tensor 
and a k-sparse tensor with a fixed sparsity pattern; a problem arising in covariance 
estimation of Gaussian model with k observed variables conditionally independent 
given r hidden variables. The existential (but not uniqueness) part of our result also 
applies to best approximations by a sum of a rank-r tensor and a k-sparse tensor 
with no fixed sparsity pattern, and to tensor completion problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

There are numerous problems in scientific and engineering applications that may ultimately be put in 
the following form: Given a real or complex-valued function f : Ω → K (with K = R or C respectively), find 
a best approximation of f by a sum of functions f1, . . . , fr with some special structure, i.e.,

min
f1,...,fr∈D

‖f − (f1 + · · · + fr)‖, (1)
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where D is a subset of functions possessing that special structure. In the applied harmonic analysis literature, 
the set D is often called a dictionary, a function fi ∈ D an atom, and the function to be approximated f the 
target function. The problem (1), called the best r-term approximation problem1 or best rank-r approximation 
problem is ubiquitous by its generality and simplicity. A slight generalization involves

min
f1,...,fr∈D1; g1,...,gs∈D2

‖f − (f1 + · · · + fr + g1 + · · · + gs)‖, (2)

where D1 and D2 denote two dictionaries/subsets of atoms/functions each with a different structure (e.g., 
this arises in so-called sparse plus low-rank approximations). More generally, the approximation could involve 
even more dictionaries/subsets D1, . . . , Dk of atoms/functions, each capturing a different structure in the 
target function f .

In practice, if the problem is not already discrete, then it has to be discretized for the purpose of 
computations. This usually involves discretizing Ω (e.g., sampling points, triangulation, mesh generation) 
or finding a finite-dimensional approximation of the function spaces (e.g., Galerkin method, quadrature) or 
both (e.g., collocation methods). The result of which is that we may in effect assume that Ω is a finite set or 
that the function space L2

K
(Ω) is a finite-dimensional vector space (as our notation implies, we assume that 

the norm in (1) is an l2-norm). In which case, up to a choice of basis, L2
K
(Ω) ∼= Kn, where n = dimL2

K
(Ω)

(or, if Ω is finite, n = #Ω).
The main issue with (1) is that when D is not finite up to scaling, the approximation problem in (1) often 

does not have a solution: Let f ∈ L2
K
(Ω) and D ⊆ L2

K
(Ω) be a closed subset (under the metric topology 

induced by ‖ · ‖), the infimum

inf
f1,...,fr∈D

‖f − (f1 + · · · + fr)‖

is often not attainable when r > 1. The reason being that the set of r-term approximants

Σ◦
r(D) := {f ∈ L2

K(Ω) | f = f1 + · · · + fr for some f1, . . . , fr ∈ D}

is often not closed when r > 1. Let Σr(D) denote the closure of Σ◦
r(D) under the metric topology. Each ele-

ment in Σr(D) is a limit of a sequence of r-term approximants but may not itself be an r-term approximant. 
While

ϕ∗ ∈ argminϕ∈Σr(D) ‖f − ϕ‖

always exist, it would not in general be an r-term approximant, i.e., ϕ∗ may fail to be of the required form 
f1 + · · ·+fr with fi ∈ D — this occurs when ϕ∗ ∈ Σ2(D) \Σ◦

2(D). The main result of this article is to show 
that it makes a vast difference whether K = R or K = C — for the latter, this failure almost never happens 
under some mild conditions.

We will elaborate this phenomenon more concretely by studying the case of separable approximations. 
In this case, Ω = Ω1 × · · · × Ωd and

D = {ϕ ∈ L2
K(Ω) | ϕ = ϕ1 ⊗ · · · ⊗ ϕd where ϕj ∈ L2

K(Ωj)} (3)

is the set of separable functions, i.e., functions ϕ : Ω1 × · · · × Ωd → K of the form

ϕ(x1, x2, . . . , xd) = ϕ1(x1)ϕ2(x2) · · ·ϕd(xd), xj ∈ Ωj , j = 1, . . . , d.

1 Sometimes (1) is expressed as a minimization over linear combinations instead of sums, with a corresponding restriction on the 
atoms in D, e.g., to unit norm.
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Take d = 3 for simplicity. When K = R, it has been shown [1, Theorem 8.4] that there is a nonempty open 
subset O ⊆ L2

R
(Ω) such that for any f ∈ O, the infimum

inf
ϕi,ψi∈L2

R
(Ωi)

‖f − ϕ1 ⊗ ϕ2 ⊗ ϕ3 − ψ1 ⊗ ψ2 ⊗ ψ3‖ (4)

fails to be attainable. In particular the set of such failures, given that it contains an open set, must have 
positive volume, i.e., such failures occur with positive probability and cannot be ignored in practice. Given 
any f ∈ L2

K
(Ω), the rank of f is the integer r such that f is a sum of r separable functions, i.e.,

rank(f) = min
{
r

∣∣∣∣ f =
r∑

i=1
ϕ1,i ⊗ · · · ⊗ ϕd,i

}
, (5)

and so Σ◦
r(D) = {f ∈ L2

K
(Ω) | rank(f) ≤ r}. Therefore the preceding discussion says that the set of f that 

fails to have a best rank-two approximation has positive volume. In fact, there are more extreme examples 
[1, Theorem 8.1] where every f ∈ L2

R
(Ω) of rank > 2 fails to have a best rank-two approximation; we defer 

further discussions to Section 2.
Our main objective is to show that: (a) for most choices of dictionary D, the best r-term approximation 

problem (1) will fail to have a solution for some choices of target function f (see Theorem 2.2); (b) when 
K = C, for any choice of D, the set of f for which (1) fails to have a solution has zero volume (see 
Corollary 6.1). Note that the previous paragraph shows that (b) is false when K = R. Also, the results in 
this article are nontrivial only when the dictionary D contains infinitely many linearly independent atoms; 
if D = {λϕi | i = 1, . . . , m; λ ∈ K}, then (1) trivially has a solution, irrespective of whether K = R or C
(see Proposition 2.1).

Up until this point, we have presented our discussions entirely in the language of function approximation 
in order to put the problems (1) and (2) within the context they most frequently arise, which traditionally 
goes under the heading of nonlinear approximation. Nevertheless, the subject has witnessed many recent 
breakthroughs and is now studied under a number of different names [2–11]. In this article we will undertake 
an approach via complex algebraic geometry and real analytic geometry. From our perspective, the problems 
in (1) and (2) are respectively about secant varieties and join varieties. We will henceforth drop the function 
approximation description in order to focus on the crux of the issue. In the rest of this article, we will let U
denote a real vector space and V denote a complex vector space. Readers who prefer the function-theoretic 
description may continue to think of U as L2

R
(Ω) and V as L2

C
(Ω). The difference between the geometry of 

the best r-term approximation problem over R and over C may be summarized as follows:

• K = R: Let X be a closed semianalytic subset of an R-vector space U , and Z ⊆ X be a semianalytic 
subset of X with dimZ < dimX < dimU . The set Z here represents the ‘bad points’ to be avoided — 
given p ∈ U , we seek a best approximation x∗ ∈ X that attains minx∈X‖p −x‖ but we also want x∗ /∈ Z. 
The example we mentioned above with D as defined in (3) has X = Σ2(D), Z = Σ2(D) \ Σ◦

2(D), and 
f ∈ L2

R
(Ω) in the role of p ∈ U . Here we see that there can be a nonempty open subset O ⊆ U such 

that for p ∈ O, any best approximation of p lies in Z, which in this example represents the functions in 
X that cannot be written as a sum of two separable functions.

• K = C: Let X be a closed irreducible complex analytic variety in a C-vector space V , and Z ⊆ X

be a complex analytic subvariety of X with dimZ < dimX < dimV . We will prove that any general 
p ∈ V will have its best approximation in X but not in Z, and moreover this best approximation will be 
unique. In the context of the best r-term approximation problem (1), X = Σr(D), Z = Σr(D) \Σ◦

r(D), 
and f ∈ L2

C
(Ω) plays the role of p ∈ V . But this will apply more generally to the problem (2) as well, 

giving us existence and uniqueness results for various nonlinear approximations common in applications 
(see Sections 6–8).
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Figs. 2 and 3 illustrate the gist of the difference between R and C. Readers who just want an intuitive grasp 
without going into the details may like to consult these figures.

2. Nonexistence of best r-term approximations is common

We begin by first noting that when D is finite up to scaling, then a best r-term approximation always 
exists, i.e., (1) always has a solution.

Proposition 2.1. If the dictionary D ⊆ V is finite in the projective space PV , i.e., finite up to scaling, then 
Σ◦

r(D) is closed in V .

Proof. D is the form {λϕi | i = 1, . . . , m; λ ∈ K} for some m ∈ N. So Σ◦
r(D) is a union of 

(
m
r

)
subspaces 

in V and therefore closed. �
Proposition 2.1 explains why we are only interested in the case when D is not finite up to scaling. Examples 

include exponential dictionaries like D = {eisx | s ∈ [0, a]} for some a > 0 [12], D = {e−tx | t ∈ R}, or 
D = {eτx | τ ∈ C} [13], the dictionary of separable functions we encountered earlier in (3), with many more 
to come in Sections 6–8.

We will briefly review the example in [1, Theorem 8.1] to give readers a better idea as to why (1) can 
fail on a positive-volumed set of target functions f over R. Let Ω1 = Ω2 = Ω3 = {0, 1}. One can show that 
real-valued functions f ∈ L2

R
(Ω1 × Ω2 × Ω3) = L2

R
({0, 1}3) with rankR(f) > 2 must take either one of the 

two following forms:

f = f1 ⊗ f0 ⊗ f0 + f0 ⊗ f1 ⊗ f0 + f0 ⊗ f0 ⊗ f1, (6)

f = (f0 + f1) ⊗ f1 ⊗ f1 + (f0 − f1) ⊗ f0 ⊗ f0 + f1 ⊗ (f0 + f1) ⊗ (f0 − f1), (7)

where f0, f1 ∈ L2
R
({0, 1}) are linearly independent. Let D and O be the subsets of functions in L2

R
({0, 1}3)

that take the forms in (6) and (7) respectively. One can show that the infimum in (4) cannot be attained for 
any f ∈ D ∪O. In addition O is an open subset in L2

R
({0, 1}3) with positive volume. So the best two-term 

approximation problem fails to have a solution on a positive-volumed set. On the other hand, if one had 
worked over C, then one can show that the only complex-valued functions f ∈ L2

C
(Ω1×Ω2×Ω3) = L2

C
({0, 1}3)

with rankC(f) > 2 are those taking the form in (6) where f0, f1 ∈ L2
C
({0, 1}) are linearly independent. While 

the infimum in (4) also cannot be attained for such an f , the subset of all such functions has zero volume 
in L2

C
({0, 1}3). So the best two-term approximation problem fails to have a solution only on a zero-volumed 

set.
Let D be the dictionary of separable functions in (3). The reason the infimum in (4) is not attained in 

the above example is a consequence of the fact that the set of two-term approximants Σ◦
2(D) is not closed. 

This phenomenon is common — we will next show that it can happen to any D with an accumulation point, 
modulo an embedding in some higher-dimensional space.

Theorem 2.2. Let W be a vector space over R or C and X ⊆ W be a set with an accumulation point. Then 
for any r > 1, there exists a vector space V and an embedding ν : X ↪→ V such that if D := ν(X), then 
Σ◦

r(D) is not closed in V .

Proof. Let V := Sr+1(W ) be the (r + 1)st symmetric power of W and let ν : W → V , w 
→ w◦(r+1) be 
the affine Veronese embedding (see Section 7.1). Let x ∈ X be an accumulation point. Consider a tangent 
vector t to ν(X) at ν(x). Clearly, it is also a tangent vector to ν(W ). Hence t = x◦r ◦ w for some w ∈ W . 
Furthermore t ∈ Σk(ν(X)) for all k ≥ 2. However, t has symmetric rank r + 1 as a symmetric tensor, i.e., 
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t ∈ Σ◦
r+1(ν(W )) and t /∈ Σ◦

r(ν(W )). As Σ◦
r(ν(X)) ⊆ Σ◦

r(ν(W )), we see that Σ◦
k(ν(X)) is not closed for any 

k = 2, . . . , r. �
The ambient space V of D constructed in our proof is of much higher dimension than D. But if desired, 

we can add an additional step to our construction — project from an arbitrary affine subspace disjoint from 
the join (see (11)) of t and Σr(ν(W )), and choose V to be the image of this projection — then we are in a 
situation where Σ◦

r(D) is only one dimension lower than V but everything in the statement of Theorem 2.2
still holds.

3. Subanalytic geometry

We will study our approximation problems using selected tools from subanalytic geometry [14], which 
we review in the following. A semianalytic subset of Rn is a set that is locally of the form

X =
m⋃
i=1

k⋂
j=1

Xij ,

where each Xij takes the form

{(x1, . . . , xn) ∈ Rn | fij(x1, . . . , xn) = 0} or {(x1, . . . , xn) ∈ Rn | fij(x1, . . . , xn) > 0}

for some real analytic function fij . Let W be a linear subspace of Rn, and π : Rn → W be a linear 
projection. A subset X ⊆ W is called subanalytic if X is locally of the form π(D) for some relatively 
compact semianalytic subset D ⊆ Rn. Given subanalytic subsets X ⊆ Rm and D ⊆ Rn, a continuous map 
f : X → D is called subanalytic if the graph of f , i.e., {(x, y) ∈ X×D | y = f(x)}, is subanalytic in Rm×Rn.

We will also make significant use of Whitney stratifications, which we recall here. Let I be a partially 
ordered set with order relation , and X a closed subset of a real smooth manifold M . A Whitney stratifi-
cation of X is a collection {Si | i ∈ I} of disjoint locally closed smooth submanifolds Si ⊆ X called strata
that satisfy:

(i) X =
⋃

i∈I Si.
(ii) Every p ∈ X has a neighborhood U such that U ∩ Si �= ∅ for finitely many i ∈ I.
(iii) i  j if and only if Si ⊆ Sj if and only if Si ∩ Sj �= ∅, where Sj is the Euclidean closure of Sj .
(iv) Suppose Sα ⊆ Sβ . Let {xi}∞i=1 ⊆ Sβ and {yi}∞i=1 ⊆ Sα be two sequences converging to the same 

y ∈ Sα. If the secant lines span{xi, yi} converge to some limiting line 	 and the tangent spaces Txi
(Sβ)

converge to some limiting space τ , then Ty(Sα) ⊆ τ and 	 ⊆ τ .

For a proper subanalytic map f : X → D, there are Whitney stratifications of X and D into analytic 
manifolds such that f is a stratified map, i.e., for each stratum B ⊆ D, f−1(B) is a union of connected 
components of strata of X. We refer the reader to [14] for further details, but the pictures of Whitney’s 
umbrella z2 − yx2 = 0 and its Whitney stratification in Fig. 1 ought to give readers an intuitive idea.

The following result is well-known in the semialgebraic setting [15, Theorem 3.3] but we need it in a 
subanalytic setting; fortunately a similar proof yields the required analogous result.

Lemma 3.1. Let U1 and U2 be real vector spaces. Let X ⊆ U1 be a k-dimensional subanalytic subset and 
f : X → U2 be a subanalytic map. Then the set of points of X where f is not differentiable is contained in 
a subanalytic subset of dimension strictly smaller than k.
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Fig. 1. Left: Whitney’s umbrella z2 − yx2 = 0. Right: Stratification of Whitney’s umbrella into five strata S1, . . . , S5. Here S1 is a 
point; S2 and S3 are the upper and lower half line in the singular locus; S4 and S5 are the left and right connected components 
of the smooth locus. In the partial order S1 is the unique smallest element, i.e., S1 � S2, S3, S4, S5; we also have S2 � S4, S5; but 
all other strata are incomparable.

Proof. Let Γ ⊆ U1 × U2 be the graph of f , and π1 : X × U2 → X be the projection. Given a Whitney 
stratification Γ =

⋃
i∈I Γi of Γ, since each π1(Γi) is subanalytic, there is a Whitney stratification X =⋃

j∈J Xj such that π1(Γi) is a union of strata, namely f |Xj
: Xj → U2 is a subanalytic map whose graph is 

an analytic submanifold of U1 × U2. For simplicity, we denote f |Xj
by fj and the graph of fj by Δj . Then 

the set of points of Xj where fj is not differentiable is contained in the critical values of π1 : Δj → Xj . 
Hence the set of nondifferentiable points of f in X is contained in

{x ∈ Xj | dimXj < k} ∪ {x ∈ Xl | dimXl = k and x is a critical value of π1 : Δl → Xl}

which is a subanalytic subset whose dimension is less than k. �
In this article we prove most of our results for complex analytic varieties, i.e., defined locally by the 

common zero loci of finitely many holomorphic functions; although the examples in Section 7 are all complex 
algebraic varieties, i.e., those holomorphic functions are polynomials.2 Since a subset of Cn may be regarded 
as a subset of R2n, we have the following relations between (semi)algebraic and (semi)analytic sets (here 
‘⊆’ is interpreted to mean ‘is a special case of’):

complex algebraic variety ⊆ real semialgebraic set ⊆ real semianalytic set,

complex algebraic variety ⊆ complex analytic variety ⊆ real semianalytic set.

So for example any property of real semianalytic sets will automatically be satisfied by a complex analytic 
variety. In particular, the following important theorem [16] also holds true in subanalytic, semialgebraic, or 
complex algebraic contexts; but for our purpose, it will be stated for complex analytic sets.

Theorem 3.2. Let M be a complex manifold and Z ⊆ M be a closed complex analytic subset. Then there is 
a Whitney stratification Z =

⋃
i∈I Si of Z such that

(a) each Si is a complex submanifold of M ;
(b) if Si ⊆ Sj, there is a vector bundle Ei → Si, a neighborhood Ui ⊆ Ei of the zero section Si, and a 

homeomorphism h : Ui → Sj of Ui to an open subset h(Ui) in Sj.

2 While every complex projective analytic variety is algebraic by Chow’s theorem, there exist complex analytic varieties that are 
not algebraic.
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3.1. Notations and terminologies

In the next sections, we will frame our discussion over an abstract real vector space U or an abstract 
complex vector space V . By a semialgebraic or subanalytic subset X ⊆ U we mean that X can be identified 
with some semialgebraic or subanalytic subset in Rn when we identify U ∼= Rn by fixing a basis of U . 
Likewise, by an algebraic or analytic variety X ⊆ V we mean that X can be identified with some algebraic 
or analytic variety in Cn when we identify V ∼= Cn by fixing a basis of V .

The main reason we prefer such coordinate-free descriptions instead of assuming at the outset that 
U = Rn or V = Cn is that we will ultimately be applying the results to cases where U and V have additional 
structures, e.g., Kn1 ⊗ · · · ⊗Knd , Sd(Kn), Λk(Kn), Sd(Λk(Kn)), Sd1(Kn) ⊗ · · · ⊗ Sdn(Kn), Λk1(Kn) ⊗ · · · ⊗
Λkn(Kn), etc.

The results in this article will be proved for general points. A point in a semianalytic set X is said to be 
general with respect to a property if the subset of points that do not have that property is contained in a 
semianalytic subset whose dimension is strictly smaller than dimX. In particular, a point in a real vector 
space is said to be general with respect to a property if the set of points that do not have that property 
is contained in a real analytic hypersurface. The same notion applies to a point in a complex vector space, 
regarded as a real vector space of real dimension twice its complex dimension.

Establishing that a result holds true for all general points is far stronger than the common practice 
in applied and computational mathematics of establishing it ‘with high probability’ or ‘almost surely’ or 
‘almost everywhere’. If a result is valid for all general points, then not only do we know that it is valid almost 
surely/everywhere but also that the invalid points are all limited to a subset of strictly smaller dimension. 
In fact, when the result is about points in a vector space, which is the case in our article, this subset of 
invalid points can be described by a single equation that may in principle be determined, so that we know 
where the invalid points lie.

4. Best approximation by points in a closed subanalytic set

Let U be an n-dimensional real vector space with an inner product 〈 ·, · 〉 and corresponding 	2-norm ‖ · ‖. 
Let X ⊆ U be a closed subanalytic set. We define the squared distance function d by

d : U → R, p 
→ min
q∈X

‖p− q‖2.

For p /∈ X, a best X-approximation of p is a minimizer q ∈ X that attains minq∈X ‖p − q‖2, and it is 
customary to write argminq∈X ‖p − q‖2 for the set of all such minimizers. Let

C(X) := {p ∈ U \X | p does not have a unique best approximation in X}. (8)

We have the following subanalytic analogue of [17, Theorem 3.7].

Lemma 4.1. Let m, n ∈ N. Let U be an n-dimensional real vector space. For any closed subanalytic set 
X ⊆ U , the set C(X) has the following two properties:

(i) C(X) ∩B(0, m) is subanalytic, where B(0, m) := {x ∈ U | ‖x‖ ≤ m};
(ii) C(X) has dimension strictly less than n.

Proof. We start by defining the two maps:

f : U × R×X → R, (p, t, q) 
→ ‖p− q‖2 − t,
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g : U × R×X × (0,∞) → R, (p, t, q, ε) 
→ t + ε− ‖p− q‖2,

and the two projections:

π1 : U × R×X → U × R, π2 : U × R×X × (0,∞) → U × R×X.

Let Γ be the graph of d. Then

Γ =
[
U × [0,∞)

]
∩
[
U × R \ π1

(
f−1(−∞, 0)

)]
∩
[
π1

(
U × R×X \ π2(g−1(−∞, 0])

)]
because

(p, t) ∈ U × R \ π1
(
f−1(−∞, 0)

)
⇐⇒ ‖p− q‖2 ≥ t for all q ∈ X,

(p, t) ∈ π1
(
U × R×X \ π2(g−1(−∞, 0])

)
⇐⇒ for any ε > 0, there is a q ∈ X with ‖p− q‖2 < t + ε.

Therefore d|B(0,m), the squared distance function restricted to B(0, m), is a subanalytic function for each 
m ∈ N. By [17, Theorem 2.1], the set C(X) in (8) comprises precisely the nonsmooth points:

C(X) = {p ∈ U \X | d is not differentiable at p}.

Hence, by Lemma 3.1, C(X) ∩B(0, m) is a subanalytic subset with dimension less than n. Since

C(X) =
∞⋃

m=1

(
C(X) ∩B(0,m)

)
,

C(X) must also have dimension less than n. �
5. Best approximation by points in a closed complex variety

We will now switch our discussion from R to C. Let V be an n-dimensional complex vector space with a 
Hermitian inner product 〈 ·, · 〉 and corresponding 	2-norm ‖ · ‖. For any closed irreducible complex analytic 
variety X ⊆ V , again we let C(X) denote the set of points which do not have a unique best approximation 
in X, i.e., with V in place of U in (8). Since V may be regarded as a real vector space of real dimension 2n, 
X is naturally a real analytic variety. In particular, best X-approximations are as defined in Section 4.

By Lemma 4.1, C(X) has real dimension strictly less than 2n and we easily deduce the following.

Corollary 5.1. Let X be a closed complex analytic variety in a complex vector space V . Then a general p ∈ V

has a unique best X-approximation.

For any p ∈ V \ (C(X) ∪X), p has a unique best X-approximation, which we will denote by πX(p). Thus 
this gives us a map πX : V \ (C(X) ∪X) → X that sends p to its unique best X-approximation πX(p), i.e.,

‖p− πX(p)‖2 = min
q∈X

‖p− q‖2.

The map πX is also clearly subanalytic when restricted to B(0, m). With this observation, we will state our 
main result.

Theorem 5.2. Let X be a closed irreducible complex analytic variety in V . Let Z ⊆ X be any complex 
analytic subvariety with dimZ < dimX. For a general p ∈ V , its unique best X-approximation πX(p) does 
not lie in Z.
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Before proving Theorem 5.2, it will be instructive to study the simplest case where dimX = 1 and 
dimZ = 0, which will provide us with an intuitive idea as to why Theorem 5.2 holds; more importantly, it 
will illustrate the difference between working over C and working over R.

Lemma 5.3. Let X ⊆ Cn be an irreducible complex analytic curve and Z ⊆ X be a zero-dimensional 
subvariety. Then for a general p ∈ Cn, its unique best X-approximation πX(p) does not lie in Z.

Proof. We proceed by contradiction. Suppose there is a nonempty open neighborhood B(p, ε) of p such that 
πX(B(p, ε)) ⊆ Z. Since Z is a collection of points of X, we may assume that 0 ∈ Z and πX(B(p, ε)) = 0, 
i.e.,

|x1|2 + · · · + |xn|2 ≤ |x1 − y1|2 + · · · + |xn − yn|2

for all x = (x1, . . . , xn) ∈ B(p, ε) and all y = (y1, . . . , yn) ∈ X. By applying elimination theory, in some 
nonempty open neighborhood B(0, η) ∩X of 0 we may assume (y1(t), . . . , yn(t)) is a local parametrization 
of X such that y1(0) = · · · = yn(0) = 0, and each yj(t) is holomorphic in t around 0, i.e.,

yj(t) =
∞∑

k=mj

aj,kt
k,

with mj ≥ 1, aj,mj
�= 0, j = 1, . . . , n. Let

f(x, t) :=
n∑

j=1

(
|xj |2 − |xj − yj(t)|2

)

and let m := min{m1, . . . , mn}. Then

f(x, t) = 2
n∑

j=1

(
Re(aj,mj

tmjxj) + O(tmj+1)
)

= Re
(
tmg(x)

)
+ O(tm+1),

where g(x) :=
∑

j:mj=m 2aj,mj
xj , i.e., a sum over all j such that mj = m, and O(tm+1) denotes terms 

of degrees ≥ m + 1. Note that g(x) �= 0 for a general x. Let tm = λg(x) for some small λ > 0. Then 
f(x, t) > 0, which contradicts our assumption that f(x, t) ≤ 0 for all x = (x1, . . . , xn) ∈ B(p, ε) and all 
y = (y1, . . . , yn) ∈ X. So πX(B(p, ε)) cannot be just 0. �

An important distinction between R and C is that Lemma 5.3 does not hold over R. An example where

{p = (x1, x2) ∈ R2 | q∗ ∈ Z for all q∗ ∈ argminq∈X‖p− q‖}

contains a nonempty open subset is illustrated in Fig. 2. Here X is the real cuspidal curve {(x1, x2) ∈ R2 |
x2

2 = x3
1}, and Z is the cusp (0, 0) in X. We can see for any p0 on the negative x1-axis there is a small open 

neighborhood B(p0, ε) such that for any p ∈ B(p0, ε) the best approximation πX(p) of p in X is Z. This 
should be contrasted with the complex cuspidal curve {(x1, x2) ∈ C2 | x2

2 = x3
1}, which is a real surface in 

C2 � R4. The projection to R3 of this curve is the surface3 presented in Fig. 3. The real points of the curve 
form the black cuspidal curve. The crucial observation here is that the complex points of the curve prevent 
the cusp from being an exposed point, and thus generally preventing it from being a candidate for a best 
approximant.

3 The apparent one-dimensional singular locus is an artifact of the projection; the complex curve has only one singular point.
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Fig. 2. Over R, singular point is ‘exposed.’

Fig. 3. Over C, singular point is no longer ‘exposed.’ Figure shows R
3 projection of complex cuspidal curve x2

2 = x3
1 in C

2 � R
4.

Fig. 4. Pictorial illustration of the proof of Theorem 5.2.
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Now we are in a position to prove Theorem 5.2. A pictorial illustration of the proof is given in Fig. 4.

Proof of Theorem 5.2. We proceed by contradiction. Suppose there is a nonempty open subset O ⊆ V \
(C(X) ∪X) such that for any p ∈ O, the best X-approximation πX(p) lies in Z. Without loss of generality, 
we may assume that Z is a minimum subvariety of X containing πX(O) in the sense that any subvariety 
containing πX(O) has dimension at least dimC Z. For simplicity, we choose a basis of V so that we may 
write u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V , and the inner product is given by 〈u, v〉 = u1v1 + · · · + unvn
under this basis. With this assumption, the norm is ‖v‖ = (|v1|2 + · · · + |vn|2)1/2.

First we assume dimZ > 0. By taking a Whitney stratification, there is a nonsingular point z ∈ Z and 
an open ball B(z, ρ) ⊆ V around z, such that B(z, ρ) ∩ Z is a connected complex submanifold in V , and 
π−1
X (B(z, ρ) ∩Z) contains a nonempty open subset O′ ⊆ O. For notational convenience, we will still denote 

B(z, ρ) ∩ Z by Z and O′ by O.
Given p ∈ O, let B(p, ε) ⊆ O be a small open ball of p, and let q = πX(p). Then

d

dt
〈p− q(t), p− q(t)〉

∣∣∣
t=0

= 0

for any real analytic curve q(t) ⊆ Z with q(0) = q, which implies that

Re〈p− q, v〉 = 0 for any v ∈ Tq(Z),

where Tq(Z) is the tangent space of Z at q. Without loss of generality, let q = 0 ∈ V , and let

W := {x ∈ V | Re〈x− q, v〉 = 0 for any v ∈ Tq(Z)}.

Since Tq(Z) = T0(Z) is a complex vector space, we in fact have

W = {x ∈ V | 〈x, v〉 = 0 for any v ∈ T0(Z)},

i.e., W is a complex vector subspace of V whose complex codimension is dimC Z. Thus W ∩Z∩B(0, δ) = {0}
for some small open ball B(0, δ) ⊆ V . Since X is irreducible and the set of nonsingular points of X is dense 
in X, (X\Z) ∩B(0, δ) �= ∅. By Theorem 3.2, Z has a small tubular neighborhood in X. Thus W∩X∩B(0, δ)
is of positive dimension. Hence it suffices to show that πW∩X∩B(0,δ)(W ∩B(p, ε)) cannot be just {0}.

We have reduced the problem to showing that in the complex vector space W , given a positive-dimensional 
complex analytic variety W ∩X ∩B(0, δ) and a point 0 ∈ W ∩X ∩B(0, δ),

πW∩X∩B(0,δ)(W ∩B(p, ε)) �= {0}

for a nonempty open ball W ∩ B(p, ε) in W . Again for notational simplicity, we will still use X to denote 
W ∩X ∩B(0, δ), and B(p, ε) to denote W ∩B(p, ε). One should note that this is in fact the case dimZ = 0.

Pick an irreducible complex analytic curve C ⊆ X passing through 0. By Lemma 5.3, we have that 
πC(B(p, ε)) �= {0}, and thus πX(B(p, ε)) �= {0}. �

Since the singular locus of a complex analytic variety is a complex analytic subvariety of smaller dimension 
[18, Chapter 0], we obtain the following corollary of Theorem 5.2. Given its important implications in this 
article, we label it a theorem.

Theorem 5.4. Let X be a closed irreducible complex analytic variety in V . For a general p ∈ V , its best 
X-approximation πX(p) is a nonsingular point of X.
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In fact, the requirement in Theorem 5.4 that X is irreducible can be relaxed, allowing for reducible 
varieties, and even constructible sets.

Corollary 5.5. Let X ⊆ V be a closed complex analytic variety, and X = X1 ∪ · · · ∪Xk be the decomposition 
of X into irreducible components. Let Z ⊆ X be any complex analytic subvariety such that dimZ < dimX

and Z ∩ Xj is not Zariski dense in Xj for all j = 1, . . . , k. Then for a general p ∈ V , its unique best 
X-approximation πX(p) does not lie in Z.

Proof. Apply Theorem 5.2 to each Xj and Z ∩Xj . �
Corollary 5.6. Let f : X → V be a morphism from a complex affine, possibly reducible, algebraic variety X
to a complex vector space V . Then for a general p ∈ V , its unique best f(X)-approximation πf(X)(p) lies 
in f(X).

Proof. By Chevalley’s theorem, f(X) is a constructible set [19, Theorem 3.16]. We set Z := f(X) \ f(X)
and apply Corollary 5.5. �
6. Applications to nonlinear approximations

We will now apply the results in Section 5 back to the functional approximation problems described 
in Section 1. Since our results require that we work over C (in fact, they are false over R), we will write 
L2(Ω) = L2

C
(Ω) in the following.

We caution the reader that when applied to the best r-term approximation problem in (1), the set X in 
Theorem 5.4 is not the set of r-term approximant

Σ◦
r(D) = {f ∈ L2(Ω) | f = f1 + · · · + fr for some f1, . . . , fr ∈ D},

but the closure of this set, which we denoted by Σr(D). Since it is a closure, X = Σr(D) is automat-
ically closed; and requiring it be semianalytic is a very mild condition. In fact, we are unaware of any 
nonpathological example where this does not hold.

Corollary 6.1. Let f ∈ L2(Ω) and D ⊆ L2(Ω). If Σr(D) is semianalytic, then the best r-term approximation 
problem

inf
f1,...,fr∈D

‖f − (f1 + · · · + fr)‖ = inf
ϕ∈Σ◦

r(D)
‖f − ϕ‖ (9)

has a solution with probability one, i.e., the infimum is attained by a point in Σ◦
r(D) with probability one.

Proof. The infimum in (9) may not be attained over Σ◦
r(D) because this is in general not a closed set. 

However, the infimum must always be attained in its closure Σr(D) even when this set is unbounded — the 
reason being that for a fixed f , the map Σr(D) → R, ϕ → ‖f − ϕ‖ is a coercive map [20] and has bounded 
sublevel sets. Now by Theorem 5.4, the minimizer ϕ∗ ∈ Σr(D) is a smooth point with probability one and 
therefore we have ϕ∗ ∈ Σ◦

r(D) with probability one. �
We will next apply our result to the join approximation problem

min
fi1,...,firi∈Di

‖f − (f11 + · · · + f1r1) − (f21 + · · · + f2r2) − · · · − (fk1 + · · · + fkrk)‖. (10)

Note that this is a generalization of (2) to k ≥ 2.
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Let X1, . . . , Xk ⊆ L2(Ω) and define their join as

J(X1, . . . , Xk) := {ϕ1 + · · · + ϕk ∈ L2(Ω) | ϕi ∈ Xi, i = 1, . . . , k}. (11)

We observe that (10) may be reexpressed in the form (12) below with Xi = Σ◦
ri(Di), i = 1, . . . , k.

Corollary 6.2. Let f ∈ L2(Ω) and D1, . . . , Dk ⊆ L2(Ω). If the join J
(
Σr1(D1), . . . , Σrk(Dk)

)
is semianalytic, 

then the join approximation problem

inf
ϕ1∈Σ◦

r1 (D1),...,ϕk∈Σ◦
rk

(Dk)
‖f − (ϕ1 + · · · + ϕr)‖ (12)

has a solution with probability one, i.e., the infimum is attained by a point in J
(
Σ◦

r1(D1), . . . , Σ◦
rk

(Dk)
)

with 
probability one.

Proof. Observe that J(X1, . . . , Xk) is an image of the map

J : L2(Ω) × · · · × L2(Ω) → L2(Ω), (x1, . . . , xk) 
→ x1 + · · · + xk,

as J(X1, . . . , Xk) = J(X1 × · · · ×Xk). Since J is a closed map, J(X1, . . . , Xk) is a closed set if X1, . . . , Xk

are closed sets. Also, J(X1, . . . , Xk) = J(X1, . . . , Xk), and so

J
(
Σ◦

r1(D1), . . . ,Σ◦
rk

(Dk)
)

= J
(
Σr1(D1), . . . ,Σrk(Dk)

)
.

Applying Theorem 5.4 to X = J
(
Σr1(D1), . . . , Σrk(Dk)

)
then yields the required result. �

Again we stress that it is crucial in Corollaries 6.1 and 6.2 that the functions be complex-valued, the 
results fail when we replace C by R. We will discuss specific cases of Corollaries 6.1 and 6.2 in the next two 
sections.

7. Applications to separable approximations

We will now apply the results in Section 5 to more specific classes of functional approximation problems. 
As in Section 6, given that our results only hold over C, we write L2(Ω) = L2

C
(Ω) throughout this section. 

A point to recall is that

L2(Ω1 × · · · × Ωd) = L2(Ω1) ⊗ · · · ⊗ L2(Ωd)

and so multivariate functions are in fact tensors. In many, if not most applications, the multivariate target 
function (i.e., the function to be approximated) possesses various forms of symmetries, the most common 
being full invariance or skew-invariance under all permutations of arguments:

f(xτ(1), . . . , xτ(d)) = f(x1, . . . , xd) or g(xτ(1), . . . , xτ(d)) = sgn(τ)g(x1, . . . , xd),

for all τ ∈ Sd. In other words, f is a symmetric tensor and g an alternating tensor:

f ∈ Sd(L2(Ω)) or g ∈ Λd(L2(Ω)).

Note that in these cases, we need Ω1 = · · · = Ωd = Ω in order to permute arguments. There are many types 
of partial symmetries as well. For example, we may have functions that satisfy
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f(xρ(1), . . . , xρ(d), yτ(1), . . . , yτ(k)) = f(x1, . . . , xd, y1, . . . , yk),

g(xρ(1), . . . , xρ(d), yτ(1), . . . , yτ(k)) = sgn(ρ) sgn(τ)g(x1, . . . , xd, y1, . . . , yk)

for all ρ ∈ Sd and τ ∈ Sk. These correspond respectively to functions

f ∈ Sd(L2(Ω1)) ⊗ Sk(L2(Ω2)) and g ∈ Λd(L2(Ω1)) ⊗Λk(L2(Ω2)).

There are also more intricate symmetries. For example, a complex-valued function f(X) of a matrix variable 
X = (xij)k,di,j=1 that satisfies

f(xρ1(1),τ(1), . . . , xρ1(k),τ(1), . . . , xρd(1),τ(d), . . . , xρd(k),τ(d))

= sgn(ρ1) . . . sgn(ρd)f(x1,1, . . . , xk,1, . . . , x1,d, . . . , xk,d)

for all ρ1, . . . , ρd ∈ Sk and τ ∈ Sd. This corresponds to f ∈ Sd(Λk(L2(Ω))). We will see more examples 
later.

Each of these classes of functions comes with its own nonlinear r-term approximation problem that 
preserves the respective symmetries or skew-symmetries, full or partial. For example, for f ∈ L2(Ω ×· · ·×Ω), 
we may just want

inf
∥∥∥∥f −

r∑
i=1

ϕ1,i ⊗ · · · ⊗ ϕd,i

∥∥∥∥, (13)

as discussed in Section 1, but for a symmetric f ∈ Sd(L2(Ω)) or an alternating g ∈ Λd(L2(Ω)), the more 
natural approximation problems are respectively

inf
∥∥∥∥f −

r∑
i=1

ϕ1,i ◦ · · · ◦ ϕd,i

∥∥∥∥ or inf
∥∥∥∥g −

r∑
i=1

ϕ1,i ∧ · · · ∧ ϕd,i

∥∥∥∥, (14)

with ϕj,i ∈ L2(Ω), i = 1, . . . , r, j = 1, . . . , d. In fact, there are other natural options for a symmetric f , 
where we may instead seek an approximation of the form

inf
∥∥∥∥f −

r∑
i=1

ϕ⊗d
i

∥∥∥∥, (15)

with ϕi ∈ L2(Ω), i = 1, . . . , r. The symbols ◦ and ∧ denote symmetric product and exterior product respec-
tively; for those who have not encountered them, these and other notations will be defined in Section 7.1. 
Then in Section 7.2, we will describe other classes of r-term approximation problems for functions possessing 
more complicated symmetries than the ones in (13), (14), (15). All these approximation problems have two 
features in common:

(i) Each of them is associated with a complex algebraic variety; e.g., (13) with the Segre variety, (14) with 
the Chow variety and Grassmann variety respectively, (15) with the Veronese variety.

(ii) All of them may fail to have a solution; e.g., there exist target functions where the infima in (13), (14), 
(15) cannot be attained.

We will later see how our results in Section 5 combined with (i) allow us to rectify (ii) to the extent 
guaranteed by Theorem 5.2, i.e., for any general f .
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We would like to mention a slightly different, perhaps more common, alternative for framing the function 
approximation problems above. As we described in Section 1, for computational purposes, L2(Ωi)’s are all 
finite-dimensional (e.g., when Ωi’s are all finite sets) and in this case, L2(Ωi) ∼= Cni with a choice of basis, 
and thus

L2(Ω1 × Ω2) = L2(Ω1) ⊗ L2(Ω2) ∼= Cn1 ⊗ Cn2 ∼= Cn1×n2,

L2(Ω1 × Ω2 × Ω3) = L2(Ω1) ⊗ L2(Ω2) ⊗ L2(Ω3) ∼= Cn1 ⊗ Cn2 ⊗ Cn3 ∼= Cn1×n2×n3 ,

...

L2(Ω1 × · · · × Ωd) = L2(Ω1) ⊗ · · · ⊗ L2(Ωd) ∼= Cn1 ⊗ · · · ⊗ Cnd ∼= Cn1×···×nd .

The set Cn1×···×nd denotes the vector space of d-dimensional hypermatrices

(ai1,...,id)
n1,...,nd

i1,...,id=1

(when d = 2, this reduces to a usual matrix in linear algebra), which of course is nothing more than a 
convenient way to represent a function f : Ω1 × · · · × Ωd → C by storing its value

f(i1, . . . , id) = ai1,...,id

at (i1, . . . , id) ∈ Ω1 × · · · ×Ωd, assuming that Ωi’s are all finite sets. In fact, practitioners in computational 
mathematics overwhelmingly regard a tensor as such a hypermatrix. The symmetries described earlier carry 
verbatim to hypermatrices with the permutations acting on the indices.

We may either frame our results in this section in the form of function approximations or in the form of 
tensor approximations (or more accurately, matrix/hypermatrix approximations), but instead of favoring 
one over the other, we would simply resort to stating them for abstract vector spaces. So implicitly, V =
L2(Ω1 × · · · × Ωd) for function approximations and V = Cn1×···×nd for tensor approximations.

7.1. Segre/Veronese/Grassmann varieties and friends

We begin by reviewing some basic tensor constructions. The varieties that we define will be subsets of 
tensor spaces constructed via one or more of the following ways. We write V1 ⊗ · · · ⊗ Vd for the tensor 
product of vector spaces V1, . . . , Vd. A rank-one tensor is a nonzero decomposable tensor v1⊗· · ·⊗vd, where 
vi ∈ Vi. When V1 = · · · = Vd = V , we use the abbreviations V ⊗d = V ⊗ · · · ⊗ V and v⊗d = v ⊗ · · · ⊗ v. In 
this case, the symmetric group Sd acts on rank-one tensors by

τ(v1 ⊗ · · · ⊗ vd) = vτ(1) ⊗ · · · ⊗ vτ(d),

and this action extends linearly to an action on V ⊗d. The subspaces

Sd(V ) = {T ∈ V ⊗d | τ(T ) = T for all τ ∈ Sd},

Λd(V ) = {T ∈ V ⊗d | τ(T ) = sgn(τ)T for all τ ∈ Sd},

are called the spaces of symmetric d-tensors and alternating d-tensors respectively. We may construct 
tensor spaces with more intricate symmetries and skew-symmetries by combining these, e.g., Sd(V ) ⊗Sk(V ), 
Λd(V ) ⊗Λk(V ), Sd(Λk(V )), Sd(Sk(V )), etc.
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The symmetric product and alternating product of v1, . . . , vd ∈ V are respectively defined by

v1 ◦ · · · ◦ vd := 1
d!

∑
τ∈Sd

vτ(1) ⊗ · · · ⊗ vτ(d) ∈ Sd(V ),

v1 ∧ · · · ∧ vd := 1
d!

∑
τ∈Sd

sgn(τ)vτ(1) ⊗ · · · ⊗ vτ(d) ∈ Λd(V ).

In finite dimensions, each of the approximation problems we have encountered earlier and yet others that 
we will see in Section 7.2 comes with an associated complex algebraic variety. These varieties are usually 
defined as complex projective varieties, i.e., subsets of projective spaces defined by the common zero loci of 
a finite collection of homogeneous polynomials, and we will not deviate from this standard practice in our 
definitions below:

Segre variety. This is the image σ(PV1 × · · · × PVd) of the Segre embedding:

σ : PV1 × · · · × PVd → P(V1 ⊗ · · · ⊗ Vd), ([v1], . . . , [vd]) 
→ [v1 ⊗ · · · ⊗ vd].

Veronese variety. This is the image ν(PV ) of the Veronese embedding:

ν : PV → PSd(V ), [v] 
→ [v⊗d].

Chow variety. This is the image4 Chd(V ) := κ
(
(PV )d

)
of the Chow map:

κ : PV × · · · × PV → PSd(V ), ([v1], . . . , [vd]) 
→ [v1 ◦ · · · ◦ vd].

Grassmann variety. This is the image ψ
(
Grk(V )

)
of the Grassmannian Grk(V ), the set of k-dimensional 

linear subspaces of V , under the Plücker embedding:

ψ : Grk(V ) → PΛk(V ), span{v1, . . . , vk} 
→ [v1 ∧ · · · ∧ vk].

Segre–Veronese variety. This is the image σν(PV1 × · · · × PVm) of the Segre–Veronese embedding:

σν : PV1 × · · · × PVm → P
(
Sd1(V ) ⊗ · · · ⊗ Sdm(V )

)
, ([v1], . . . , [vm]) 
→ [v⊗d1

1 ⊗ · · · ⊗ v⊗dm
m ].

Segre–Chow variety. This is the image σκ
(
Chd1(V ) × · · · × Chdm

(V )
)

of the Segre–Chow map:

σκ : Chd1(V ) × · · · × Chdm
(V ) → P

(
Sd1(V ) ⊗ · · · ⊗ Sdm(V )

)
,

([v1,1 ◦ · · · ◦ vd1,1], . . . , [v1,m ◦ · · · ◦ vdm,m]) 
→ [(v1,1 ◦ · · · ◦ vd1,1) ⊗ · · · ⊗ (v1,m ◦ · · · ◦ vdm,m)].

Segre–Grassmann variety. This is the image σψ
(
Grk1(V ) × · · · × Grkm

(V )
)

of the Segre–Grassmann map:

σψ : Grk1(V ) × · · · × Grkm
(V ) → P

(
Λk1(V ) ⊗ · · · ⊗Λkm(V )

)
,

([v1,1 ∧ · · · ∧ vk1,1], . . . , [v1,m ∧ · · · ∧ vkm,m]) 
→ [(v1,1 ∧ · · · ∧ vk1,1) ⊗ · · · ⊗ (v1,m ∧ · · · ∧ vkm,m)].

Veronese–Chow variety. This is the image νκ
(
Chd(V )

)
of the Veronese–Chow map:

4 This is usually called the Chow variety of zero cycles in PV ∗. It is a subvariety of PSd(V ) whose affine cone is the set of 
degree-d homogeneous polynomials on the dual space V ∗ that can be decomposed into a product of linear forms [21, Chapter 4, 
Proposition 2.1].
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νκ : Chd(V ) → P
(
Sk(Sd(V ))

)
, [v1 ◦ · · · ◦ vd] 
→ [(v1 ◦ · · · ◦ vd)⊗k].

Veronese–Grassmann variety. This is the image νψ
(
Grk(V )

)
of the Veronese–Grassmann map:

νψ : Grk(V ) → P
(
Sd(Λk(V ))

)
, [v1 ∧ · · · ∧ vk] 
→ [(v1 ∧ · · · ∧ vk)⊗d].

Segre–Veronese–Chow variety. This is the image σνκ
(
Chd1(V ) ×· · ·×Chdm

(V )
)

of the Segre–Veronese–Chow 
map:

σνκ : Chd1(V ) × · · · × Chdm
(V ) → P

(
Sk1(Sd1(V )) ⊗ · · · ⊗ Skm(Sdm(V ))

)
,

([v1,1 ◦ · · · ◦ vd1,1], . . . , [v1,m ◦ · · · ◦ vdm,m]) 
→ [(v1,1 ◦ · · · ◦ vd1,1)⊗k1 ⊗ · · · ⊗ (v1,m ◦ · · · ◦ vdm,m)⊗km ].

Segre–Veronese–Grassmann variety. This is σνψ
(
Grk1(V ) × · · · ×Grkm

(V )
)
, image of the Segre–Veronese–

Grassmann map:

σνψ : Grk1(V ) × · · · × Grkm
(V ) → P

(
Sd1(Λk1(V )) ⊗ · · · ⊗ Sdm(Λkm(V ))

)
,

([v1,1 ∧ · · · ∧ vk1,1], . . . , [v1,m ∧ · · · ∧ vkm,m]) 
→ [(v1,1 ∧ · · · ∧ vk1,1)⊗d1 ⊗ · · · ⊗ (v1,m ∧ · · · ∧ vkm,m)⊗dm ].

Note that σν, σκ, σψ, νκ, νψ, σνκ, σνψ are all compositions of their respective constituent maps. In fact 
we may use successive compositions of the embeddings σ and ν to define more complicated algebraic varieties 
of the same nature; it is not possible to exhaust all such constructions. We refer the readers to [21,19,22]
for basic properties of the Segre, Veronese, Grassmann, and Chow varieties from an algebraic geometric 
perspective, although none of which would be required for our subsequent discussions.

While we have defined all these varieties as projective varieties, it is important to note that for approx-
imation problems, we will need to work in vector spaces rather than projective spaces. As such, when we 
discuss these varieties in the context of approximations, we would in fact be referring to their affine cones: 
For any X ⊆ PV , its affine cone is X̂ := π−1(X) ∪ {0}, where π : V \ {0} → PV is the quotient map taking 
a vector space V onto its projective space PV . We will write [v] := π(v) for the projective equivalence class 
of v ∈ V \ {0}.

7.2. Best low-rank approximations of tensors

A variety X ⊆ PV is said to be nondegenerate if X is not contained in any hyperplane. An implication 
is that its affine cone X̂ would span V , i.e., span(X̂) = V , and so any p ∈ V can be expressed as a linear 
combination p = α1x1 + · · · + αrxr with x1, . . . , xr ∈ X̂. Since, by the definition of affine cone, x ∈ X̂ iff 
αx ∈ X̂ for any α �= 0, we may in fact replace the linear combination by a sum, i.e., every p ∈ V may be 
expressed as p = x1 + · · · + xr for some x1, . . . , xr ∈ X̂.

Given an irreducible nondegenerate complex projective variety X ⊆ PV , the X-rank of a nonzero p ∈ V

is defined as

rankX(p) := min{r ∈ N : p = x1 + · · · + xr, xi ∈ X̂},

and rankX(0) := 0. The X-border rank of p, denoted by rankX(p), is the minimum integer r such that 
p is a limit of a sequence of X-rank-r points. For irreducible nondegenerate complex projective varieties 
X1, . . . , Xr ⊆ PV , the join map is defined by

J : X̂1 × · · · × X̂r → V, (x1, . . . , xr) 
→ x1 + · · · + xr.
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The Euclidean closure of the image J(X̂1 × · · · × X̂r) in V is called the join variety of X1, . . . , Xr. In 
particular, when X1 = · · · = Xr = X, we denote the image of J by Σ◦

r(X), and its Euclidean closure by 
Σr(X), often called the r-secant variety of X. Note that

Σ◦
r(X) = {p ∈ V : rankX(p) ≤ r} and Σr(X) = {p ∈ V : rankX(p) ≤ r}.

A notion closely related to secant varieties is that of a tangent variety, defined for a nonsingular projective 
variety, or more generally, for any projective variety as

τ(X) :=
⋃
x∈X

T̂x(X) or τ(X) :=
⋃

x∈X\Xsing

T̂x(X)

respectively. Here T̂x(X) is the affine tangent space of X at x [22, Section 8.1.1] and Xsing is the singular 
locus, i.e., the subvariety of singular points in X, which has measure zero (in fact, positive codimension). 
When X is nonsingular, τ(X) is an algebraic variety. When X is singular, τ(X) is a quasiaffine variety. 
By abusing terminologies slightly, we call τ(X) a tangent variety in both cases. Among the varieties in 
Section 7.1 that we are interested in, the Chow variety Chd(V ) is singular when dimV > 2 and thus so are 
the Segre–Chow, Veronese–Chow, Segre–Veronese–Chow varieties; the rest are all nonsingular varieties.

In fact, for each of the varieties listed in Section 7.1, an element A ∈ τ(X) has a normal form that is 
either well-known or straightforward to determine, i.e., we may write down an expression for an arbitrary 
A ∈ τ(X).5

Proposition 7.1. As each variety X in Section 7.1 is defined by a map, we will denote a tensor in the tangent 
space of that variety with a subscript given by the respective map. With this notation, the following is a list 
of normal forms for τ(X):

Aσ =
d∑

i=1
v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vd,

Aν = v◦(d−1) ◦ w,

Aκ =
d∑

i=1
v1 ◦ · · · ◦ vi−1 ◦ wi ◦ vi+1 ◦ · · · ◦ vd,

Aψ =
k∑

i=1
v1 ∧ · · · ∧ vi−1 ∧ wi ∧ vi+1 ∧ · · · ∧ vk,

Aσν =
m∑
i=1

v⊗d1
1 ⊗ · · · ⊗ v

⊗di−1
i−1 ⊗ (v◦(di−1)

i ◦ wi) ⊗ v
⊗di+1
i+1 ⊗ · · · ⊗ v⊗dm

m ,

Aσκ =
m∑
i=1

(v1,1 ◦ · · · ◦ vd1,1) ⊗ · · · ⊗ (v1,i−1 ◦ · · · ◦ vdi−1,i−1)

⊗
( di∑

j=1
v1,i ◦ · · · ◦ vj−1,i ◦ wj,i ◦ vj+1,i ◦ · · · ◦ vdi,i

)

⊗ (v1,i+1 ◦ · · · ◦ vdi+1,i+1) ⊗ · · · ⊗ (v1,m ◦ · · · ◦ vdm,m),

5 In general this is not possible for higher order tensors, i.e., we do not have an analogue of Jordan normal form for all d-tensors 
when d > 2; but in our case, we are restricting to a very small subset, namely, only the tensors in τ(X).
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Aσψ =
m∑
i=1

(v1,1 ∧ · · · ∧ vk1,1) ⊗ · · · ⊗ (v1,i−1 ∧ · · · ∧ vki−1,i−1)

⊗
( ki∑

j=1
v1,i ∧ · · · ∧ vj−1,i ∧ wj,i ∧ vj+1,i ∧ · · · ∧ vki,i

)

⊗ (v1,i+1 ∧ · · · ∧ vki+1,i+1) ⊗ · · · ⊗ (v1,m ∧ · · · ∧ vkm,m),

Aνκ = (v1 ◦ · · · ◦ vd)◦(k−1) ◦
( d∑

i=1
v1 ◦ · · · ◦ vi−1 ◦ wi ◦ vi+1 ◦ · · · ◦ vd

)
,

Aνψ = (v1 ∧ · · · ∧ vk)◦(d−1) ◦
( k∑

i=1
v1 ∧ · · · ∧ vi−1 ∧ wi ∧ vi+1 ∧ · · · ∧ vk

)
,

Aσνκ =
m∑
i=1

(v1,1 ◦ · · · ◦ vd1,1)⊗k1 ⊗ · · · ⊗ (v1,i−1 ◦ · · · ◦ vdi−1,i−1)⊗ki−1

⊗
[
(v1,i ◦ · · · ◦ vdi,i)◦(ki−1) ◦

( di∑
j=1

v1,i ◦ · · · ◦ vj−1,i ◦ wj,i ◦ vj+1,i ◦ · · · ◦ vdi,i

)]

⊗ (v1,i+1 ◦ · · · ◦ vdi+1,i+1)⊗ki+1 ⊗ · · · ⊗ (v1,m ◦ · · · ◦ vdm,m)⊗km ,

Aσνψ =
m∑
i=1

(v1,1 ∧ · · · ∧ vk1,1)⊗d1 ⊗ · · · ⊗ (v1,i−1 ∧ · · · ∧ vki−1,i−1)⊗di−1

⊗
[
(v1,i ∧ · · · ∧ vki,i)◦(di−1) ◦

( ki∑
j=1

v1,i ∧ · · · ∧ vj−1,i ∧ wj,i ∧ vj+1,i ∧ · · · ∧ vki,i

)]

⊗ (v1,i+1 ∧ · · · ∧ vki+1,i+1)⊗di+1 ⊗ · · · ⊗ (v1,m ∧ · · · ∧ vkm,m)⊗dm .

Proof. Let X be one of the varieties in Section 7.1. Then any A ∈ τ(X) is of the form

A = lim
t→0

γ(t) − γ(0)
t

,

where γ is any complex analytic curve γ(t) ⊆ X̂ \ {0} such that γ(t) is nonconstant around 0 and γ(0) is a 
nonsingular point in X̂. In fact, such a curve γ(t) can be written down explicitly for any X in Section 7.1. 
Let ∗ denote either ◦ or ∧. Then any point in X̂ \ {0} takes the form

(v1,1 ∗ · · · ∗ vk1,1)⊗d1 ⊗ · · · ⊗ (v1,m ∗ · · · ∗ vkm,m)⊗dm ,

and any curve γ(t) ⊂ X̂ \ {0} is of the form

γ(t) = (v1,1(t) ∗ · · · ∗ vk1,1(t))⊗d1 ⊗ · · · ⊗ (v1,m(t) ∗ · · · ∗ vkm,m(t))⊗dm ,

where vj,i(t) ∈ Vj is a complex analytic curve with vj,i(0) = vj,i. Thus

A = lim
t→0

γ(t) − γ(0)
t

= d

dt
(v1,1(t) ∗ · · · ∗ vk1,1(t))⊗d1

∣∣∣
t=0

⊗ (v1,2 ∗ · · · ∗ vk2,2)⊗d2 ⊗ · · ·

⊗ (v1,m ∗ · · · ∗ vkm,m)⊗dm + · · · + (v1,1 ∗ · · · ∗ vk1,1)⊗d1 ⊗ · · ·
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⊗ (v1,m−1 ∗ · · · ∗ vkm−1,m−1)⊗dm−1 ⊗ d

dt
(v1,m(t) ∗ · · · ∗ vkm,m(t))⊗dm

∣∣∣
t=0

=
m∑
i=1

(v1,1 ∗ · · · ∗ vk1,1)⊗d1 ⊗ · · · ⊗ (v1,i−1 ∗ · · · ∗ vki−1,i−1)⊗di−1

⊗
[
(v1,i ∗ · · · ∗ vki,i)◦(di−1) ◦

( ki∑
j=1

v1,i ∗ · · · ∗ vj−1,i ∗ wj,i ∗ vj+1,i ∗ · · · ∗ vki,i

)]

⊗ (v1,i+1 ∗ · · · ∗ vki+1,i+1)⊗di+1 ⊗ · · · ⊗ (v1,m ∗ · · · ∗ vkm,m)⊗dm

for some wj,i ∈ Vj . �
The simplest examples with rankX(A) �= rankX(A) may be found in τ(X). Note that since every tangent 

is a limit of 2-secants, we clearly have τ(X) ⊆ Σ2(X); but in general τ(X) � Σ◦
2(X). The next proposition 

gives sufficient conditions for a tensor A in Proposition 7.1 so that A ∈ τ(X) \ Σ◦
2(X), i.e.,

rankX(A) = 2 < rankX(A).

As each variety X in Section 7.1 is defined by a map, we will denote the X-rank and border X-rank of a 
variety with a subscript given by the respective map.

Proposition 7.2. Let d, k, m ≥ 3. The tensors in τ(X) for any X that is one of the varieties in Section 7.1
have X-border-rank two and X-rank strictly greater than two given the respective sufficient conditions:

(i) If {vi, wi} is linearly independent for i = 1, . . . , d, then rankσ(Aσ) = 2 < rankσ(Aσ).
(ii) If {v, w} is linearly independent, then rankν(Aν) = 2 < rankν(Aν).
(iii) If [v1], . . . , [vd], [w1], . . . , [wd] are distinct in PV , then rankκ(Aκ) = 2 < rankκ(Aκ).
(iv) If v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wk �= 0, then rankψ(Aψ) = 2 < rankψ(Aψ).
(v) If [v1], . . . , [vm], [w1], . . . , [wm] are distinct in PV , then rankσν(Aσν) = 2 < rankσν(Aσν).
(vi) If [v1,1], . . . , [vdm,m], [w1,1], . . . , [wdm,m] are distinct in PV , then rankσκ(Aσκ) = 2 < rankσκ(Aσκ).
(vii) If v1,i ∧ · · · ∧ vki,i ∧ w1,i ∧ · · · ∧ wki,i �= 0 for i = 1, . . . , m, then rankσψ(Aσψ) = 2 < rankσψ(Aσψ).
(viii) If [v1], . . . , [vd], [w1], . . . , [wd] are distinct in PV , then rankνκ(Aνκ) = 2 < rankνκ(Aνκ).
(ix) If v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wk �= 0, then rankνψ(Aνψ) = 2 < rankνψ(Aνψ).
(x) If [v1,1], . . . , [vdm,m], [w1,1], . . . , [wdm,m] are distinct in PV , then rankσνκ(Aσνκ) = 2 < rankσνκ(Aσνκ).
(xi) If v1,i ∧ · · · ∧ vki,i ∧w1,i ∧ · · · ∧wki,i �= 0 for i = 1, . . . , m, then rankσνψ(Aσνψ) = 2 < rankσνψ(Aσνψ).

Proof. Since each of these tensors in Proposition 7.1 is a limit of the form

A = lim
t→0

γ(t) − γ(0)
t

,

we must have rankX(A) ≤ 2. On the other hand, because X̂ is complete as a metric space, rankX(A) = 1 if 
and only if rankX(A) = 1. Hence requiring that rankX(A) > 1 ensures that rankX(A) > 1. That the respec-
tive sufficient condition guarantees rankX(A) > 2 for each X in Section 7.1 follows from straightforward 
linear algebra. �

Note that for each X in Section 7.1, the respective sufficient condition in Proposition 7.2 is satisfied by 
a general A ∈ τ(X).

The generic X-rank, denoted rg(X), is the minimum integer r such that Σr(X) = V . Let r, s ∈ N be 
such that 1 < r < s ≤ rg(X), and let p ∈ V with rankX(p) = s. Then p does not necessarily have a best 
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X-rank-r approximation. While such failures are well-known for Segre variety [1] and Veronese variety [23], 
we deduce from Proposition 7.2 that they occur for all varieties in Section 7.1 when the orders of the tensors 
are higher than two.

Theorem 7.3. Let X be any of the projective varieties listed in Section 7.1 and let d, k, m ≥ 3. Then there 
exist a tensor A ∈ span(X), i.e., A has the required symmetry and/or skew-symmetry, and an r < rg(X)
such that the best X-rank-r approximation of A does not exist, i.e.,

inf
rankX(B)≤r

‖A−B‖

is not attained by any tensor B ∈ span(X) with rankX(B) ≤ r.

Proof. For each projective variety X in Section 7.1, we need to exhibit a tensor A ∈ span(X) with different 
X-rank and X-border rank; in which case A will not have a best X-rank-r approximation for r = rankX(A). 
By Proposition 7.2, we see that by setting r = 2 and picking a general point A ∈ τ(X) that satisfies the 
sufficient conditions in Proposition 7.2, we obtain a tensor with no best X-rank-two approximation for each 
of the varieties X in Section 7.1. �

While Theorem 7.3 shows that the phenomenon where a tensor fails to have a best X-rank-r approxima-
tion can and does happen for every variety in Section 7.1, our next result is that such failures occur with 
probability zero, a consequence of Theorem 5.2. A high-level explanation goes as follows: When r < rg(X), 
the set of points in Σr(X) whose X-rank is r contains a Zariski open subset, and so the set of “bad points” 
in Σr(X) — those whose X-rank is not r — is contained in a subvariety; Theorem 5.2 then guarantees that 
these “bad points” are avoided almost always. A formal statement follows next.

Theorem 7.4. Let X ⊆ PV be an irreducible nondegenerate complex projective variety. Then a general point 
p ∈ V has a unique best X-rank-r approximation whenever r < rg(X).

When applied to the varieties in Section 7.1, we obtain the following corollary.

Corollary 7.5. Let V and V1, . . . , Vd be complex vector spaces.

(i) Any general tensor A ∈ V1 ⊗ · · · ⊗ Vd has a unique best rank-r approximation when r < rg
(
σ(PV1 ×

· · · × PVd)
)
, i.e.,

inf
vj,i∈Vj

∥∥∥∥A−
r∑

i=1
v1,i ⊗ · · · ⊗ vd,i

∥∥∥∥
can be attained.

(ii) Any general symmetric tensor A ∈ Sd(V ) has a unique best symmetric rank-r approximation when 
r < rg

(
ν(PV )

)
, and a unique best Chow rank-r approximation when r < rg

(
Chd(V )

)
, i.e.,

inf
vi∈V

∥∥∥∥A−
r∑

i=1
v⊗d
i

∥∥∥∥ and inf
vj,i∈V

∥∥∥∥A−
r∑

i=1
v1,i ◦ · · · ◦ vd,i

∥∥∥∥
can be attained.
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(iii) Any general alternating k-tensor A ∈ Λk(V ) has a unique best alternating rank-r approximation when 
r < rg

(
Grd(V )

)
, i.e.,

inf
vj,i∈V

∥∥∥∥A−
r∑

i=1
v1,i ∧ · · · ∧ vk,i

∥∥∥∥
can be attained.

(iv) Any general A ∈ Sd1(V ) ⊗ · · · ⊗ Sdm(V ) has a unique best Segre–Veronese rank-r approximation 
when r < rg

(
σν(PV1 × · · · × PVm)

)
, and a unique best Segre–Chow rank-r approximation when r <

rg
(
σκ(Chd1(V ) × · · · × Chdm

(V ))
)
, i.e.,

inf
vj,i∈V

∥∥∥∥A−
r∑

i=1
v⊗d1
1,i ⊗ · · · ⊗ v⊗dm

m,i

∥∥∥∥
and

inf
vj,l,i∈V

∥∥∥∥A−
r∑

i=1
(v1,1,i ◦ · · · ◦ vd1,1,i) ⊗ · · · ⊗ (v1,m,i ◦ · · · ◦ vdm,m,i)

∥∥∥∥
can be attained.

(v) Any general tensor A ∈ Λk1(V ) ⊗ · · · ⊗ Λkm(V ) has a unique best Segre–Grassmann rank-r approxi-
mation when r < rg

(
σψ(Grk1(V ) × · · · × Grkm

(V ))
)
, i.e.,

inf
vj,l,i∈V

∥∥∥∥A−
r∑

i=1

(
v1,1,i ∧ · · · ∧ vk1,1,i

)
⊗ . . .

(
v1,m,i ∧ · · · ∧ vkm,m,i

)∥∥∥∥
can be attained.

(vi) Any general tensor A ∈ Sk
(
Sd(V )

)
has a unique best Veronese–Chow rank-r approximation when 

r < rg
(
νκ(Chd(V ))

)
, i.e.,

inf
vj,i∈V

∥∥∥∥A−
r∑

i=1
(v1,i ◦ · · · ◦ vd,i)⊗k

∥∥∥∥
can be attained.

(vii) Any general tensor A ∈ Sd
(
Λk(V )

)
has a unique best Veronese–Grassmann rank-r approximation 

when r < rg
(
νψ(Grk(V ))

)
, i.e.,

inf
vj,i∈V

∥∥∥∥A−
r∑

i=1

(
v1,i ∧ · · · ∧ vk,i

)⊗d
∥∥∥∥

can be attained.
(viii) Any general tensor A ∈ Sk1

(
Sd1(V )

)
⊗ · · · ⊗ Skm

(
Sdm(V )

)
has a unique best Segre–Veronese–Chow 

rank-r approximation when r < rg
(
σνκ(Chd1(V ) × · · · × Chdm

(V ))
)
, i.e.,

inf
vj,l,i∈V

∥∥∥∥A−
r∑

i=1
(v1,1,i ◦ · · · ◦ vd1,1,i)⊗k1 ⊗ · · · ⊗ (v1,m,i ◦ · · · ◦ vdm,m,i)⊗km

∥∥∥∥
can be attained.
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(ix) Any general tensor A ∈ Sd1
(
Λk1(V )

)
⊗ · · · ⊗ Sdm

(
Λkm(V )

)
has a unique best Segre–Veronese–

Grassmann rank-r approximation when r < rg
(
σνψ(Grk1(V ) × · · · × Grkm

(V ))
)
, i.e.,

inf
vj,l,i∈V

∥∥∥∥A−
r∑

i=1
(v1,1,i ∧ · · · ∧ vk1,1,i)⊗d1 ⊗ . . . (v1,m,i ∧ · · · ∧ vkm,m,i)⊗dm

∥∥∥∥
can be attained.

8. Applications to other approximation problems

Our general existence and uniqueness result in Theorem 5.2 has implications beyond approximation by 
secant varieties in tensor spaces. In this section, we will look at some other approximation problems that 
arise in practical applications but do not fall naturally into the class of approximation problems considered 
in Section 7.2

8.1. Sparse-plus-low-rank approximations

Discussions of sparsity necessarily involve a choice of bases and so in this section we will assume that 
bases have been chosen on our vector spaces and that V1 = Cn1 , . . . , Vd = Cnd . We start by considering 
the linear subspace of k-sparse hypermatrices with a fixed sparsity pattern in Cn1 ⊗ · · · ⊗Cnd ∼= Cn1×···×nd

and leave the case where the sparsity pattern is not fixed to later. More precisely, the sparsity pattern, 
Θ ⊆ {1, . . . , n1} × · · · × {1, . . . , nd}, is a subset of the index set and

SΘ := {C ∈ Cn1×···×nd | ci1···id = 0 if (i1, . . . , id) /∈ Θ}.

In the language of functions, this is just the vector space of complex-valued functions supported on Ω.
Denote the set of hypermatrices of rank not more than r by

Rr := {B ∈ Cn1×···×nd | rank(B) ≤ r}, (16)

and recall that its closure projectivizes to the r-secant variety of the Segre variety

PRr = Σr(σ(PCn1 × · · · × PCnd)).

Given a hypermatrix A ∈ Cn1×···×nd , a best k-sparse-plus-rank-r approximation of A is a solution to the 
problem:

inf
B∈Rr, C∈SΘ

‖A− (B + C)‖. (17)

In other words, we would like study the best approximation problem whereby A is approximated by a 
hypermatrix in J

(
PRr, PS

)
. Recall that this is a join variety, as defined in Section 7.2. By Theorem 5.2, we 

may deduce the following existence and uniqueness result for such approximation problems.

Corollary 8.1. For a general complex hypermatrix A ∈ Cn1×···×nd , the problem (17) has a unique solution 
B + C such that rank(B) = r and C ∈ SΘ is a k-sparse matrix with sparsity pattern Θ.

Such scenarios where one requires a fixed sparsity arise in hypermatrix completion problems like the 
one in Section 8.2 and in statistical models like the one in Section 8.3. However, the better known 
k-sparse-plus-rank-r approximation problem as stated in [24,25] does not impose a fixed sparsity pattern 
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on C but allows it be any k-sparse hypermatrix (or matrix, if d = 2). In other words, we consider the set of 
k-sparse hypermatrices (or matrices, if d = 2)

Sk :=
⋃

#Θ=k

SΘ = {C ∈ Cn1×···×nd | ‖C‖0 ≤ k},

where ‖C‖0 counts the number of nonzero entries in C. Note that such a union will no longer be a subspace 
of Cn1×···×nd . In this case, we consider the reducible variety

⋃
#Θ=k

J
(
Σr(σ(PRr),PSΘ

)

and apply Corollary 5.6 to obtain our required existence and uniqueness result.

Corollary 8.2. For a general complex hypermatrix A ∈ Cn1×···×nd , the problem:

inf
rank(B)≤r, ‖C‖0≤k

‖A− (B + C)‖

has a unique solution B + C such that rank(B) = r and ‖C‖0 = k.

Note that in both Corollaries 8.1 and 8.2, the uniqueness applies to the solution B + C, i.e., not to B
and C individually but to their sum.

8.2. Hypermatrix completion

The discussions in this section again depend on a choice of bases and we make the same assumptions as 
in Section 8.1. Suppose we are given the values of the entries

{ai1···id | (i1, . . . , id) ∈ Θ}

of a hypermatrix A ∈ Cn1×···×nd with Θ ⊆ {1, . . . , n1} × · · · × {1, . . . , nd} a subset of the indices. Let

PΘ : Cn1×···×nd → Cn1×···×nd , A 
→
∑

(i1,...,id)∈Θ

ai1···idei1 ⊗ · · · ⊗ eid ,

be the projection onto the subspace defined by coordinates of the known entries. The problem of finding 
B ∈ Cn1×···×nd of rank at most r that attains

inf
rank(B)≤r

‖PΘ(A−B)‖ (18)

is called a best rank-r hypermatrix completion problem.6 In this situation our result implies the following.

Corollary 8.3. Let Θ ⊆ {1, . . . , n1} × · · · × {1, . . . , nd}. If the given entries {ai1···id | (i1, . . . , id) ∈ Θ} of 
a hypermatrix A ∈ Cn1×···×nd are general, then there exists a hypermatrix B ∈ Cn1×···×nd of rank r that 
solves (18). Furthermore, although B may be not unique, its entries {bi1···id | (i1, . . . , id) ∈ Θ} are unique.

6 Often called “tensor completion” but this is a misnomer since the problem clearly depends on coordinates.
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Proof. Consider the image of rank-r hypermatrices PΘ(Rr) with Rr as in (16). As PΘ(A −B) = PΘ(A) −
PΘ(B), a best rank-r hypermatrix completion problem is equivalent to approximating PΘ(A) by an element 
of PΘ(Rr). Applying Theorem 5.2 with X as the closure of PΘ(Rr) and Z = X \ PΘ(Rr), we obtain a 
unique solution PΘ(B) ∈ PΘ(Rr), i.e., there exists B of rank r that is a best rank-r completion of A. 
Note that B is not unique but two different B’s must have the same projection PΘ(B), i.e., the entries 
{bi1···id | (i1, . . . , id) ∈ Θ} are unique. �

The similarity of the best rank-r hypermatrix completion problem (18) and the best k-sparse-plus-rank-r
approximation problem (17) in Section 8.1 should not go unnoticed. For a given index set Θ, the solution 
B to (18) with Θ as the indices of known entries equals the B in (17) with Θ as the sparsity pattern and 
C ∈ ker(PΘ).

8.3. Gaussian r-factor analysis model with k observed variables

Consider a Gaussian hidden variable model with k observed variables X1, . . . , Xk and r hidden variables 
Y1, . . . , Yr where (X1, . . . , Xk, Y1, . . . , Yr) follows a joint multivariate normal distribution with positive def-
inite covariance matrix. If the observed variables are conditionally independent given the hidden variables, 
this model is called the Gaussian r-factor analysis model with k observed variables [26] and denoted by Fk,r. 
In fact, by [26, Proposition 1], Fk,r is the family of multivariate normal distributions N (μ, Σ) on Rk with 
μ ∈ Rk and Σ belonging to

Fk,r := {Ψ + LLT ∈ Rk×k | Ψ � 0 and diagonal, L ∈ Rk×r}.

The standard approach in algebraic statistics [27] and also that in [26] is to drop any semialgebraic conditions 
and complexify. In this case, it means to drop the condition Σ � 0 and regard all quantities as complex 
valued, i.e.,

Fk,r(C) = {Ψ + LLT ∈ Ck×k | Ψ diagonal, L ∈ Ck×r}.

This is the set of complexified covariance matrices for the model Fk,r and the algebraic approach undertaken 
in [26] effectively treats Fk,r(C) as the parameter space of the Gaussian r-factor analysis model with k
observed variables.

If we replace the space of matrices V ⊗W in Section 8.1 by the space of symmetric matrices S2(V ) and 
let S ⊆ S2(V ) be the subspace of diagonal matrices, then we see that

Fk,r(C) = J
(
Σr(ν2(PV )),PS

)
.

It follows from Corollary 8.1 that every general complexified covariance matrix Σ ∈ S2(V ) has a unique best 
approximation by Ψ +LLT, a complexified covariance matrix for the model Fk,r. To provide context, readers 
unfamiliar with factor analysis [28, Chapter 9] should note that its main parameter estimation problem is 
to determine the matrix of loadings L and the diagonal matrix of specific variances Ψ = diag(ψ1, . . . , ψk)
from a sample covariance matrix Σ.

8.4. Block-term tensor approximations

Our final example of finding a best approximation in a join variety brings us back to tensors. A class 
of tensor approximation problems with groundbreaking applications in signal processing is the so-called 
block-term decompositions [29]. Unlike the factor analysis application in Section 8.3, which is really a problem 
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over R but is complexified to allow techniques of algebraic statistics, the use of block-term decompositions 
as a model in signal processing is naturally and necessarily over C.

Any tensor A ∈ V1 ⊗ · · · ⊗ Vd induces a linear map Ai : V ∗
i → V1 ⊗ · · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vd. The rank 

of this linear map is of course just the dimension of its image dimAi(V ∗
i ). The multilinear rank of A is then 

defined to be the d-tuple

μrank(A) :=
(
dimA1(V ∗

1 ), . . . ,dimAd(V ∗
d )

)
and the set

Subr1,...,rd(V1 ⊗ · · · ⊗ Vd) := {A ∈ V1 ⊗ · · · ⊗ Vd | μrank(A) ≤ (r1, . . . , rd)}

is a complex algebraic variety called a subspace variety.
Given (r1,1, . . . , r1,d), . . . , (rk,1, . . . , rk,d), a tensor B ∈ V1 ⊗ · · · ⊗ Vd is said to have a block-term decom-

position if

B = B1 + · · · + Bk, μrank(Bi) ≤ (ri,1, . . . , ri,d), i = 1, . . . , k.

It is known [30,29] that the best block-term approximation problem

inf
{
‖A− (B1 + · · · + Bk)‖

∣∣ μrank(Bi) ≤ (ri,1, . . . , ri,d), i = 1, . . . , k
}

(19)

does not have a solution for certain choices of A, i.e., the infimum above cannot be attained, much like the 
tensor approximation problems we discussed in Section 7.2; an explicit example where the infimum in (19)
is unattainable for a set of tensors with nonempty interior can be found in [30].

Theorem 5.2, when applied to the join variety of k subspace varieties, gives us the following.

Corollary 8.4. Let V1, . . . , Vd be complex vector spaces. A general tensor A ∈ V1 ⊗ · · · ⊗Vd has a unique best 
approximation in the join variety

J
(
Subr1,1,...,r1,d(V1 ⊗ · · · ⊗ Vd), . . . ,Subrk,1,...,rk,d

(V1 ⊗ · · · ⊗ Vd)
)
,

i.e., the best block-term approximation problem in (19) has a unique solution.

8.5. Approximations by tensor networks

Tensor networks are tensors or functions that have separable decompositions indexed by an undirected 
graph. For example a matrix product state f ∈ L2(Ω1 ×Ω2 ×Ω3) corresponding to a triangle takes the form

f =
p,q,r∑

i,j,k=1

ϕij ⊗ ψjk ⊗ θki

where ϕij ∈ L2(Ω1), ψjk ∈ L2(Ω2), θki ∈ L2(Ω3); note that the indices i, j, k form a triangle with edges 
{i, j}, {j, k}, {k, i} (see [31] for more details). Other undirected graphs give other tensor networks, examples 
include: matrix product states (cycle graphs), tensor trains (path graphs), tree tensor network states (trees), 
projected entangled pair states (product of path graphs), etc. For a precise definition, see [31, Definition 2.1].

Tensor networks play a prominent role in quantum physics and quantum chemistry [32–37]. It is known 
that tensor networks XG corresponding to cyclic graphs G are not closed [38,39] and thus may not have 
best XG-approximation.
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Corollary 8.5. Let G be any undirected graph with d vertices and V1, . . . , Vd be complex vector spaces. If 
XG ⊆ V1 ⊗ · · · ⊗ Vd is a set of tensor network states corresponding to G. Then the best XG-approximation 
of a general tensor is unique and lies in X.

Proof. By Theorem 5.2 it is enough to show that XG contains a Zariski open subset of XG. For tensor 
networks this follows from [31, Proposition 2.6]. �

Corollary 8.5 may be extended to other variants of tensor networks such as uniform (or site-independent) 
matrix product states, which are symmetric versions of matrix product states [34]; the analogue of Corol-
lary 8.5 in this case follows from [38, Proposition 4.2].

9. Conclusion

Our study in this article demonstrates a significant difference between approximation problems over R
and over C. In the case when the approximation involves tensors, this revelation is consistent with our 
knowledge of other aspects of tensors — tensor rank, tensor spectral norm, tensor nuclear norm are all 
known to be dependent on the base field [1,40]; even the fact that the Grothendieck constants have different 
values over R and over C is a manifestation of this phenomenon [41].

The knowledge that over C, the best rank-r approximation problems for tensors and, more generally, 
any best r-term approximation problems, are well-posed except on a set of measure zero should provide 
a reasonable amount of justification for applications that depend on such approximations. In fact, such 
“almost everywhere” guarantees are about as much as one may hope for, since “everywhere” is certainly 
false — as we saw, for every single approximation problem that we considered in this article, there are 
indeed instances where best approximations do not exist.
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