Numerical multilinear algebra in data analysis (Ten ways to decompose a tensor)

Lek-Heng Lim

Stanford University

April 5, 2007

Ten ways to decompose a tensor

(1) Complete triangular decomposition
(2) Complete orthogonal decomposition
(3) Higher order singular value decomposition
(9) Higher order nonnegative matrix decomposition
(3) Outer product decomposition
(6) Nonnegative outer product decomposition
(Symmetric outer product decomposition
(8) Block outer product decomposition
(0) Kronecker product decomposition
(10) Coclustering decomposition

[^0]
Data mining in the olden days

- Spectroscopy: measure light absorption/emission of specimen as function of energy.
- Typical specimen contains 10^{13} to 10^{16} light absorbing entities or chromophores (molecules, amino acids, etc).

Fact (Beer's Law)

$A(\lambda)=-\log \left(I_{1} / I_{0}\right)=\varepsilon(\lambda) c$. $A=$ absorbance, $I_{1} / I_{0}=$ fraction of intensity of light of wavelength λ that passes through specimen, $c=$ concentration of chromophores.

- Multiple chromophores $(k=1, \ldots, r)$ and wavelengths $(i=1, \ldots, m)$ and specimens/experimental conditions $(j=1, \ldots, n)$,

$$
A\left(\lambda_{i}, s_{j}\right)=\sum_{k=1}^{r} \varepsilon_{k}\left(\lambda_{i}\right) c_{k}\left(s_{j}\right)
$$

- Bilinear model aka factor analysis: $A_{m \times n}=E_{m \times r} C_{r \times n}$ rank-revealing factorization or, in the presence of noise, low-rank approximation $\min \left\|A_{m \times n}-E_{m \times r} C_{r \times n}\right\|$.

Modern data mining

- Text mining is the spectroscopy of documents.
- Specimens = documents.
- Chromophores $=$ terms.
- Absorbance $=$ inverse document frequency:

$$
A\left(t_{i}\right)=-\log \left(\sum_{j} \chi\left(f_{i j}\right) / n\right)
$$

- Concentration $=$ term frequency: $f_{i j}$.
- $\sum_{j} \chi\left(f_{i j}\right) / n=$ fraction of documents containing t_{i}.
- $A \in \mathbb{R}^{m \times n}$ term-document matrix. $A=Q R=U \Sigma V^{\top}$ rank-revealing factorizations.
- Bilinear models:
- Gerald Salton et. al.: vector space model (QR);
- Sue Dumais et. al.: latent sematic indexing (SVD).

Bilinear models

- Bilinear models work on 'two-way' data:
- measurements on object i (genomes, chemical samples, images, webpages, consumers, etc) yield a vector $\mathbf{a}_{i} \in \mathbb{R}^{n}$ where $n=$ number of features of i;
- collection of m such objects, $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right]$ may be regarded as an m-by- n matrix, e.g. gene \times microarray matrices in bioinformatics, terms \times documents matrices in text mining, facial images \times individuals matrices in computer vision.
- Various matrix techniques may be applied to extract useful information: QR, EVD, SVD, NMF, CUR, compressed sensing techniques, etc.
- Examples: vector space model, factor analysis, principal component analysis, latent semantic indexing, PageRank, EigenFaces.
- Some problems: factor indeterminacy $-A=X Y$ rank-revealing factorization not unique; unnatural for k-way data when $k>2$.

Ubiquity of multiway data

- Batch data: batch \times time \times variable
- Time-series analysis: time \times variable \times lag
- Computer vision: people \times view \times illumination \times expression \times pixel
- Bioinformatics: gene \times microarray \times oxidative stress
- Phylogenetics: codon \times codon \times codon
- Analytical chemistry: sample \times elution time \times wavelength
- Atmospheric science: location \times variable \times time \times observation
- Psychometrics: individual \times variable \times time
- Sensory analysis: sample \times attribute \times judge
- Marketing: product \times product \times consumer

Fact (Inevitable consequence of technological advancement)

Increasingly sophisticated instruments, sensor devices, data collecting and experimental methodologies lead to increasingly complex data.

Tensors: computer scientist's definition

- Data structure: k-array $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$
- Algebraic structure:
(1) Addition/scalar multiplication: for $\llbracket b_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}, \lambda \in \mathbb{R}$,

$$
\llbracket a_{i j k} \rrbracket+\llbracket b_{i j k} \rrbracket:=\llbracket a_{i j k}+b_{i j k} \rrbracket \quad \text { and } \quad \lambda \llbracket a_{i j k} \rrbracket:=\llbracket \lambda_{i j k} \rrbracket \in \mathbb{R}^{\prime \times m \times n}
$$

(2) Multilinear matrix multiplication: for matrices $L=\left[\lambda_{i^{\prime}}\right] \in \mathbb{R}^{p \times 1}, M=\left[\mu_{j^{\prime} j}\right] \in \mathbb{R}^{q \times m}, N=\left[\nu_{k^{\prime} k}\right] \in \mathbb{R}^{r \times n}$,

$$
(L, M, N) \cdot A:=\llbracket c_{i^{\prime} j^{\prime} k^{\prime}} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{i^{\prime} j^{\prime} k^{\prime}}:=\sum_{i=1}^{\prime} \sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{i^{\prime} i} \mu_{j^{\prime} j \nu_{k^{\prime} k}} a_{i j k} .
$$

- Think of A as 3 -dimensional array of numbers. $(L, M, N) \cdot A$ as multiplication on ' 3 sides' by matrices L, M, N.
- Generalizes to arbitrary order k. If $k=2$, ie. matrix, then $(M, N) \cdot A=M A N^{\top}$.

Tensors: mathematician's definition

- U, V, W vector spaces. Think of $U \otimes V \otimes W$ as the vector space of all formal linear combinations of terms of the form $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$,

$$
\sum \alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

where $\alpha \in \mathbb{R}, \mathbf{u} \in U, \mathbf{v} \in V, \mathbf{w} \in W$.

- One condition: \otimes decreed to have the multilinear property

$$
\begin{array}{r}
\left(\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}\right) \otimes \mathbf{v} \otimes \mathbf{w}=\alpha \mathbf{u}_{1} \otimes \mathbf{v} \otimes \mathbf{w}+\beta \mathbf{u}_{2} \otimes \mathbf{v} \otimes \mathbf{w} \\
\mathbf{u} \otimes\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right) \otimes \mathbf{w}=\alpha \mathbf{u} \otimes \mathbf{v}_{1} \otimes \mathbf{w}+\beta \mathbf{u} \otimes \mathbf{v}_{2} \otimes \mathbf{w} \\
\mathbf{u} \otimes \mathbf{v} \otimes\left(\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}\right)=\alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{1}+\beta \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{2}
\end{array}
$$

- Up to a choice of bases on $U, V, W, \mathbf{A} \in U \otimes V \otimes W$ can be represented by a 3-way array $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$.

Tensors: physicist's definition

- "What are tensors?" 三"What kind of physical quantities can be represented by tensors?"
- Usual answer: if they satisfy some 'transformation rules' under a change-of-coordinates.

Theorem (Change-of-basis)

Two representations A, A^{\prime} of \mathbf{A} in different bases are related by

$$
(L, M, N) \cdot A=A^{\prime}
$$

with L, M, N respective change-of-basis matrices (non-singular).

- Pitfall: tensor fields (roughly, tensor-valued functions on manifolds) often referred to as tensors - stress tensor, piezoelectric tensor, moment-of-inertia tensor, gravitational field tensor, metric tensor, curvature tensor.

Outer product

- If $U=\mathbb{R}^{I}, V=\mathbb{R}^{m}, W=\mathbb{R}^{n}, \mathbb{R}^{\prime} \otimes \mathbb{R}^{m} \otimes \mathbb{R}^{n}$ may be identified with $\mathbb{R}^{I \times m \times n}$ if we define \otimes by

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n} .
$$

- A tensor $A \in \mathbb{R}^{I \times m \times n}$ is said to be decomposable if it can be written in the form

$$
A=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

for some $\mathbf{u} \in \mathbb{R}^{\prime}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$. For order $2, \mathbf{u} \otimes \mathbf{v}=\mathbf{u v}^{\top}$.

- In general, any $A \in \mathbb{R}^{I \times m \times n}$ may be written as a sum of decomposable tensors

$$
A=\sum_{i=1}^{r} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

- May be written as a multilinear matrix multiplication:

$$
\begin{gathered}
A=(U, V, W) \cdot \Lambda . \\
U \in \mathbb{R}^{1 \times r}, V \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{n \times r} \text { and diagonal } \Lambda \in \mathbb{R}^{r \times r \times r} .
\end{gathered}
$$

Tensor ranks

- Matrix rank. $A \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank). }
\end{aligned}
$$

- Multilinear rank. $A \in \mathbb{R}^{I \times m \times n}$. rank $_{\boxplus}(A)=\left(r_{1}(A), r_{2}(A), r_{3}(A)\right)$ where

$$
\begin{aligned}
& r_{1}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet \bullet}, \ldots, A_{/ \bullet \bullet}\right\}\right) \\
& r_{2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1 \bullet}, \ldots, A_{\bullet m \bullet}\right\}\right) \\
& r_{3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet 1}, \ldots, A_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $A \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(A)=\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

- In general, $\operatorname{rank}_{\otimes}(A) \neq r_{1}(A) \neq r_{2}(A) \neq r_{3}(A)$.

Properties of matrix rank

(1) Rank of $A \in \mathbb{R}^{m \times n}$ easy to determine (Gaussian elimination)
(2) Best rank- r approximation to $A \in \mathbb{R}^{m \times n}$ always exist (Eckart-Young theorem)
(3) Best rank- r approximation to $A \in \mathbb{R}^{m \times n}$ easy to find (singular value decomposition)
(1) Pick $A \in \mathbb{R}^{m \times n}$ at random, then A has full rank with probability 1 , ie. $\operatorname{rank}(A)=\min \{m, n\}$
(6) $\operatorname{rank}(A)$ from a non-orthogonal rank-revealing decomposition (e.g. $A=L_{1} D L_{2}^{\top}$) and $\operatorname{rank}(A)$ from an orthogonal rank-revealing decomposition (e.g. $A=Q_{1} R Q_{2}^{\top}$) are equal
(0) $\operatorname{rank}(A)$ is base field independent, ie. same value whether we regard A as an element of $\mathbb{R}^{m \times n}$ or as an element of $\mathbb{C}^{m \times n}$

Properties of outer product rank

(1) Computing $\operatorname{rank}_{\otimes}(A)$ for $A \in \mathbb{R}^{I \times m \times n}$ is NP-hard [Håstad 1990]
(2) For some $A \in \mathbb{R}^{I \times m \times n}, \operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does not have a solution
(3) When $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does have a solution, computing the solution is an NP-complete problem in general
(9) For some I, m, n, if we sample $A \in \mathbb{R}^{I \times m \times n}$ at random, there is no r such that $\operatorname{rank}_{\otimes}(A)=r$ with probability 1
(5) An outer product decomposition of $A \in \mathbb{R}^{1 \times m \times n}$ with orthogonality constraints on X, Y, Z will in general require a sum with more than rank $_{\otimes}(A)$ number of terms
(6) $\operatorname{rank}_{\otimes}(A)$ is base field dependent, ie. value depends on whether we regard $A \in \mathbb{R}^{I \times m \times n}$ or $A \in \mathbb{C}^{1 \times m \times n}$

Properties of multilinear rank

(1) Computing rank $_{\boxplus}(A)$ for $A \in \mathbb{R}^{I \times m \times n}$ is easy
(2) Solution to $\operatorname{argmin}_{\text {rank }_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ always exist
(3) Solution to $\operatorname{argmin}_{\text {rank }_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ easy to find
(9) Pick $A \in \mathbb{R}^{I \times m \times n}$ at random, then A has

$$
\operatorname{rank}_{\boxplus}(A)=(\min (I, m n), \min (m, I n), \min (n, I m))
$$

with probability 1

(5) If $A \in \mathbb{R}^{I \times m \times n}$ has rank $\boxplus(A)=\left(r_{1}, r_{2}, r_{3}\right)$. Then there exist full-rank matrices $X \in \mathbb{R}^{\prime \times r_{1}}, Y \in \mathbb{R}^{m \times r_{2}}, Z \in \mathbb{R}^{n \times r_{3}}$ and core tensor $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ such that $A=(X, Y, Z) \cdot C . X, Y, Z$ may be chosen to have orthonormal columns
(0) rank $_{\boxplus}(A)$ is base field independent, ie. same value whether we regard $A \in \mathbb{R}^{1 \times m \times n}$ or $A \in \mathbb{C}^{1 \times m \times n}$

Outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by Rasmus Bro.
- Specimens with a number of pure substances in different concentration
- $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{e m}$ of i th sample excited with light at wavelength $\lambda_{k}^{\mathrm{ex}}$.
- Get 3-way data $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get outer product decomposition of A

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r} .
$$

- Get the true chemical factors responsible for the data.
- r : number of pure substances in the mixtures,
- $\mathbf{x}_{\alpha}=\left(x_{1 \alpha}, \ldots, x_{I \alpha}\right)$: relative concentrations of α th substance in specimens $1, \ldots, l$,
- $\mathbf{y}_{\alpha}=\left(y_{1 \alpha}, \ldots, y_{m \alpha}\right)$: excitation spectrum of α th substance,
- $\mathbf{z}_{\alpha}=\left(z_{1 \alpha}, \ldots, z_{n \alpha}\right)$: emission spectrum of α th substance.
- Noisy case: find best rank- r approximation (CANDECOMP/PARAFAC).

Multilinear decomposition in bioinformatics

- Application to cell cycle studies by Alter and Omberg.
- Collection of gene-by-microarray matrices $A_{1}, \ldots, A_{I} \in \mathbb{R}^{m \times n}$ obtained under varying oxidative stress.
- $a_{i j k}=$ expression level of j th gene in k th microarray under i th stress.
- Get 3 -way data array $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get multilinear decomposition of A

$$
A=(X, Y, Z) \cdot C
$$

to get orthogonal matrices X, Y, Z and core tensor C by applying SVD to various 'flattenings' of A.

- Column vectors of X, Y, Z are 'principal components' or 'parameterizing factors' of the spaces of stress, genes, and microarrays; C governs interactions between these factors.
- Noisy case: approximate by discarding small $c_{i j k}$ (Tucker Model).

Fundamental problem of multiway data analysis

$$
\operatorname{argmin}_{\mathrm{rank}(B) \leq r}\|A-B\|
$$

Examples

(1) Outer product rank: $A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}$:

$$
\min \left\|A-\mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{z}_{r}\right\|
$$

(2) Multilinear rank: $A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}, L_{i} \in \mathbb{R}^{d_{i} \times r_{i}}$:

$$
\min \left\|A-\left(L_{1}, L_{2}, L_{3}\right) \cdot C\right\|
$$

(3) Symmetric rank: $A \in \mathrm{~S}^{k}\left(\mathbb{C}^{n}\right)$, find \mathbf{u}_{i} :

$$
\min \left\|A-\mathbf{u}_{1}^{\otimes k}-\mathbf{u}_{2}^{\otimes k}-\cdots-\mathbf{u}_{r}^{\otimes k}\right\| .
$$

(9) Nonnegative rank: $0 \leq A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i} \geq 0, \mathbf{v}_{i} \geq 0, \mathbf{w}_{i} \geq 0$.

Feature revelation

- More generally, $\mathcal{D}=$ dictionary. Minimal r with

$$
A \approx \alpha_{1} B_{1}+\cdots+\alpha_{r} B_{r} \in \mathcal{D}_{r}
$$

$B_{i} \in \mathcal{D}$ often reveal features of the dataset A.

Examples

(1) PARAFAC: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid \operatorname{rank}_{\otimes}(A) \leq 1\right\}$.
(2) Tucker: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid\right.$ rank $\left._{\boxplus}(A) \leq(1,1,1)\right\}$.
(3) De Lathauwer: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid\right.$ rank $\left._{\boxplus}(A) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\}$.
(9) ICA: $\mathcal{D}=\left\{A \in \mathrm{~S}^{k}\left(\mathbb{C}^{n}\right) \mid\right.$ rank $\left._{S}(A) \leq 1\right\}$.
(5) NTF: $\mathcal{D}=\left\{A \in \mathbb{R}_{+}^{d_{1} \times d_{2} \times d_{3}} \mid \operatorname{rank}_{+}(A) \leq 1\right\}$.

A simple result

Lemma (de Silva and Lim)

Let $r \geq 2$ and $k \geq 3$. Given the norm-topology on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, the following statements are equivalent:
(1) The set $\mathcal{S}_{r}\left(d_{1}, \ldots, d_{k}\right):=\left\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}$ is not closed.
(2) There exists $B, \operatorname{rank}_{\otimes}(B)>r$, that may be approximated arbitrarily closely by tensors of strictly lower rank, ie.

$$
\inf \left\{\|B-A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}=0
$$

(3) There exists C, rank $_{\otimes}(C)>r$, that does not have a best rank- r approximation, ie.

$$
\inf \left\{\|C-A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}
$$

is not attained (by any A with rank $_{\otimes}(A) \leq r$).

Non-existence of best low-rank approximation

Let $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}, i=1,2,3$. Let

$$
A:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

and for $n \in \mathbb{N}$,

$$
A_{n}:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes\left(\mathbf{y}_{3}-n \mathbf{x}_{3}\right)+\left(\mathbf{x}_{1}+\frac{1}{n} \mathbf{y}_{1}\right) \otimes\left(\mathbf{x}_{2}+\frac{1}{n} \mathbf{y}_{2}\right) \otimes n \mathbf{x}_{3}
$$

Lemma (de Silva and Lim)

$\operatorname{rank}_{\otimes}(A)=3$ iff $\mathbf{x}_{i}, \mathbf{y}_{i}$ linearly independent, $i=1,2,3$. Furthermore, it is clear that $\operatorname{rank}_{\otimes}\left(A_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} A_{n}=A
$$

Exercise 62, Section 4.6.4, in: D. Knuth, The art of computer programming, 2, 3rd Ed., Addison-Wesley, Reading, MA, 1997.

Bad news: outer product approximations are ill-behaved

Theorem (de Silva and Lim)

(1) Tensors failing to have a best rank-r approximation exist for
(1) all orders $k>2$,
(2) all norms and Brègman divergences,
(3) all ranks $r=2, \ldots, \min \left\{d_{1}, \ldots, d_{k}\right\}$.
(2) Tensors that fail to have best low-rank approximations occur with non-zero probability and sometimes with certainty - all $2 \times 2 \times 2$ tensors of rank 3 fail to have a best rank-2 approximation.
(3) Tensor rank can jump arbitrarily large gaps. There exists sequence of rank-r tensor converging to a limiting tensor of rank $r+s$.

Message

- That the best rank- r approximation problem for tensors has no solution poses serious difficulties.
- Incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? ie. what is the 'approximate solution' an approximate of?
- Problems near an ill-posed problem are generally ill-conditioned.
- Current way to deal with such difficulties - pretend that it doesn't matter.

Some good news: weak solutions may be characterized

- For a tensor A that has no best rank- r approximation, we will call a $C \in \overline{\left\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}}$ attaining

$$
\inf \left\{\|C-A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}
$$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(C)>r$.
Theorem (de Silva and Lim)
Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $A_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ be a sequence of tensors with $\operatorname{rank}_{\otimes}\left(A_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} A_{n}=A,
$$

where the limit is taken in any norm topology. If the limiting tensor A has rank higher than 2, then rank ${ }_{\otimes}(A)$ must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}, \mathbf{x}_{3}, \mathbf{y}_{3} \in \mathbb{R}^{d_{3}}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

More good news: nonnegative tensors are better behaved

- Let $0 \leq A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. The nonnegative rank of A is

$$
\operatorname{rank}_{+}(A):=\min \left\{r \mid \sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}, \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

Clearly, such a decomposition exists for any $A \geq 0$.
Theorem (Lim)
Let $A=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ be nonnegative. Then

$$
\inf \left\{\left\|A-\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}\right\| \mid \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

is always attained.
Corollary
Nonnegative tensor approximation always have solutions.

Algorithms

- Even when an optimal solution B_{*} to $\operatorname{argmin}_{\text {rank } \otimes}(B) \leq r\|A-B\|_{F}$ exists, B_{*} is not easy to compute since the objective function is non-convex.
- A widely used strategy is a nonlinear Gauss-Seidel algorithm, better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

$$
\begin{aligned}
& \text { initialize } X^{(0)} \in \mathbb{R}^{\prime \times r}, Y^{(0)} \in \mathbb{R}^{m \times r}, Z^{(0)} \in \mathbb{R}^{n \times r} ; \\
& \text { initialize } s^{(0)}, \varepsilon>0, k=0 ; \\
& \text { while } \rho^{(k+1)} / \rho^{(k)}>\varepsilon ; \\
& \quad X^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{x} \in \mathbb{R}^{\prime \times r}}\left\|T-\sum_{\alpha=1}^{r} \bar{x}_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k)} \otimes z_{\alpha}^{(k)}\right\|_{F}^{2} ; \\
& \quad Y^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{Y} \in \mathbb{R}^{m \times r}}\left\|T-\sum_{\alpha=1}^{r} x_{\alpha}^{(k+1)} \otimes \bar{y}_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k)}\right\|_{F}^{2} ; \\
& Z^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{Z} \in \mathbb{R}^{n \times r}}\left\|T-\sum_{\alpha=1}^{r} x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes \bar{z}_{\alpha}^{(k+1)}\right\|_{F}^{2} ; \\
& \quad \rho^{(k+1)} \leftarrow\left\|\sum_{\alpha=1}^{r}\left[x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k+1)}-x_{\alpha}^{(k)} \otimes y_{\alpha}^{(k)} \otimes z_{\alpha}^{(k)}\right]\right\|_{F}^{2} ; \\
& \quad k \leftarrow k+1 ;
\end{aligned}
$$

Convex relaxation

- Joint work with Kim-Chuan Toh.
- $F\left(x_{11}, \ldots, z_{n r}\right)=\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}^{2}$ is a polynomial.
- Lasserre/Parrilo strategy: Find largest λ^{*} such that $F-\lambda^{*}$ is a sum of squares. Then λ^{*} is often $\min F\left(x_{11}, \ldots, z_{n r}\right)$.
(1) Let \mathbf{v} be the D-tuple of monomials of degree ≤ 6. Since $\operatorname{deg}(F)$ is even, $F-\lambda$ may be written as

$$
F\left(x_{11}, \ldots, z_{n r}\right)-\lambda=\mathbf{v}^{\top}\left(M-\lambda E_{11}\right) \mathbf{v}
$$

for some $M \in \mathbb{R}^{D \times D}$.
(2) Note RHS is a sum of squares iff $M-\lambda E_{11}$ is positive semi-definite (since $M-\lambda E_{11}=B^{\top} B$).
(3) Get convex problem

$$
\begin{aligned}
\operatorname{minimize} & -\lambda \\
\text { subjected to } & \mathbf{v}^{\top}\left(S+\lambda E_{11}\right) \mathbf{v}=F, \\
& S \succeq 0 .
\end{aligned}
$$

Convex relaxation

- Complexity: for rank- r approximations to order- k tensors $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}, D=\left(\begin{array}{r}r\left(d_{1}+\cdots+d_{k}\right)+k\end{array}\right)$ - large even for moderate d_{i}, r and k.
- Sparsity: our polynomials are always sparse (eg. for $k=3$, only terms of the form $x y z$ or $x^{2} y^{2} z^{2}$ or $u v w x y z$ appear). This can be exploited.

Theorem (Reznick)

If $f(\mathbf{x})=\sum_{i=1}^{m} p_{i}(\mathbf{x})^{2}$, then the powers of the monomials in p_{i} must lie in $\frac{1}{2}$ Newton (f).

- So if $f\left(x_{11}, \ldots, z_{n r}\right)=\sum_{j=1}^{N} p_{j}\left(x_{11}, \ldots, z_{n r}\right)^{2}$, then only 1 and monomials of the form $x_{i \alpha} y_{j \alpha} z_{k \alpha}$ may occur in p_{1}, \ldots, p_{N}.
- Complexity is reduced to $r / m n+1$ from $\binom{r(I+m+n)+3}{3}$.

Exploiting semiseparability

- Joint work with Ming Gu.
- Gauss-Newton Method: $g(\mathbf{x})=\|\mathbf{f}(\mathbf{x})\|^{2}$. Approximate Hessian using Jacobian: $H_{g} \approx J_{\mathbf{f}}^{\top} J_{\mathbf{f}}$.
- The Hessian of $F(X, Y, Z)=\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}^{2}$ can be approximated by a semiseparable matrix.
- This is the case even when X, Y, Z are required to be nonnegative.
- Goal: Exploit this in optimization algorithms.

Basic multilinear algebra subroutines?

- Multilinear matrix multiplication $\left(L_{1}, \ldots, L_{k}\right) \cdot A$ is data parallel.
- GPGPU: general purpose computations on graphics hardware.
- Kirk's Law: GPU speed behaves like Moore's Law cubed.

Season	Product	Process	\# Trans	Gflops	32-bit AA Fill	Mpolys	Notes
2H97	Riva 128	. 35	3M	5	20M	3 M	Integrated 2D/3D
1H98	Riva ZX	. 25	5M	7	31 M	3M	AGP2x
2H98	Riva TNT	. 25	7 M	10	50M	6M	32-bit
1H99	TNT2	. 22	9M	15	75 M	9 M	AGP4x
2H99	GeForce	. 22	23M	25	120M	15M	hw TEL
1 H00	GF2 GTS	. 18	25M	35	200M ${ }^{1}$	25M	Per-Pixel Shading
2H00	GF2 Ultra	. 18	25M	45	250M ${ }^{1}$	31 M	230 Mhz DDR
1 H01	GeForce3	. 15	57M	80	$500 \mathrm{M}^{1}$	$30 \mathrm{M}^{2}$	Programmable

Essentially Moore's Law Cubed.

[^1]
Survey: some other results and work in progress

- Symmetric tensors
- symmetric rank can leap arbitrarily large gap [with Comon \& Mourrain]
- Multilinear spectral theory
- Perron-Frobenius theorem for tensors
- spectral hypergraph theory
- New tensor decompositions
- Kronecker product decomposition
- coclustering decomposition [with Dhillon]
- Applications
- approximate simultaneous eigenvectors [with Alter \& Sturmfels]
- nonnegative tensors in algebraic statistical biology [with Sturmfels]
- tensor decompositions for model reduction [with Pereyra]

Code of life is a $4 \times 4 \times 4$ tensor

- Codons: triplets of nucleotides, (i, j, k) where $i, j, k \in\{A, C, G, U\}$.
- Genetic code: these $4^{3}=64$ codons encode the 20 amino acids.

Second letter

Tensors in algebraic statistical biology

- Joint work with Bernd Sturmfels.

Problem

Find the polynomial equations that defines the set

$$
\left\{P \in \mathbb{C}^{4 \times 4 \times 4} \mid \operatorname{rank}_{\otimes}(P) \leq 4\right\}
$$

- Why interested? Here $P=\llbracket p_{i j k} \rrbracket$ is understood to mean 'complexified' probability density values with $i, j, k \in\{A, C, G, T\}$ and we want to study tensors that are of the form
$P=\boldsymbol{\rho}_{\boldsymbol{A}} \otimes \boldsymbol{\sigma}_{\boldsymbol{A}} \otimes \boldsymbol{\theta}_{A}+\boldsymbol{\rho}_{C} \otimes \boldsymbol{\sigma}_{C} \otimes \boldsymbol{\theta}_{C}+\boldsymbol{\rho}_{G} \otimes \boldsymbol{\sigma}_{G} \otimes \boldsymbol{\theta}_{G}+\boldsymbol{\rho}_{T} \otimes \boldsymbol{\sigma}_{\boldsymbol{T}} \otimes \boldsymbol{\theta}_{T}$,
in other words,

$$
p_{i j k}=\rho_{A i} \sigma_{A j} \theta_{A k}+\rho_{C i} \sigma_{C j} \theta_{C k}+\rho_{G i} \sigma_{G j} \theta_{G k}+\rho_{T i} \sigma_{T j} \theta_{T k} .
$$

- Why over \mathbb{C} ? Easier to deal with mathematically.
- Ultimately, want to study this over \mathbb{R}_{+}.

Conclusion

- Floating point computing is powerful and cheap
- 1 million fold increase in the last 50 years,
- potentially our best tool for analyzing massive datasets.
- Last 50 years, Numerical Linear Algebra played crucial role in:
- statistical analysis of two-way data,
- numerical solution of partial differential equations of vector fields,
- numerical solution of second-order optimization methods.
- Next step - develop Numerical Multilinear Algebra for:
- statistical analysis of multi-way data,
- numerical solution of partial differential equations of tensor fields,
- numerical solution of higher-order optimization methods.
- Goal: develop a collection of standard algorithms for higher order tensors that parallel algorithms developed for order-2 tensors.

[^0]: Idea
 rank \rightarrow rank revealing decomposition \rightarrow low-rank approximation \rightarrow data analytic model

[^1]: 1: Dual textured
 2: Programmable

