Algebraic models for higher-order correlations

Lek-Heng Lim and Jason Morton

U.C. Berkeley and Stanford Univ.

December 15, 2008

L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations

Tensors as hypermatrices

Up to choice of bases on U, V, W, a tensor $A \in U \otimes V \otimes W$ may be represented as a hypermatrix

$$\mathcal{A} = \llbracket \mathbf{a}_{ijk}
brace_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l imes m imes n}$$

where $\dim(U) = I$, $\dim(V) = m$, $\dim(W) = n$ if

- we give it coordinates;
- We ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.

Multilinear matrix multiplication

• Matrices can be multiplied on left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}$, $Y \in \mathbb{R}^{q \times n}$,

$$C = (X, Y) \cdot A = XAY^{\top} \in \mathbb{R}^{p \times q},$$

 $c_{\alpha\beta} = \sum_{i,j=1}^{m,n} x_{\alpha i} y_{\beta j} a_{ij}.$

3-tensors can be multiplied on three sides: A ∈ ℝ^{l×m×n}, X ∈ ℝ^{p×l}, Y ∈ ℝ^{q×m}, Z ∈ ℝ^{r×n},

$$\mathcal{C} = (X, Y, Z) \cdot \mathcal{A} \in \mathbb{R}^{p \times q \times r},$$
$$c_{\alpha\beta\gamma} = \sum_{i,j,k=1}^{l,m,n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{ijk}.$$

- Correspond to change-of-bases transformations for tensors.
- Define 'right' (covariant) multiplication by $(X, Y, Z) \cdot \mathcal{A} = \mathcal{A} \cdot (X^{\top}, Y^{\top}, Z^{\top}).$

Symmetric tensors

• Cubical tensor $[\![a_{ijk}]\!] \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$a_{ijk} = a_{ikj} = a_{jik} = a_{jki} = a_{kij} = a_{kji}.$$

- For order p, invariant under all permutations $\sigma \in \mathfrak{S}_p$ on indices.
- $S^{p}(\mathbb{R}^{n})$ denotes set of all order-*p* symmetric tensors.
- Symmetric multilinear matrix multiplication $\mathcal{C} = (X, X, X) \cdot \mathcal{A}$ where

$$c_{\alpha\beta\gamma} = \sum_{i,j,k=1}^{I,m,n} x_{\alpha i} x_{\beta j} x_{\gamma k} a_{ijk}.$$

Examples of symmetric tensors

- Higher order derivatives of real-valued multivariate functions.
- Moments of a vector-valued random variable $\mathbf{x} = (x_1, \dots, x_n)$:

$$\mathcal{S}_{p}(\mathbf{x}) = \left[E(x_{j_1} x_{j_2} \cdots x_{j_p}) \right]_{j_1, \dots, j_p=1}^n$$

• Cumulants of a random vector $\mathbf{x} = (x_1, \dots, x_n)$:

$$\mathcal{K}_{\rho}(\mathbf{x}) = \left[\sum_{A_1 \sqcup \cdots \sqcup A_q = \{j_1, \dots, j_p\}} (-1)^{q-1} (q-1)! E\left(\prod_{j \in A_1} x_j\right) \cdots E\left(\prod_{j \in A_q} x_j\right)\right]_{j_1, \dots, j_p = 1}^n$$

 $\mathcal{K}_p(x)$ for p = 1, 2, 3, 4 are expectation, variance, skewness, and kurtosis.

Cumulants

• In terms of log characteristic and cumulant generating functions,

$$\begin{split} \kappa_{j_{1}\cdots j_{p}}(\mathbf{x}) &= \left. \frac{\partial^{p}}{\partial t_{j_{1}}^{\alpha_{1}}\cdots\partial t_{j_{p}}^{\alpha_{p}}} \log \mathsf{E}(\exp(\langle \mathbf{t},\mathbf{x}\rangle) \right|_{\mathbf{t}=\mathbf{0}} \\ &= (-1)^{p} \frac{\partial^{p}}{\partial t_{j_{1}}^{\alpha_{1}}\cdots\partial t_{j_{p}}^{\alpha_{p}}} \log \mathsf{E}(\exp(i\langle \mathbf{t},\mathbf{x}\rangle) \right|_{\mathbf{t}=\mathbf{0}}. \end{split}$$

In terms of Edgeworth expansion,

$$\log \mathsf{E}(\exp(i\langle \mathbf{t}, \mathbf{x} \rangle) = \sum_{\alpha=0}^{\infty} i^{|\alpha|} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!}, \quad \log \mathsf{E}(\exp(\langle \mathbf{t}, \mathbf{x} \rangle) = \sum_{\alpha=0}^{\infty} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!},$$

 $\alpha = (\alpha_1, \dots, \alpha_p) \text{ is a multi-index, } \mathbf{t}^{\boldsymbol{\alpha}} = t_1^{\alpha_1} \cdots t_p^{\alpha_p}, \ \alpha! = \alpha_1! \cdots \alpha_p!.$

- For each \mathbf{x} , $\mathcal{K}_{p}(\mathbf{x}) = [\kappa_{j_{1}\cdots j_{p}}(\mathbf{x})] \in S^{p}(\mathbb{R}^{n})$ is a symmetric tensor.
- [Fisher, Wishart; 1932]

Properties of cumulants

Multilinearity: If **x** is a \mathbb{R}^n -valued random variable and $A \in \mathbb{R}^{m \times n}$

$$\mathcal{K}_{\rho}(A\mathbf{x}) = (A, \ldots, A) \cdot \mathcal{K}_{\rho}(\mathbf{x}).$$

Independence:

• If $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are mutually independent of $\mathbf{y}_1, \ldots, \mathbf{y}_k$, then

$$\mathcal{K}_{\rho}(\mathbf{x}_1+\mathbf{y}_1,\ldots,\mathbf{x}_k+\mathbf{y}_k)=\mathcal{K}_{\rho}(\mathbf{x}_1,\ldots,\mathbf{x}_k)+\mathcal{K}_{\rho}(\mathbf{y}_1,\ldots,\mathbf{y}_k).$$

If I and J partition {j₁,..., j_n} so that x_I and x_J are independent, then

$$\kappa_{j_1\cdots j_n}(\mathbf{x})=0.$$

Gaussian: If **x** is multivariate normal, then $\mathcal{K}_p(\mathbf{x}) = 0$ for all $p \ge 3$. Support: There are no distributions where

$$\mathcal{K}_p(\mathbf{x}) egin{cases}
eq 0 & 3 \leq p \leq n, \\
eq 0 & p > n. \end{cases}$$

Estimation of cumulants

- How do we estimate $\mathcal{K}_{p}(\mathbf{x})$ given multiple observations of \mathbf{x} ?
- Central and non-central moments are

$$\hat{m}_n = \frac{1}{n} \sum_t (x_t - \bar{x})^n, \quad \hat{s}_n = \frac{1}{n} \sum_t x_t^n, \quad \text{etc.}$$

• Cumulant estimator $\hat{\mathcal{K}}_{p}(\mathbf{x})$ for p=1,2,3,4 given by

$$\begin{split} \hat{\kappa}_{i} &= \hat{m}_{i} = \frac{1}{n} \hat{s}_{i} \\ \hat{\kappa}_{ij} &= \frac{n}{n-1} \hat{m}_{ij} = \frac{1}{n-1} (\hat{s}_{ij} - \frac{1}{n} \hat{s}_{i} \hat{s}_{j}) \\ \hat{\kappa}_{ijk} &= \frac{n}{(n-1)(n-2)} \hat{m}_{ijk} = \frac{n}{(n-1)(n-2)} [\hat{s}_{ijk} - \frac{1}{n} (\hat{s}_{i} \hat{s}_{jk} + \hat{s}_{j} \hat{s}_{ik} + \hat{s}_{k} \hat{s}_{ij}) + \frac{2}{n^{2}} \hat{s}_{i} \hat{s}_{j} \hat{s}_{k}] \\ \hat{\kappa}_{ijk\ell} &= \frac{n^{2}}{(n-1)(n-2)(n-3)} [(n+1) \hat{m}_{ijk\ell} - (n-1) (\hat{m}_{ij} \hat{m}_{k\ell} + \hat{m}_{ik} \hat{m}_{j\ell} + \hat{m}_{i\ell} \hat{m}_{jk})] \\ &= \frac{n}{(n-1)(n-2)(n-3)} [(n+1) \hat{s}_{ijk\ell} - \frac{n+1}{n} (\hat{s}_{i} \hat{s}_{jk\ell} + \hat{s}_{j} \hat{s}_{ik\ell} + \hat{s}_{k} \hat{s}_{ij\ell} + \hat{s}_{\ell} \hat{s}_{ijk}) \\ &- \frac{n-1}{n} (\hat{s}_{ij} \hat{s}_{k\ell} + \hat{s}_{i\ell} \hat{s}_{j\ell} + \hat{s}_{i\ell} \hat{s}_{jk}) + \hat{s}_{i}^{2} (\hat{s}_{jk} + \hat{s}_{j\ell} + \hat{s}_{k\ell}) \\ &+ \hat{s}_{j}^{2} (\hat{s}_{ik} + \hat{s}_{i\ell} + \hat{s}_{k\ell}) + \hat{s}_{k}^{2} (\hat{s}_{ij} + \hat{s}_{i\ell} + \hat{s}_{j\ell}) + \hat{s}_{\ell}^{2} (\hat{s}_{ij} + \hat{s}_{ik} + \hat{s}_{jk}) \\ &- \frac{6}{n^{2}} \hat{s}_{i} \hat{s}_{j} \hat{s}_{k} \hat{s}_{\ell}]. \end{split}$$

Factor analysis

Linear generative model

$$\mathbf{y} = A\mathbf{s} + arepsilon$$

noise $\varepsilon \in \mathbb{R}^m$, factor loadings $A \in \mathbb{R}^{m \times r}$, hidden factors $\mathbf{s} \in \mathbb{R}^r$, observed data $\mathbf{y} \in \mathbb{R}^m$.

- Do not know A, s, ε, but need to recover s and sometimes A from multiple observations of y.
- Time series of observations, get matrices $Y = [\mathbf{y}_1, \dots, \mathbf{y}_n]$, $S = [\mathbf{s}_1, \dots, \mathbf{s}_n]$, $E = [\varepsilon_1, \dots, \varepsilon_n]$, and

$$Y = AS + E.$$

Factor analysis: Recover A and S from Y by a low-rank matrix approximation $Y \approx AS$

Principal and independent components analysis

Principal components analysis: s Gaussian,

$$\hat{\mathcal{K}}_2(\mathbf{y}) = Q \Lambda_2 Q^\top = (Q, Q) \cdot \Lambda_2,$$

 $\Lambda_2 \approx \hat{\mathcal{K}}_2(\mathbf{s})$ diagonal matrix, $Q \in O(n, r)$, [Pearson; 1901].

Independent components analysis: ${\bf s}$ statistically independent entries, ${\boldsymbol \varepsilon}$ Gaussian

$$\hat{\mathcal{K}}_p(\mathbf{y}) = (Q, \ldots, Q) \cdot \Lambda_p, \quad p = 2, 3, \ldots,$$

 $\Lambda_{
ho} pprox \hat{\mathcal{K}}_{
ho}(\mathbf{s})$ diagonal tensor, $Q \in \mathsf{O}(n,r)$, [Comon; 1994].

What if

- s not Gaussian, e.g. power-law distributed data in social networks.
- s not independent, e.g. functional components in neuroimaging.
- ε not white noise, e.g. idiosyncratic factors in financial modelling.

Principal cumulant components analysis

• Note that if $oldsymbol{arepsilon} = oldsymbol{0}$, then

$$\mathcal{K}_{p}(\mathbf{y}) = \mathcal{K}_{p}(Q\mathbf{s}) = (Q, \ldots, Q) \cdot \mathcal{K}_{p}(\mathbf{s}).$$

 In general, want principal components that account for variation in all cumulants simultaneously

$$\min_{Q\in \mathsf{O}(n,r), \, \mathcal{C}_{p}\in\mathsf{S}^{p}(\mathbb{R}^{r})} \sum_{p=1}^{\infty} \alpha_{p} \|\hat{\mathcal{K}}_{p}(\mathbf{y}) - (Q, \ldots, Q) \cdot \mathcal{C}_{p}\|_{F}^{2},$$

- $C_p \approx \hat{\mathcal{K}}_p(\mathbf{s})$ not necessarily diagonal.
- Appears intractable: optimization over infinite-dimensional manifold

$$O(n,r) \times \prod_{p=1}^{\infty} S^p(\mathbb{R}^r).$$

• Surprising relaxation: optimization over a single Grassmannian Gr(n, r) of dimension r(n - r),

$$\max_{\boldsymbol{Q}\in\mathsf{Gr}(\boldsymbol{n},\boldsymbol{r})}\sum_{\boldsymbol{p}=1}^{\infty}\alpha_{\boldsymbol{p}}\|\hat{\mathcal{K}}_{\boldsymbol{p}}(\mathbf{y})\cdot(\boldsymbol{Q},\ldots,\boldsymbol{Q})\|_{F}^{2}.$$

• In practice $\infty = 3$ or 4.

Geometric insights

- Secants of Veronese in S^p(ℝⁿ) not closed, not irreducible, difficult to study.
- Symmetric subspace variety in S^p(ℝⁿ) closed, irreducible, easy to study.
- Stiefel manifold O(n, r): set of n × r real matrices with orthonormal columns. O(n, n) = O(n), usual orthogonal group.
- Grassman manifold Gr(n, r): set of equivalence classes of O(n, r) under left multiplication by O(n).

• Parameterization of
$$S^{p}(\mathbb{R}^{n})$$
 via

$$\operatorname{Gr}(n,r) \times \operatorname{S}^{p}(\mathbb{R}^{r}) \to \operatorname{S}^{p}(\mathbb{R}^{n}).$$

More generally

$$\operatorname{Gr}(n,r) \times \prod_{p=1}^{\infty} \operatorname{S}^{p}(\mathbb{R}^{r}) \to \prod_{p=1}^{\infty} \operatorname{S}^{p}(\mathbb{R}^{n}).$$

From Stieffel to Grassmann

• Given
$$\mathcal{A} \in \mathsf{S}^p(\mathbb{R}^n)$$
, some $r \ll n$, want

$$\min_{X \in O(n,r), C \in S^{p}(\mathbb{R}^{r})} \|\mathcal{A} - (X, \ldots, X) \cdot \mathcal{C}\|_{F},$$

- Unlike approximation by secants of Veronese, subspace approximation problem always has an globally optimal solution.
- Equivalent to

 $\max_{X \in \mathcal{O}(n,r)} \| (X^{\top}, \ldots, X^{\top}) \cdot \mathcal{A} \|_{F} = \max_{X \in \mathcal{O}(n,r)} \| \mathcal{A} \cdot (X, \ldots, X) \|_{F}.$

• Problem defined on a Grassmannian since

$$\|\mathcal{A}\cdot(X,\ldots,X)\|_{\mathcal{F}}=\|\mathcal{A}\cdot(XQ,\ldots,XQ)\|_{\mathcal{F}},$$

for any $Q \in O(r)$. Only the subspaces spanned by X matters.

Equivalent to

$$\max_{X\in Gr(n,r)} \left\|\mathcal{A}\cdot(X,\ldots,X)\right\|_{F}$$

Once we have optimal X_{*} ∈ Gr(n, r), may obtain C_{*} ∈ S^p(ℝ^r) up to O(n)-equivalence,

$$\mathcal{C}_* = (X_*^{ op}, \dots, X_*^{ op}) \cdot \mathcal{A}_*$$

Coordinate-cycling heuristics

 Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for minimizing

$$\Psi(X,Y,Z) = \|\mathcal{A}\cdot(X,Y,Z)\|_F^2$$

for $A \in \mathbb{R}^{l \times m \times n}$ cycling between X, Y, Z and solving a least squares problem at each iteration.

• What if $\mathcal{A} \in \mathsf{S}^3(\mathbb{R}^n)$ and

$$\Phi(X) = \|\mathcal{A} \cdot (X, X, X)\|_F^2?$$

• Present approach: disregard symmetry of A, solve $\Psi(X, Y, Z)$, set

$$X_* = Y_* = Z_* = (X_* + Y_* + Z_*)/3$$

upon final iteration.

• Better: L-BFGS on Grassmannian.

Newton/quasi-Newton on a Grassmannian

- Objective Φ : Gr $(n, r) \rightarrow \mathbb{R}$, $\Phi(X) = \|\mathcal{A} \cdot (X, X, X)\|_{F}^{2}$.
- T_X tangent space at $X \in Gr(n, r)$

$$\mathbb{R}^{n \times r} \ni \Delta \in \mathbf{T}_X \qquad \Longleftrightarrow \qquad \Delta^\top X = 0$$

Compute Grassmann gradient ∇Φ ∈ T_X.
 Compute Hessian or update Hessian approximation

$$H: \Delta \in \mathbf{T}_X \to H\Delta \in \mathbf{T}_X.$$

3 At $X \in Gr(n, r)$, solve

$$H\Delta = -\nabla \Phi$$

for search direction Δ .

- Update iterate X: Move along geodesic from X in the direction given by Δ.
- [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.; 2008].

Picture

◆□> ◆□> ◆豆> ◆豆> □ 豆

BFGS on Grassmannian

The BFGS update

$$H_{k+1} = H_k - \frac{H_k \mathbf{s}_k \mathbf{s}_k^\top H_k}{\mathbf{s}_k^\top H_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\top}{\mathbf{y}_k^\top \mathbf{y}_k}$$

where

$$\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k = t_k \mathbf{p}_k,$$
$$\mathbf{y}_k = \nabla f_{k+1} - \nabla f_k.$$

On Grassmannian the vectors are defined on different points belonging to different tangent spaces.

Different ways of parallel transporting vectors

 $X\in {
m Gr}({\it n},{\it r}),\ \Delta_1,\Delta_2\in {f T}_X$ and X(t) geodesic path along Δ_1

• Parallel transport using global coordinates

$$\Delta_2(t)=T_{\Delta_1}(t)\Delta_2$$

we have also

$$\Delta_1 = X_\perp D_1$$
 and $\Delta_2 = X_\perp D_2$

where X_{\perp} basis for \mathbf{T}_X . Let $X(t)_{\perp}$ be basis for $\mathbf{T}_{X(t)}$.

Parallel transport using local coordinates

$$\Delta_2(t) = X(t)_\perp D_2.$$

18 / 28

Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in the basis $X(t)_{\perp}$ at all points on the path X(t).

Plus: No need to transport the gradient or the Hessian.

Minus: Need to compute $X(t)_{\perp}$.

In global coordinate we compute

•
$$\mathbf{T}_{k+1} \ni \mathbf{s}_k = t_k T_{\Delta_k}(t_k) \mathbf{p}_k$$

• $\mathbf{T}_{k+1} \ni \mathbf{y}_k = \nabla f_{k+1} - T_{\Delta_k}(t_k) \nabla f_k$
• $T_{\Delta_k}(t_k) H_k T_{\Delta_k}^{-1}(t_k) : \mathbf{T}_{k+1} \longrightarrow \mathbf{T}_{k+1}$

$$H_{k+1} = H_k - \frac{H_k \mathbf{s}_k \mathbf{s}_k^\top H_k}{\mathbf{s}_k^\top H_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\top}{\mathbf{y}_k^\top \mathbf{y}_k}$$

BFGS

Compact representation of BFGS in Euclidean space:

$$H_{k} = H_{0} + \begin{bmatrix} S_{k} & H_{0}Y_{k} \end{bmatrix} \begin{bmatrix} R_{k}^{-\top}(D_{k} + Y_{k}^{\top}H_{0}Y_{k})R_{k}^{-1} & -R_{k}^{-\top} \\ -R_{k}^{-1} & 0 \end{bmatrix} \begin{bmatrix} S_{k}^{\top} \\ Y_{k}^{\top}H_{0} \end{bmatrix}$$

where

$$S_{k} = [\mathbf{s}_{0}, \dots, \mathbf{s}_{k-1}],$$

$$Y_{k} = [\mathbf{y}_{0}, \dots, \mathbf{y}_{k-1}],$$

$$D_{k} = \operatorname{diag} \begin{bmatrix} \mathbf{s}_{0}^{\top} \mathbf{y}_{0}, \dots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1} \end{bmatrix},$$

$$R_{k} = \begin{bmatrix} \mathbf{s}_{0}^{\top} \mathbf{y}_{0} & \mathbf{s}_{0}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{0}^{\top} \mathbf{y}_{k-1} \\ 0 & \mathbf{s}_{1}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{1}^{\top} \mathbf{y}_{k-1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1} \end{bmatrix}$$

.

L-BFGS

Limited memory BFGS [Byrd et al; 1994]. Replace H_0 by $\gamma_k I$ and keep the *m* most resent \mathbf{s}_j and \mathbf{y}_j ,

$$H_{k} = \gamma_{k}I + \begin{bmatrix} S_{k} & \gamma_{k}Y_{k} \end{bmatrix} \begin{bmatrix} R_{k}^{-\top}(D_{k} + \gamma_{k}Y_{k}^{\top}Y_{k})R_{k}^{-1} & -R_{k}^{-\top} \\ -R_{k}^{-1} & 0 \end{bmatrix} \begin{bmatrix} S_{k}^{\top} \\ \gamma_{k}Y_{k}^{\top} \end{bmatrix}$$

where

$$S_{k} = [\mathbf{s}_{k-m}, \dots, \mathbf{s}_{k-1}],$$

$$Y_{k} = [\mathbf{y}_{k-m}, \dots, \mathbf{y}_{k-1}],$$

$$D_{k} = \operatorname{diag} \begin{bmatrix} \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m}, \dots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1} \end{bmatrix},$$

$$R_{k} = \begin{bmatrix} \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m} & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-1} \\ 0 & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1} \end{bmatrix}.$$

L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations

3

L-BFGS on the Grassmannian

In each iteration, parallel transport vectors in S_k and Y_k to T_k, ie.
 perform

$$\bar{S}_k = TS_k, \qquad \bar{Y}_k = TY_k$$

where T is the transport matrix.

• No need to modify R_k or D_k

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle T\mathbf{u}, T\mathbf{v} \rangle$$

where $\mathbf{u}, \mathbf{v} \in \mathbf{T}_k$ and $T\mathbf{u}, T\mathbf{v} \in \mathbf{T}_{k+1}$.

- *H_k* nonsingular, Hessian is singular. No problem *T_k* at *x_k* is invariant subspace of *H_k*, ie. if *v* ∈ *T_k* then *H_kv* ∈ *T_k*.
- [Savas, L.; 2008]

Convergence

• Compares favorably with Alternating Least Squares.

December 15, 2008 23 / 28

Higher order eigenfaces

Principal cumulant subspaces supplement varimax subspace from PCA. Take face recognition for example, **eigenfaces** (p = 2) becomes **skewfaces** (p = 3) and **kurtofaces** (p = 4).

- Eigenfaces: given image \times pixel matrix $A \in \mathbb{R}^{m \times n}$ with centered columns where $m \ll n$.
- Eigenvectors of pixel × pixel covariance matrix K₂^{pixel} ∈ S²(ℝⁿ) are the eigenfaces.
- For efficiency, compute image × image covariance matrix $\mathcal{K}_2^{\text{image}} \in \mathsf{S}^2(\mathbb{R}^m)$ instead.
- SVD $A = U\Sigma V^{\top}$ gives both implicitly,

$$\mathcal{K}_{2}^{\text{image}} = \frac{1}{n} (A^{\top}, A^{\top}) \cdot \mathcal{I}_{2} = \frac{1}{n} A^{\top} A = \frac{1}{n} V \Lambda V^{\top},$$

$$\mathcal{K}_{2}^{\text{pixel}} = \frac{1}{n} (A, A) \cdot \mathcal{I}_{2} = \frac{1}{m} A A^{\top} = \frac{1}{m} U \Lambda U^{\top}.$$

• Orthonormal columns of U, eigenvectors of $n\mathcal{K}_2^{\mathsf{pixel}}$, are the eigenfaces.

3

Computing image and pixel skewness

- Want to implicitly compute K^{pixel}₃ ∈ S³(ℝⁿ), third cumulant tensor of the pixels (huge).
- Just need projector Π onto the subspace of skewfaces that best explain $\mathcal{K}_3^{pixel}.$
- Let $A = U \Sigma V^{\top}$, $U \in O(n, m)$, $\Sigma \in \mathbb{R}^{m \times m}$, $V \in O(m)$.

$$\begin{split} \mathcal{K}_{3}^{\mathsf{pixel}} &= \frac{1}{m}(A, A, A) \cdot \mathcal{I}_{m} \\ &= \frac{1}{m}(U, U, U) \cdot (\Sigma, \Sigma, \Sigma) \cdot (V^{\top}, V^{\top}, V^{\top}) \cdot \mathcal{I}_{m} \\ \mathcal{K}_{3}^{\mathsf{image}} &= \frac{1}{n}(A^{\top}, A^{\top}, A^{\top}) \cdot \mathcal{I}_{n} \\ &= \frac{1}{n}(V, V, V) \cdot (\Sigma, \Sigma, \Sigma) \cdot (U^{\top}, U^{\top}, U^{\top}) \cdot \mathcal{I}_{n} \end{split}$$

• $\mathcal{I}_n = [\![\delta_{ijk}]\!] \in S^3(\mathbb{R}^n)$ is the 'Kronecker delta tensor', i.e. $\delta_{ijk} = 1$ iff i = j = k and $\delta_{ijk} = 0$ otherwise.

Computing skewmax projection

• Define
$$\mathcal{A} \in \mathsf{S}^3(\mathbb{R}^m)$$
 by

$$\mathcal{A} = (\Sigma, \Sigma, \Sigma) \cdot (V^{\top}, V^{\top}, V^{\top}) \cdot \mathcal{I}_m$$

• Want $Q \in O(m, s)$ and core tensor $C \in S^3(\mathbb{R}^s)$ not necessarily diagonal, so that $\mathcal{A} \approx (Q, Q, Q) \cdot C$ and thus

$$\mathcal{K}_3^{\mathsf{pixel}} pprox rac{1}{m}(U,U,U) \cdot (Q,Q,Q) \cdot \mathcal{C} = rac{1}{m}(UQ,UQ,UQ) \cdot \mathcal{C}.$$

Solve

$$\min_{Q \in \mathcal{O}(m,s), \mathcal{C} \in \mathcal{S}^{3}(\mathbb{R}^{s})} \| \mathcal{A} - (Q, Q, Q) \cdot \mathcal{C} \|_{F}$$

- Π = UQ ∈ O(n, s) is our orthonormal-column projection matrix onto the 'skewmax' subspace.
- Caveat: Q only determined up to O(s)-equivalence. Not a problem if we are just interested in the associated subspace or its projector.

Combining eigen-, skew-, and kurto-faces

Combine information from multiple cumulants:

- Same procedure for the kurtosis tensor (a little more complicated).
- Say we keep the first *r* eigenfaces (columns of *U*), *s* skewfaces, and *t* kurtofaces. Their span is our optimal subspace.
- These three subspaces may overlap; orthogonalize the resulting r + s + t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

- first r vectors best explain the pixel covariance $\mathcal{K}_2^{\mathsf{pixel}} \in \mathsf{S}^2(\mathbb{R}^n)$,
- next s vectors, with $W_{1:r}$, best explain the pixel skewness $\mathcal{K}_3^{\mathsf{pixel}} \in \mathsf{S}^3(\mathbb{R}^n)$,
- last t vectors, with $W_{1:r+s}$, best explain pixel kurtosis $\mathcal{K}_4^{\mathsf{pixel}} \in \mathsf{S}^4(\mathbb{R}^n)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Jason Morton, "Algebraic models for multilinear dependence," SAMSI Workshop on *Algebraic Statistical Models*, Research Triangle Park, NC, January 15–17, 2009.

Thanks:

- J.M. Landsberg
- Berkant Savas