Numerical multilinear algebra in data analysis (Ten ways to decompose a tensor)

Lek-Heng Lim

Stanford University

April 5, 2007

Ten ways to decompose a tensor

- Complete triangular decomposition
- ② Complete orthogonal decomposition
- **③** Higher order singular value decomposition
- Higher order nonnegative matrix decomposition
- Outer product decomposition
- **ONE Nonnegative outer product decomposition**
- Symmetric outer product decomposition
- **8** Block outer product decomposition
- Stronecker product decomposition
- Coclustering decomposition

Idea

 $\textit{rank} \rightarrow \textit{rank} \textit{ revealing decomposition} \rightarrow \textit{low-rank approximation} \rightarrow \textit{data analytic model}$

Data mining in the olden days

- **Spectroscopy:** measure light absorption/emission of specimen as function of energy.
- Typical **specimen** contains 10¹³ to 10¹⁶ light absorbing entities or **chromophores** (molecules, amino acids, etc).

Fact (Beer's Law)

 $A(\lambda) = -\log(I_1/I_0) = \varepsilon(\lambda)c$. A = absorbance, $I_1/I_0 = fraction of$ intensity of light of wavelength λ that passes through specimen, c =concentration of chromophores.

Multiple chromophores (k = 1,..., r) and wavelengths (i = 1,..., m) and specimens/experimental conditions (j = 1,..., n),

$$A(\lambda_i, s_j) = \sum_{k=1}^r \varepsilon_k(\lambda_i) c_k(s_j).$$

• Bilinear model aka **factor analysis**: $A_{m \times n} = E_{m \times r} C_{r \times n}$ rank-revealing factorization or, in the presence of noise, low-rank approximation min $||A_{m \times n} - E_{m \times r} C_{r \times n}||$.

Modern data mining

- Text mining is the spectroscopy of documents.
- Specimens = **documents**.
- Chromophores = **terms**.
- Absorbance = inverse document frequency:

$$A(t_i) = -\log\left(\sum_j \chi(f_{ij})/n\right).$$

- Concentration = term frequency: f_{ij} .
- $\sum_{j} \chi(f_{ij})/n =$ fraction of documents containing t_i .
- A ∈ ℝ^{m×n} term-document matrix. A = QR = UΣV^T rank-revealing factorizations.
- Bilinear models:
 - Gerald Salton et. al.: vector space model (QR);
 - Sue Dumais et. al.: latent sematic indexing (SVD).

Bilinear models

- Bilinear models work on 'two-way' data:
 - ► measurements on object *i* (genomes, chemical samples, images, webpages, consumers, etc) yield a vector a_i ∈ ℝⁿ where n = number of features of *i*;
 - collection of *m* such objects, *A* = [a₁,..., a_m] may be regarded as an *m*-by-*n* matrix, e.g. gene × microarray matrices in bioinformatics, terms × documents matrices in text mining, facial images × individuals matrices in computer vision.
- Various matrix techniques may be applied to extract useful information: QR, EVD, SVD, NMF, CUR, compressed sensing techniques, etc.
- Examples: vector space model, factor analysis, principal component analysis, latent semantic indexing, PageRank, EigenFaces.
- Some problems: factor indeterminacy A = XY rank-revealing factorization not unique; unnatural for *k*-way data when k > 2.

• • • • • • • • • • • • • •

Ubiquity of multiway data

- Batch data: batch \times time \times variable
- Time-series analysis: time \times variable \times lag
- Computer vision: people \times view \times illumination \times expression \times pixel
- **Bioinformatics:** gene × microarray × oxidative stress
- Phylogenetics: $codon \times codon \times codon$
- Analytical chemistry: sample \times elution time \times wavelength
- Atmospheric science: location × variable × time × observation
- Psychometrics: individual × variable × time
- Sensory analysis: sample \times attribute \times judge
- Marketing: product × product × consumer

Fact (Inevitable consequence of technological advancement)

Increasingly sophisticated instruments, sensor devices, data collecting and experimental methodologies lead to increasingly complex data.

Tensors: computer scientist's definition

- Data structure: *k*-array $A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$
- Algebraic structure:
 - **4** Addition/scalar multiplication: for $[\![b_{ijk}]\!] \in \mathbb{R}^{l \times m \times n}$, $\lambda \in \mathbb{R}$,

 $\llbracket a_{ijk} \rrbracket + \llbracket b_{ijk} \rrbracket := \llbracket a_{ijk} + b_{ijk} \rrbracket \quad \text{and} \quad \lambda \llbracket a_{ijk} \rrbracket := \llbracket \lambda a_{ijk} \rrbracket \in \mathbb{R}^{l \times m \times n}$

2 Multilinear matrix multiplication: for matrices $L = [\lambda_{i'i}] \in \mathbb{R}^{p \times l}, M = [\mu_{j'j}] \in \mathbb{R}^{q \times m}, N = [\nu_{k'k}] \in \mathbb{R}^{r \times n},$

$$(L, M, N) \cdot A := \llbracket c_{i'j'k'} \rrbracket \in \mathbb{R}^{p \times q \times r}$$

where

$$c_{i'j'k'} := \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{i'i} \mu_{j'j} \nu_{k'k} a_{ijk}.$$

- Think of A as 3-dimensional array of numbers. $(L, M, N) \cdot A$ as multiplication on '3 sides' by matrices L, M, N.
- Generalizes to arbitrary order k. If k = 2, ie. matrix, then (M, N) ⋅ A = MAN^T.

Tensors: mathematician's definition

 U, V, W vector spaces. Think of U ⊗ V ⊗ W as the vector space of all formal linear combinations of terms of the form u ⊗ v ⊗ w,

$$\sum \alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w},$$

where $\alpha \in \mathbb{R}, \mathbf{u} \in U, \mathbf{v} \in V, \mathbf{w} \in W$.

• One condition: \otimes decreed to have the multilinear property

$$(\alpha \mathbf{u}_1 + \beta \mathbf{u}_2) \otimes \mathbf{v} \otimes \mathbf{w} = \alpha \mathbf{u}_1 \otimes \mathbf{v} \otimes \mathbf{w} + \beta \mathbf{u}_2 \otimes \mathbf{v} \otimes \mathbf{w},$$
$$\mathbf{u} \otimes (\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) \otimes \mathbf{w} = \alpha \mathbf{u} \otimes \mathbf{v}_1 \otimes \mathbf{w} + \beta \mathbf{u} \otimes \mathbf{v}_2 \otimes \mathbf{w},$$
$$\mathbf{u} \otimes \mathbf{v} \otimes (\alpha \mathbf{w}_1 + \beta \mathbf{w}_2) = \alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_1 + \beta \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_2.$$

Up to a choice of bases on U, V, W, A ∈ U ⊗ V ⊗ W can be represented by a 3-way array A = [[a_{ijk}]]^{I,m,n}_{i,i,k=1} ∈ ℝ^{I×m×n}.

Tensors: physicist's definition

- "What are tensors?" \equiv "What kind of physical quantities can be represented by tensors?"
- Usual answer: if they satisfy some 'transformation rules' under a change-of-coordinates.

Theorem (Change-of-basis)

Two representations A, A' of **A** in different bases are related by

$$(L, M, N) \cdot A = A'$$

with L, M, N respective change-of-basis matrices (non-singular).

 Pitfall: tensor fields (roughly, tensor-valued functions on manifolds) often referred to as tensors — stress tensor, piezoelectric tensor, moment-of-inertia tensor, gravitational field tensor, metric tensor, curvature tensor.

Outer product

• If $U = \mathbb{R}^l$, $V = \mathbb{R}^m$, $W = \mathbb{R}^n$, $\mathbb{R}^l \otimes \mathbb{R}^m \otimes \mathbb{R}^n$ may be identified with $\mathbb{R}^{l \times m \times n}$ if we define \otimes by

$$\mathbf{u}\otimes\mathbf{v}\otimes\mathbf{w}=\llbracket u_iv_jw_k\rrbracket_{i,j,k=1}^{l,m,n}.$$

 A tensor A ∈ ℝ^{I×m×n} is said to be decomposable if it can be written in the form

 $A = \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$

for some $\mathbf{u} \in \mathbb{R}^{l}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$. For order 2, $\mathbf{u} \otimes \mathbf{v} = \mathbf{u}\mathbf{v}^{\mathsf{T}}$.

• In general, any $A \in \mathbb{R}^{l \times m \times n}$ may be written as a sum of decomposable tensors

$$A = \sum_{i=1}^r \lambda_i \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i.$$

• May be written as a multilinear matrix multiplication:

$$A = (U, V, W) \cdot \Lambda.$$

 $U \in \mathbb{R}^{I \times r}, V \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{n \times r}$ and diagonal $\Lambda \in \mathbb{R}^{r \times r \times r}$.

Tensor ranks

• Matrix rank. $A \in \mathbb{R}^{m \times n}$

$$\begin{aligned} \operatorname{rank}(A) &= \operatorname{dim}(\operatorname{span}_{\mathbb{R}}\{A_{\bullet 1}, \dots, A_{\bullet n}\}) & (\operatorname{column rank}) \\ &= \operatorname{dim}(\operatorname{span}_{\mathbb{R}}\{A_{1\bullet}, \dots, A_{m\bullet}\}) & (\operatorname{row rank}) \\ &= \min\{r \mid A = \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}\} & (\operatorname{outer product rank}). \end{aligned}$$

• Multilinear rank. $A \in \mathbb{R}^{l \times m \times n}$. rank_{\boxplus} $(A) = (r_1(A), r_2(A), r_3(A))$ where

$$r_1(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{1\bullet\bullet}, \dots, A_{I\bullet\bullet}\})$$

$$r_2(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{\bullet1\bullet}, \dots, A_{\bulletm\bullet}\})$$

$$r_3(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{\bullet\bullet1}, \dots, A_{\bullet\bulletn}\})$$

• Outer product rank. $A \in \mathbb{R}^{l \times m \times n}$.

$$\operatorname{rank}_{\otimes}(A) = \min\{r \mid A = \sum_{i=1}^{r} \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i\}$$

• In general, $\operatorname{rank}_{\otimes}(A) \neq r_1(A) \neq r_2(A) \neq r_3(A)$.

Properties of matrix rank

- **Q** Rank of $A \in \mathbb{R}^{m \times n}$ easy to determine (Gaussian elimination)
- ② Best rank-r approximation to A ∈ ℝ^{m×n} always exist (Eckart-Young theorem)
- Sest rank-r approximation to A ∈ ℝ^{m×n} easy to find (singular value decomposition)
- Pick A ∈ ℝ^{m×n} at random, then A has full rank with probability 1, ie. rank(A) = min{m, n}
- rank(A) from a non-orthogonal rank-revealing decomposition (e.g. A = L₁DL₂^T) and rank(A) from an orthogonal rank-revealing decomposition (e.g. A = Q₁RQ₂^T) are equal
- o rank(A) is base field independent, i.e. same value whether we regard A as an element of ℝ^{m×n} or as an element of ℂ^{m×n}

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Properties of outer product rank

- **(**) Computing rank_{\otimes}(*A*) for *A* \in $\mathbb{R}^{l \times m \times n}$ is **NP-hard** [Håstad 1990]
- Solution
 Solution
- When $\operatorname{argmin}_{\operatorname{rank}_{\otimes}(B) \leq r} ||A B||_F$ does have a solution, computing the solution is an **NP-complete** problem in general
- For some *l*, *m*, *n*, if we sample A ∈ ℝ^{l×m×n} at random, there is no r such that rank_⊗(A) = r with probability 1
- Solution A constraints on X, Y, Z will in general require a sum with more than rank_⊗(A) number of terms
- o rank_⊗(A) is **base field dependent**, i.e. value depends on whether we regard A ∈ ℝ^{l×m×n} or A ∈ ℂ^{l×m×n}

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Properties of multilinear rank

- Computing rank_{\boxplus}(A) for $A \in \mathbb{R}^{l \times m \times n}$ is easy
- Solution to $\operatorname{argmin}_{\operatorname{rank}_{\boxplus}(B) \leq (r_1, r_2, r_3)} ||A B||_F$ always exist
- Solution to $\operatorname{argmin}_{\operatorname{rank}_{\mathbb{H}}(B) \leq (r_1, r_2, r_3)} ||A B||_F$ easy to find
- Pick $A \in \mathbb{R}^{l \times m \times n}$ at random, then A has

 $\operatorname{rank}_{\boxplus}(A) = (\min(I, mn), \min(m, ln), \min(n, lm))$

with probability 1

- If A ∈ ℝ^{l×m×n} has rank_⊞(A) = (r₁, r₂, r₃). Then there exist full-rank matrices X ∈ ℝ^{l×r₁}, Y ∈ ℝ^{m×r₂}, Z ∈ ℝ^{n×r₃} and core tensor C ∈ ℝ<sup>r₁×r₂×r₃ such that A = (X, Y, Z) · C. X, Y, Z may be chosen to have orthonormal columns
 </sup>
- I rank_⊞(A) is base field independent, ie. same value whether we regard A ∈ ℝ^{l×m×n} or A ∈ ℂ^{l×m×n}

- 4 回 ト 4 三 ト - 三 - シックマ

Outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by Rasmus Bro.
- Specimens with a number of pure substances in different concentration
 - a_{ijk} = fluorescence emission intensity at wavelength λ_j^{em} of *i*th sample excited with light at wavelength λ_k^{ex}.
 - Get 3-way data $A = \llbracket a_{ijk} \rrbracket \in \mathbb{R}^{l \times m \times n}$.
 - Get outer product decomposition of A

$$A = \mathbf{x}_1 \otimes \mathbf{y}_1 \otimes \mathbf{z}_1 + \dots + \mathbf{x}_r \otimes \mathbf{y}_r \otimes \mathbf{z}_r.$$

- Get the true chemical factors responsible for the data.
 - r: number of pure substances in the mixtures,
 - x_α = (x_{1α},..., x_{lα}): relative concentrations of αth substance in specimens 1,..., l,
 - $\mathbf{y}_{\alpha} = (y_{1\alpha}, \dots, y_{m\alpha})$: excitation spectrum of α th substance,
 - $\mathbf{z}_{\alpha} = (z_{1\alpha}, \dots, z_{n\alpha})$: emission spectrum of α th substance.

• Noisy case: find best rank-*r* approximation (CANDECOMP/PARAFAC).

Multilinear decomposition in bioinformatics

- Application to cell cycle studies by Alter and Omberg.
- Collection of gene-by-microarray matrices A₁,..., A_l ∈ ℝ^{m×n} obtained under varying oxidative stress.
 - a_{ijk} = expression level of *j*th gene in *k*th microarray under *i*th stress.
 - Get 3-way data array $A = \llbracket a_{ijk} \rrbracket \in \mathbb{R}^{l \times m \times n}$.
 - Get multilinear decomposition of A

$$A = (X, Y, Z) \cdot C,$$

to get orthogonal matrices X, Y, Z and core tensor C by applying SVD to various 'flattenings' of A.

- Column vectors of X, Y, Z are 'principal components' or 'parameterizing factors' of the spaces of stress, genes, and microarrays; C governs interactions between these factors.
- Noisy case: approximate by discarding small c_{ijk} (Tucker Model).

Fundamental problem of multiway data analysis

 $\operatorname{argmin}_{\operatorname{rank}(B) \leq r} \|A - B\|$

Examples

Outer product rank: $A \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, find $\mathbf{u}_i, \mathbf{v}_i, \mathbf{w}_i$:

 $\min \|A - \mathbf{u}_1 \otimes \mathbf{v}_1 \otimes \mathbf{w}_1 - \mathbf{u}_2 \otimes \mathbf{v}_2 \otimes \mathbf{w}_2 - \cdots - \mathbf{u}_r \otimes \mathbf{v}_r \otimes \mathbf{z}_r \|.$

2 Multilinear rank: $A \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, find $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$, $L_i \in \mathbb{R}^{d_i \times r_i}$:

 $\min ||A - (L_1, L_2, L_3) \cdot C||.$

Symmetric rank: $A \in S^{k}(\mathbb{C}^{n})$, find \mathbf{u}_{i} :

$$\min \|A - \mathbf{u}_1^{\otimes k} - \mathbf{u}_2^{\otimes k} - \cdots - \mathbf{u}_r^{\otimes k}\|.$$

• Nonnegative rank: $0 \le A \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, find $\mathbf{u}_i \ge 0, \mathbf{v}_i \ge 0, \mathbf{w}_i \ge 0$.

Feature revelation

• More generally, $\mathcal{D} =$ dictionary. Minimal r with

$$A \approx \alpha_1 B_1 + \cdots + \alpha_r B_r \in \mathcal{D}_r.$$

 $B_i \in \mathcal{D}$ often reveal features of the dataset A.

Examples

- **9 PARAFAC:** $\mathcal{D} = \{A \in \mathbb{R}^{d_1 \times d_2 \times d_3} \mid \mathsf{rank}_{\otimes}(A) \leq 1\}.$
- **2** Tucker: $\mathcal{D} = \{A \in \mathbb{R}^{d_1 \times d_2 \times d_3} \mid \operatorname{rank}_{\boxplus}(A) \leq (1,1,1)\}.$
- **③** De Lathauwer: $\mathcal{D} = \{A \in \mathbb{R}^{d_1 \times d_2 \times d_3} \mid \operatorname{rank}_{\boxplus}(A) \leq (r_1, r_2, r_3)\}.$
- ICA: $\mathcal{D} = \{A \in S^k(\mathbb{C}^n) \mid \operatorname{rank}_S(A) \leq 1\}.$
- **NTF:** $\mathcal{D} = \{A \in \mathbb{R}^{d_1 \times d_2 \times d_3} \mid \mathsf{rank}_+(A) \le 1\}.$

A simple result

Lemma (de Silva and Lim)

Let $r \ge 2$ and $k \ge 3$. Given the norm-topology on $\mathbb{R}^{d_1 \times \cdots \times d_k}$, the following statements are equivalent:

- The set $S_r(d_1, \ldots, d_k) := \{A \mid \operatorname{rank}_{\otimes}(A) \leq r\}$ is not closed.
- ② There exists B, rank_⊗(B) > r, that may be approximated arbitrarily closely by tensors of strictly lower rank, ie.

$$\inf\{\|B-A\| \mid \mathsf{rank}_{\otimes}(A) \leq r\} = 0.$$

There exists C, rank_⊗(C) > r, that does not have a best rank-r approximation, ie.

$$\inf\{\|C - A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\}$$

is not attained (by any A with $\operatorname{rank}_{\otimes}(A) \leq r$).

Non-existence of best low-rank approximation Let $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}$, i = 1, 2, 3. Let

$$A := \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3$$

and for $n \in \mathbb{N}$,

$$A_n := \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes (\mathbf{y}_3 - n\mathbf{x}_3) + \left(\mathbf{x}_1 + \frac{1}{n}\mathbf{y}_1\right) \otimes \left(\mathbf{x}_2 + \frac{1}{n}\mathbf{y}_2\right) \otimes n\mathbf{x}_3.$$

Lemma (de Silva and Lim)

 $\operatorname{rank}_{\otimes}(A) = 3$ iff $\mathbf{x}_i, \mathbf{y}_i$ linearly independent, i = 1, 2, 3. Furthermore, it is clear that $\operatorname{rank}_{\otimes}(A_n) \leq 2$ and

$$\lim_{n\to\infty}A_n=A.$$

Exercise 62, Section 4.6.4, in: D. Knuth, *The art of computer programming*, **2**, 3rd Ed., Addison-Wesley, Reading, MA, 1997.

Lek-Heng Lim (Stanford University) Numerical multilinear algebra in data analysis

Bad news: outer product approximations are ill-behaved

Theorem (de Silva and Lim)

Tensors failing to have a best rank-r approximation exist for

- all orders k > 2,
- all norms and Brègman divergences,
- **3** all ranks $r = 2, ..., \min\{d_1, ..., d_k\}$.
- Tensors that fail to have best low-rank approximations occur with non-zero probability and sometimes with certainty — all 2 × 2 × 2 tensors of rank 3 fail to have a best rank-2 approximation.
- **③** Tensor rank can jump arbitrarily large gaps. There exists sequence of rank-r tensor converging to a limiting tensor of rank r + s.

Message

- That the best rank-*r* approximation problem for tensors has no solution poses serious difficulties.
- Incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? ie. what is the 'approximate solution' an approximate of?
- Problems near an ill-posed problem are generally **ill-conditioned**.
- Current way to deal with such difficulties pretend that it doesn't matter.

Some good news: weak solutions may be characterized

• For a tensor A that has no best rank-r approximation, we will call a $C \in \overline{\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\}}$ attaining

 $\inf\{\|C - A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\}$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(\mathcal{C}) > r$.

Theorem (de Silva and Lim)

Let $d_1, d_2, d_3 \ge 2$. Let $A_n \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ be a sequence of tensors with $\operatorname{rank}_{\otimes}(A_n) \le 2$ and

$$\lim_{n\to\infty}A_n=A,$$

where the limit is taken in any norm topology. If the limiting tensor A has rank higher than 2, then rank_{\otimes}(A) must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_1, \mathbf{y}_1 \in \mathbb{R}^{d_1}, \mathbf{x}_2, \mathbf{y}_2 \in \mathbb{R}^{d_2}, \mathbf{x}_3, \mathbf{y}_3 \in \mathbb{R}^{d_3}$ such that

$$A = \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3.$$

More good news: nonnegative tensors are better behaved

• Let $0 \leq A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$. The nonnegative rank of A is

$$\mathsf{rank}_+(A) := \min ig\{ r \mid \sum_{i=1}^r \mathbf{u}_i \otimes \mathbf{v}_i \otimes \cdots \otimes \mathbf{z}_i, \ \mathbf{u}_i, \dots, \mathbf{z}_i \geq 0 ig\}$$

Clearly, such a decomposition exists for any $A \ge 0$.

Theorem (Lim) Let $A = \llbracket a_{j_1 \cdots j_k} \rrbracket \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ be nonnegative. Then $\inf \{ \lVert A - \sum_{i=1}^r \mathbf{u}_i \otimes \mathbf{v}_i \otimes \cdots \otimes \mathbf{z}_i \rVert \mid \mathbf{u}_i, \dots, \mathbf{z}_i \ge 0 \}$

is always attained.

Corollary

Nonnegative tensor approximation always have solutions.

Lek-Heng Lim (Stanford University) Numerical multilinear algebra in data analysis

▲ 同 ▶ → 三 ▶

Algorithms

- Even when an optimal solution B_{*} to argmin_{rank⊗(B)≤r} ||A − B||_F exists, B_{*} is not easy to compute since the objective function is non-convex.
- A widely used strategy is a nonlinear Gauss-Seidel algorithm, better known as the Alternating Least Squares algorithm:

$$\begin{array}{l} \label{eq:alpha} \hline \textbf{Algorithm: ALS for optimal rank-r approximation} \\ \hline \textbf{initialize } X^{(0)} \in \mathbb{R}^{l \times r}, Y^{(0)} \in \mathbb{R}^{m \times r}, Z^{(0)} \in \mathbb{R}^{n \times r}; \\ \hline \textbf{initialize } s^{(0)}, \varepsilon > 0, k = 0; \\ \hline \textbf{while } \rho^{(k+1)} / \rho^{(k)} > \varepsilon; \\ X^{(k+1)} \leftarrow \text{argmin}_{\bar{X} \in \mathbb{R}^{l \times r}} \| T - \sum_{\alpha=1}^{r} \bar{x}_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k)} \otimes z_{\alpha}^{(k)} \|_{F}^{2}; \\ Y^{(k+1)} \leftarrow \text{argmin}_{\bar{Y} \in \mathbb{R}^{m \times r}} \| T - \sum_{\alpha=1}^{r} x_{\alpha}^{(k+1)} \otimes \bar{y}_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k)} \|_{F}^{2}; \\ Z^{(k+1)} \leftarrow \text{argmin}_{\bar{Z} \in \mathbb{R}^{n \times r}} \| T - \sum_{\alpha=1}^{r} x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k)} \|_{F}^{2}; \\ \rho^{(k+1)} \leftarrow \| \sum_{\alpha=1}^{r} [x_{\sigma}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k)} - x_{\alpha}^{(k)} \otimes y_{\alpha}^{(k)} \otimes z_{\alpha}^{(k)}] \|_{F}^{2}; \\ k \leftarrow k + 1; \end{array}$$

Convex relaxation

- Joint work with Kim-Chuan Toh.
- $F(x_{11},...,z_{nr}) = ||A \sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}||_{F}^{2}$ is a polynomial.
- Lasserre/Parrilo strategy: Find largest λ* such that F λ* is a sum of squares. Then λ* is often min F(x₁₁,..., z_{nr}).
 - Let v be the D-tuple of monomials of degree ≤ 6. Since deg(F) is even, F − λ may be written as

$$F(x_{11},\ldots,z_{nr})-\lambda=\mathbf{v}^{\mathsf{T}}(M-\lambda E_{11})\mathbf{v}$$

for some $M \in \mathbb{R}^{D \times D}$.

- **2** Note RHS is a sum of squares iff $M \lambda E_{11}$ is positive semi-definite (since $M \lambda E_{11} = B^T B$).
- Get convex problem

$$\begin{array}{ll} \text{minimize} & -\lambda \\ \text{subjected to} & \mathbf{v}^{\mathsf{T}}(S + \lambda E_{11})\mathbf{v} = F, \\ & S \succeq 0. \end{array}$$

Convex relaxation

- **Complexity:** for rank-*r* approximations to order-*k* tensors $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$, $D = \binom{r(d_1 + \cdots + d_k) + k}{k}$ large even for moderate d_i , *r* and *k*.
- **Sparsity:** our polynomials are always sparse (eg. for k = 3, only terms of the form *xyz* or $x^2y^2z^2$ or *uvwxyz* appear). This can be exploited.

Theorem (Reznick)

If $f(\mathbf{x}) = \sum_{i=1}^{m} p_i(\mathbf{x})^2$, then the powers of the monomials in p_i must lie in $\frac{1}{2}$ Newton(f).

- So if $f(x_{11}, \ldots, z_{nr}) = \sum_{j=1}^{N} p_j(x_{11}, \ldots, z_{nr})^2$, then only 1 and monomials of the form $x_{i\alpha}y_{j\alpha}z_{k\alpha}$ may occur in p_1, \ldots, p_N .
- Complexity is reduced to rlmn + 1 from $\binom{r(l+m+n)+3}{3}$.

Exploiting semiseparability

- Joint work with Ming Gu.
- Gauss-Newton Method: g(x) = ||f(x)||². Approximate Hessian using Jacobian: H_g ≈ J_f^T J_f.
- The Hessian of $F(X, Y, Z) = ||A \sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}||_{F}^{2}$ can be approximated by a semiseparable matrix.
- This is the case even when X, Y, Z are required to be nonnegative.
- Goal: Exploit this in optimization algorithms.

Basic multilinear algebra subroutines?

- Multilinear matrix multiplication $(L_1, \ldots, L_k) \cdot A$ is data parallel.
- GPGPU: general purpose computations on graphics hardware.
- Kirk's Law: GPU speed behaves like Moore's Law cubed.

NVIDIA Graphics growth (225%/yr)

Season	Product	Process	# Trans	Gflops	32-bit AA Fill	Mpolys	Notes
2H97	Riva 128	.35	3M	5	20M	3M	Integrated 2D/3D
1H98	Riva ZX	.25	5M	7	31M	3M	AGP2x
2H98	Riva TNT	.25	7M	10	50M	6M	32-bit
1H99	TNT2	.22	9M	15	75M	9M	AGP4x
2H99	GeForce	.22	23M	25	120M	15M	HW T&L
1H00	GF2 GTS	.18	25M	35	200M1	25M	Per-Pixel Shading
2H00	GF2 Ultra	.18	25M	45	250M ¹	31M	230 Mhz DDR
1H01	GeForce3	.15	57M	80	500M1	30M ²	Programmable

Essentially Moore's Law Cubed.

1: Dual textured 2: Programmable

Survey: some other results and work in progress

Symmetric tensors

symmetric rank can leap arbitrarily large gap [with Comon & Mourrain]

Multilinear spectral theory

- Perron-Frobenius theorem for tensors
- spectral hypergraph theory

• New tensor decompositions

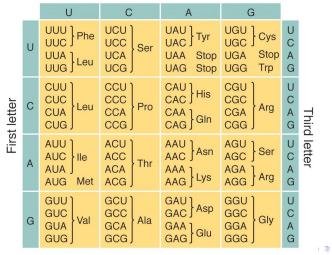
- Kronecker product decomposition
- coclustering decomposition [with Dhillon]

Applications

- approximate simultaneous eigenvectors [with Alter & Sturmfels]
- nonnegative tensors in algebraic statistical biology [with Sturmfels]
- tensor decompositions for model reduction [with Pereyra]

Code of life is a $4 \times 4 \times 4$ tensor

- **Codons:** triplets of nucleotides, (i, j, k) where $i, j, k \in \{A, C, G, U\}$.
- **Genetic code:** these $4^3 = 64$ codons encode the 20 amino acids.



Second letter

Lek-Heng Lim (Stanford University) Numerical multilinear algebra in data analysis

April 5, 2007 31 / 33

Tensors in algebraic statistical biology

• Joint work with Bernd Sturmfels.

Problem

Find the polynomial equations that defines the set

 $\{P \in \mathbb{C}^{4 \times 4 \times 4} \mid \operatorname{rank}_{\otimes}(P) \leq 4\}.$

• Why interested? Here $P = \llbracket p_{ijk} \rrbracket$ is understood to mean 'complexified' probability density values with $i, j, k \in \{A, C, G, T\}$ and we want to study tensors that are of the form

$$P = \rho_A \otimes \sigma_A \otimes \theta_A + \rho_C \otimes \sigma_C \otimes \theta_C + \rho_G \otimes \sigma_G \otimes \theta_G + \rho_T \otimes \sigma_T \otimes \theta_T,$$

in other words,

$$p_{ijk} = \rho_{Ai}\sigma_{Aj}\theta_{Ak} + \rho_{Ci}\sigma_{Cj}\theta_{Ck} + \rho_{Gi}\sigma_{Gj}\theta_{Gk} + \rho_{Ti}\sigma_{Tj}\theta_{Tk}.$$

- Why over \mathbb{C} ? Easier to deal with mathematically.
- Ultimately, want to study this over \mathbb{R}_+ .

Conclusion

- Floating point computing is powerful and cheap
 - 1 million fold increase in the last 50 years,
 - potentially our best tool for analyzing massive datasets.
- Last 50 years, Numerical Linear Algebra played crucial role in:
 - statistical analysis of two-way data,
 - numerical solution of partial differential equations of vector fields,
 - numerical solution of second-order optimization methods.
- Next step develop Numerical Multilinear Algebra for:
 - statistical analysis of multi-way data,
 - numerical solution of partial differential equations of tensor fields,
 - numerical solution of higher-order optimization methods.
- **Goal:** develop a collection of standard algorithms for higher order tensors that parallel algorithms developed for order-2 tensors.

< 回 ト < 三 ト < 三 ト