Algebraic models for higher-order correlations

Lek-Heng Lim and Jason Morton

U.C. Berkeley and Stanford Univ.

December 15, 2008

Tensors as hypermatrices

Up to choice of bases on U, V, W, a tensor $A \in U \otimes V \otimes W$ may be represented as a hypermatrix

$$
\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}
$$

where $\operatorname{dim}(U)=I, \operatorname{dim}(V)=m, \operatorname{dim}(W)=n$ if
(1) we give it coordinates;
(2) we ignore covariance and contravariance.

Henceforth, tensor $=$ hypermatrix.

Multilinear matrix multiplication

- Matrices can be multiplied on left and right: $A \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{p \times m}$, $Y \in \mathbb{R}^{q \times n}$,

$$
\begin{aligned}
C & =(X, Y) \cdot A=X A Y^{\top} \in \mathbb{R}^{p \times q}, \\
c_{\alpha \beta} & =\sum_{i, j=1}^{m, n} x_{\alpha i} y_{\beta j} a_{i j} .
\end{aligned}
$$

- 3-tensors can be multiplied on three sides: $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}, X \in \mathbb{R}^{p \times I}$, $Y \in \mathbb{R}^{q \times m}, Z \in \mathbb{R}^{r \times n}$,

$$
\begin{aligned}
\mathcal{C} & =(X, Y, Z) \cdot \mathcal{A} \in \mathbb{R}^{p \times q \times r}, \\
c_{\alpha \beta \gamma} & =\sum_{i, j, k=1}^{l, m, n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{i j k}
\end{aligned}
$$

- Correspond to change-of-bases transformations for tensors.
- Define 'right' (covariant) multiplication by $(X, Y, Z) \cdot \mathcal{A}=\mathcal{A} \cdot\left(X^{\top}, Y^{\top}, Z^{\top}\right)$.

Symmetric tensors

- Cubical tensor $\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$
a_{i j k}=a_{i k j}=a_{j j k}=a_{j k i}=a_{k i j}=a_{k j i} .
$$

- For order p, invariant under all permutations $\sigma \in \mathfrak{S}_{p}$ on indices.
- $\mathrm{S}^{p}\left(\mathbb{R}^{n}\right)$ denotes set of all order- p symmetric tensors.
- Symmetric multilinear matrix multiplication $\mathcal{C}=(X, X, X) \cdot \mathcal{A}$ where

$$
c_{\alpha \beta \gamma}=\sum_{i, j, k=1}^{l, m, n} x_{\alpha i} x_{\beta j} x_{\gamma k} a_{i j k} .
$$

Examples of symmetric tensors

- Higher order derivatives of real-valued multivariate functions.
- Moments of a vector-valued random variable $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\mathcal{S}_{p}(\mathbf{x})=\left[E\left(x_{j_{1}} x_{j_{2}} \cdots x_{j_{p}}\right)\right]_{j_{1}, \ldots, j_{p}=1}^{n}
$$

- Cumulants of a random vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\mathcal{K}_{p}(\mathbf{x})=\left[\sum_{A_{1} \sqcup \ldots \sqcup A_{q}=\left\{j_{1}, \ldots, j_{p}\right\}}(-1)^{q-1}(q-1)!E\left(\prod_{j \in A_{1}} x_{j}\right) \cdots E\left(\prod_{j \in A_{q}} x_{j}\right)\right]_{j_{1}, \ldots, j_{p}=1}^{n} .
$$

$\mathcal{K}_{p}(x)$ for $p=1,2,3,4$ are expectation, variance, skewness, and kurtosis.

Cumulants

- In terms of log characteristic and cumulant generating functions,

$$
\begin{aligned}
\kappa_{j_{1} \cdots j_{p}}(\mathbf{x}) & =\frac{\partial^{p}}{\partial t_{j_{1}}^{\alpha_{1}} \cdots \partial t_{j_{p}}^{\alpha_{p}}} \log \mathbf{E}\left(\left.\exp (\langle\mathbf{t}, \mathbf{x}\rangle)\right|_{\mathbf{t}=\mathbf{0}}\right. \\
& =(-1)^{p} \frac{\partial^{p}}{\partial t_{j_{1}}^{\alpha_{1}} \cdots \partial t_{j_{p}}^{\alpha_{p}}} \log \mathbf{E}\left(\left.\exp (i\langle\mathbf{t}, \mathbf{x}\rangle)\right|_{\mathbf{t}=\mathbf{0}}\right.
\end{aligned}
$$

- In terms of Edgeworth expansion,

$$
\log \mathbf{E}\left(\exp (i\langle\mathbf{t}, \mathbf{x}\rangle)=\sum_{\alpha=0}^{\infty} i^{|\alpha|} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!}, \quad \log \mathbf{E}\left(\exp (\langle\mathbf{t}, \mathbf{x}\rangle)=\sum_{\alpha=0}^{\infty} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!},\right.\right.
$$

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ is a multi-index, $\mathbf{t}^{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{p}^{\alpha_{p}}, \alpha!=\alpha_{1}!\cdots \alpha_{p}!$.

- For each $\mathbf{x}, \mathcal{K}_{p}(\mathbf{x})=\left[\kappa_{j_{1} \cdots j_{p}}(\mathbf{x})\right] \in S^{p}\left(\mathbb{R}^{n}\right)$ is a symmetric tensor.
- [Fisher, Wishart; 1932]

Properties of cumulants

Multilinearity: If \mathbf{x} is a \mathbb{R}^{n}-valued random variable and $A \in \mathbb{R}^{m \times n}$

$$
\mathcal{K}_{p}(A \mathbf{x})=(A, \ldots, A) \cdot \mathcal{K}_{p}(\mathbf{x})
$$

Independence: - If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are mutually independent of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}$, then

$$
\mathcal{K}_{p}\left(\mathbf{x}_{1}+\mathbf{y}_{1}, \ldots, \mathbf{x}_{k}+\mathbf{y}_{k}\right)=\mathcal{K}_{p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)+\mathcal{K}_{p}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right) .
$$

- If I and J partition $\left\{j_{1}, \ldots, j_{n}\right\}$ so that \mathbf{x}_{I} and \mathbf{x}_{J} are independent, then

$$
\kappa_{j_{1} \cdots j_{n}}(\mathbf{x})=0
$$

Gaussian: If \mathbf{x} is multivariate normal, then $\mathcal{K}_{p}(\mathbf{x})=0$ for all $p \geq 3$. Support: There are no distributions where

$$
\mathcal{K}_{p}(\mathbf{x}) \begin{cases}\neq 0 & 3 \leq p \leq n \\ =0 & p>n\end{cases}
$$

Estimation of cumulants

- How do we estimate $\mathcal{K}_{p}(\mathbf{x})$ given multiple observations of \mathbf{x} ?
- Central and non-central moments are

$$
\hat{m}_{n}=\frac{1}{n} \sum_{t}\left(x_{t}-\bar{x}\right)^{n}, \quad \hat{s}_{n}=\frac{1}{n} \sum_{t} x_{t}^{n}, \quad \text { etc. }
$$

- Cumulant estimator $\hat{\mathcal{K}}_{p}(\mathbf{x})$ for $p=1,2,3,4$ given by

$$
\begin{aligned}
\hat{\kappa}_{i}= & \hat{m}_{i}=\frac{1}{n} \hat{s}_{i} \\
\hat{\kappa}_{i j}= & \frac{n}{n-1} \hat{m}_{i j}=\frac{1}{n-1}\left(\hat{s}_{i j}-\frac{1}{n} \hat{s}_{i} \hat{s}_{j}\right) \\
\hat{\kappa}_{i j k}= & \frac{n^{2}}{(n-1)(n-2)} \hat{m}_{i j k}=\frac{n}{(n-1)(n-2)}\left[\hat{s}_{i j k}-\frac{1}{n}\left(\hat{s}_{i} \hat{s}_{j k}+\hat{s}_{j} \hat{s}_{i k}+\hat{s}_{k} \hat{s}_{i j}\right)+\frac{2}{n^{2}} \hat{s}_{i} \hat{s}_{j} \hat{s}_{k}\right] \\
\hat{\kappa}_{i j k \ell}= & \frac{n^{2}}{(n-1)(n-2)(n-3)}\left[(n+1) \hat{m}_{i j k \ell}-(n-1)\left(\hat{m}_{i j} \hat{m}_{k \ell}+\hat{m}_{i k} \hat{m}_{j \ell}+\hat{m}_{i \ell} \hat{m}_{j k}\right)\right] \\
= & \frac{n}{(n-1)(n-2)(n-3)}\left[(n+1) \hat{s}_{i j \ell}-\frac{n+1}{n}\left(\hat{s}_{i} \hat{s}_{j k \ell}+\hat{s}_{j} \hat{s}_{i k \ell}+\hat{s}_{k} \hat{s}_{i j \ell}+\hat{s}_{\ell} \hat{s}_{i j k}\right)\right. \\
& \quad-\frac{n-1}{n}\left(\hat{s}_{i j} \hat{s}_{k \ell}+\hat{s}_{i k} \hat{s}_{j \ell}+\hat{s}_{i \ell} \hat{s}_{j k}\right)+\hat{s}_{i}^{2}\left(\hat{s}_{j k}+\hat{s}_{j \ell}+\hat{s}_{k \ell}\right) \\
& \quad+\hat{s}_{j}^{2}\left(\hat{s}_{i k}+\hat{s}_{i \ell}+\hat{s}_{k \ell}\right)+\hat{s}_{k}^{2}\left(\hat{s}_{i j}+\hat{s}_{i \ell}+\hat{s}_{j \ell}\right)+\hat{s}_{\ell}^{2}\left(\hat{s}_{i j}+\hat{s}_{i k}+\hat{s}_{j k}\right) \\
& \left.\quad-\frac{6}{n^{2}} \hat{s}_{i} \hat{s}_{j} \hat{s}_{k} \hat{s}_{\ell}\right] .
\end{aligned}
$$

Factor analysis

- Linear generative model

$$
\mathbf{y}=A \mathbf{s}+\varepsilon
$$

noise $\varepsilon \in \mathbb{R}^{m}$, factor loadings $A \in \mathbb{R}^{m \times r}$, hidden factors $\mathbf{s} \in \mathbb{R}^{r}$, observed data $\mathbf{y} \in \mathbb{R}^{m}$.

- Do not know $A, \mathbf{s}, \varepsilon$, but need to recover \mathbf{s} and sometimes A from multiple observations of \mathbf{y}.
- Time series of observations, get matrices $Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right]$, $S=\left[\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right], E=\left[\varepsilon_{1}, \ldots, \varepsilon_{n}\right]$, and

$$
Y=A S+E
$$

Factor analysis: Recover A and S from Y by a low-rank matrix approximation $Y \approx A S$

Principal and independent components analysis

Principal components analysis: s Gaussian,

$$
\hat{\mathcal{K}}_{2}(\mathbf{y})=Q \Lambda_{2} Q^{\top}=(Q, Q) \cdot \Lambda_{2}
$$

$\Lambda_{2} \approx \hat{\mathcal{K}}_{2}(\mathbf{s})$ diagonal matrix, $Q \in O(n, r)$, [Pearson; 1901]. Independent components analysis: \mathbf{s} statistically independent entries, ε Gaussian

$$
\hat{\mathcal{K}}_{p}(\mathbf{y})=(Q, \ldots, Q) \cdot \Lambda_{p}, \quad p=2,3, \ldots
$$

$$
\Lambda_{p} \approx \hat{\mathcal{K}}_{p}(\mathbf{s}) \text { diagonal tensor, } Q \in \mathrm{O}(n, r),[\text { Comon; 1994] }
$$

What if

- s not Gaussian, e.g. power-law distributed data in social networks.
- s not independent, e.g. functional components in neuroimaging.
- ε not white noise, e.g. idiosyncratic factors in financial modelling.

Principal cumulant components analysis

- Note that if $\varepsilon=\mathbf{0}$, then

$$
\mathcal{K}_{p}(\mathbf{y})=\mathcal{K}_{p}(Q \mathbf{s})=(Q, \ldots, Q) \cdot \mathcal{K}_{p}(\mathbf{s})
$$

- In general, want principal components that account for variation in all cumulants simultaneously

$$
\min _{Q \in \mathrm{O}(n, r), \mathcal{C}_{p} \in \mathrm{~S}^{\rho}\left(\mathbb{R}^{r}\right)} \sum_{p=1}^{\infty} \alpha_{p}\left\|\hat{\mathcal{K}}_{p}(\mathbf{y})-(Q, \ldots, Q) \cdot \mathcal{C}_{p}\right\|_{F}^{2}
$$

- $\mathcal{C}_{p} \approx \hat{\mathcal{K}}_{p}(\mathbf{s})$ not necessarily diagonal.
- Appears intractable: optimization over infinite-dimensional manifold

$$
\mathrm{O}(n, r) \times \prod_{p=1}^{\infty} \mathrm{S}^{p}\left(\mathbb{R}^{r}\right)
$$

- Surprising relaxation: optimization over a single Grassmannian $\operatorname{Gr}(n, r)$ of dimension $r(n-r)$,

$$
\max _{Q \in \operatorname{Gr}(n, r)} \sum_{p=1}^{\infty} \alpha_{p}\left\|\hat{\mathcal{K}}_{p}(\mathbf{y}) \cdot(Q, \ldots, Q)\right\|_{F}^{2}
$$

- In practice $\infty=3$ or 4 .

Geometric insights

- Secants of Veronese in $S^{p}\left(\mathbb{R}^{n}\right)$ - not closed, not irreducible, difficult to study.
- Symmetric subspace variety in $S^{p}\left(\mathbb{R}^{n}\right)$ - closed, irreducible, easy to study.
- Stiefel manifold $O(n, r)$: set of $n \times r$ real matrices with orthonormal columns. $\mathrm{O}(n, n)=\mathrm{O}(n)$, usual orthogonal group.
- Grassman manifold $\operatorname{Gr}(n, r)$: set of equivalence classes of $\mathrm{O}(n, r)$ under left multiplication by $\mathrm{O}(n)$.
- Parameterization of $S^{P}\left(\mathbb{R}^{n}\right)$ via

$$
\operatorname{Gr}(n, r) \times \mathrm{S}^{p}\left(\mathbb{R}^{r}\right) \rightarrow \mathrm{S}^{p}\left(\mathbb{R}^{n}\right)
$$

- More generally

$$
\operatorname{Gr}(n, r) \times \prod_{p=1}^{\infty} \mathrm{S}^{p}\left(\mathbb{R}^{r}\right) \rightarrow \prod_{p=1}^{\infty} \mathrm{S}^{p}\left(\mathbb{R}^{n}\right)
$$

From Stieffel to Grassmann

- Given $\mathcal{A} \in S^{P}\left(\mathbb{R}^{n}\right)$, some $r \ll n$, want

$$
\min _{X \in \mathrm{O}(n, r), \mathcal{C} \in \mathrm{S}^{p}\left(\mathbb{R}^{r}\right)}\|\mathcal{A}-(X, \ldots, X) \cdot \mathcal{C}\|_{F}
$$

- Unlike approximation by secants of Veronese, subspace approximation problem always has an globally optimal solution.
- Equivalent to

$$
\max _{X \in \mathrm{O}(n, r)}\left\|\left(X^{\top}, \ldots, X^{\top}\right) \cdot \mathcal{A}\right\|_{F}=\max _{X \in \mathrm{O}(n, r)}\|\mathcal{A} \cdot(X, \ldots, X)\|_{F}
$$

- Problem defined on a Grassmannian since

$$
\|\mathcal{A} \cdot(X, \ldots, X)\|_{F}=\|\mathcal{A} \cdot(X Q, \ldots, X Q)\|_{F}
$$

for any $Q \in \mathrm{O}(r)$. Only the subspaces spanned by X matters.

- Equivalent to

$$
\max _{X \in \operatorname{Gr}(n, r)}\|\mathcal{A} \cdot(X, \ldots, X)\|_{F}
$$

- Once we have optimal $X_{*} \in \operatorname{Gr}(n, r)$, may obtain $\mathcal{C}_{*} \in \operatorname{S}^{p}\left(\mathbb{R}^{r}\right)$ up to $\mathrm{O}(n)$-equivalence,

$$
\mathcal{C}_{*}=\left(X_{*}^{\top}, \ldots, X_{*}^{\top}\right) \cdot \mathcal{A}
$$

Coordinate-cycling heuristics

- Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for minimizing

$$
\Psi(X, Y, Z)=\|\mathcal{A} \cdot(X, Y, Z)\|_{F}^{2}
$$

for $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$ cycling between X, Y, Z and solving a least squares problem at each iteration.

- What if $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$ and

$$
\Phi(X)=\|\mathcal{A} \cdot(X, X, X)\|_{F}^{2} ?
$$

- Present approach: disregard symmetry of \mathcal{A}, solve $\Psi(X, Y, Z)$, set

$$
X_{*}=Y_{*}=Z_{*}=\left(X_{*}+Y_{*}+Z_{*}\right) / 3
$$

upon final iteration.

- Better: L-BFGS on Grassmannian.

Newton/quasi-Newton on a Grassmannian

- Objective $\Phi: \operatorname{Gr}(n, r) \rightarrow \mathbb{R}, \Phi(X)=\|\mathcal{A} \cdot(X, X, X)\|_{F}^{2}$.
- \mathbf{T}_{X} tangent space at $X \in \operatorname{Gr}(n, r)$

$$
\mathbb{R}^{n \times r} \ni \Delta \in \mathbf{T}_{X} \quad \Longleftrightarrow \quad \Delta^{\top} X=0
$$

(1) Compute Grassmann gradient $\nabla \Phi \in \mathbf{T}_{X}$.
(2) Compute Hessian or update Hessian approximation

$$
H: \Delta \in \mathbf{T}_{X} \rightarrow H \Delta \in \mathbf{T}_{X} .
$$

(3) At $X \in \operatorname{Gr}(n, r)$, solve

$$
H \Delta=-\nabla \Phi
$$

for search direction Δ.
(9) Update iterate X : Move along geodesic from X in the direction given by Δ.

- [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.; 2008].

Picture

BFGS on Grassmannian

The BFGS update

$$
H_{k+1}=H_{k}-\frac{H_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{\top} H_{k}}{\mathbf{s}_{k}^{\top} H_{k} \mathbf{s}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{y}_{k}}
$$

where

$$
\begin{aligned}
& \mathbf{s}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k}=t_{k} \mathbf{p}_{k}, \\
& \mathbf{y}_{k}=\nabla f_{k+1}-\nabla f_{k} .
\end{aligned}
$$

On Grassmannian the vectors are defined on different points belonging to different tangent spaces.

Different ways of parallel transporting vectors

$X \in \operatorname{Gr}(n, r), \Delta_{1}, \Delta_{2} \in \mathbf{T}_{X}$ and $X(t)$ geodesic path along Δ_{1}

- Parallel transport using global coordinates

$$
\Delta_{2}(t)=T_{\Delta_{1}}(t) \Delta_{2}
$$

we have also

$$
\Delta_{1}=X_{\perp} D_{1} \quad \text { and } \quad \Delta_{2}=X_{\perp} D_{2}
$$

where X_{\perp} basis for \mathbf{T}_{X}. Let $X(t)_{\perp}$ be basis for $\mathbf{T}_{X(t)}$.

- Parallel transport using local coordinates

$$
\Delta_{2}(t)=X(t)_{\perp} D_{2}
$$

Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in the basis $X(t)_{\perp}$ at all points on the path $X(t)$.

Plus: No need to transport the gradient or the Hessian.
Minus: Need to compute $X(t)_{\perp}$.
In global coordinate we compute

- $\mathbf{T}_{k+1} \ni \mathbf{s}_{k}=t_{k} T_{\Delta_{k}}\left(t_{k}\right) \mathbf{p}_{k}$
- $\mathbf{T}_{k+1} \ni \mathbf{y}_{k}=\nabla f_{k+1}-T_{\Delta_{k}}\left(t_{k}\right) \nabla f_{k}$
- $T_{\Delta_{k}}\left(t_{k}\right) H_{k} T_{\Delta_{k}}^{-1}\left(t_{k}\right): \mathbf{T}_{k+1} \longrightarrow \mathbf{T}_{k+1}$

$$
H_{k+1}=H_{k}-\frac{H_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{\top} H_{k}}{\mathbf{s}_{k}^{\top} H_{k} \mathbf{s}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{y}_{k}}
$$

BFGS

Compact representation of BFGS in Euclidean space:

$$
H_{k}=H_{0}+\left[\begin{array}{ll}
S_{k} & H_{0} Y_{k}
\end{array}\right]\left[\begin{array}{cc}
R_{k}^{-\top}\left(D_{k}+Y_{k}^{\top} H_{0} Y_{k}\right) R_{k}^{-1} & -R_{k}^{-\top} \\
-R_{k}^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
S_{k}^{\top} \\
Y_{k}^{\top} H_{0}
\end{array}\right]
$$

where

$$
\begin{aligned}
S_{k} & =\left[\mathbf{s}_{0}, \ldots, \mathbf{s}_{k-1}\right], \\
Y_{k} & =\left[\mathbf{y}_{0}, \ldots, \mathbf{y}_{k-1}\right], \\
D_{k} & =\operatorname{diag}\left[\mathbf{s}_{0}^{\top} \mathbf{y}_{0}, \ldots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}\right], \\
R_{k} & =\left[\begin{array}{cccc}
\mathbf{s}_{0}^{\top} \mathbf{y}_{0} & \mathbf{s}_{0}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{0}^{\top} \mathbf{y}_{k-1} \\
0 & \mathbf{s}_{1}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{1}^{\top} \mathbf{y}_{k-1} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}
\end{array}\right]
\end{aligned}
$$

L-BFGS

Limited memory BFGS [Byrd et al; 1994]. Replace H_{0} by $\gamma_{k} l$ and keep the m most resent \mathbf{s}_{j} and \mathbf{y}_{j},

$$
H_{k}=\gamma_{k} I+\left[\begin{array}{ll}
S_{k} & \gamma_{k} Y_{k}
\end{array}\right]\left[\begin{array}{cc}
R_{k}^{-\top}\left(D_{k}+\gamma_{k} Y_{k}^{\top} Y_{k}\right) R_{k}^{-1} & -R_{k}^{-\top} \\
-R_{k}^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
S_{k}^{\top} \\
\gamma_{k} Y_{k}^{\top}
\end{array}\right]
$$

where

$$
\left.\begin{array}{rl}
S_{k} & =\left[\mathbf{s}_{k-m}, \ldots, \mathbf{s}_{k-1}\right], \\
Y_{k} & =\left[\mathbf{y}_{k-m}, \ldots, \mathbf{y}_{k-1}\right], \\
D_{k} & =\operatorname{diag}\left[\mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m}, \ldots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}\right]
\end{array}\right] \begin{array}{cccc}
\mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m} & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-1} \\
0 & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-1} \\
\vdots & & \ddots & \vdots \\
R_{k} & =\left[\begin{array}{ccc}
\mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}
\end{array}\right] .
\end{array}
$$

L-BFGS on the Grassmannian

- In each iteration, parallel transport vectors in S_{k} and Y_{k} to \mathbf{T}_{k}, ie. perform

$$
\bar{S}_{k}=T S_{k}, \quad \bar{Y}_{k}=T Y_{k}
$$

where T is the transport matrix.

- No need to modify R_{k} or D_{k}

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\langle T \mathbf{u}, T \mathbf{v}\rangle
$$

where $\mathbf{u}, \mathbf{v} \in \mathbf{T}_{k}$ and $T \mathbf{u}, T \mathbf{v} \in \mathbf{T}_{k+1}$.

- H_{k} nonsingular, Hessian is singular. No problem \mathbf{T}_{k} at \mathbf{x}_{k} is invariant subspace of H_{k}, ie. if $\mathbf{v} \in \mathbf{T}_{k}$ then $H_{k} \mathbf{v} \in \mathbf{T}_{k}$.
- [Savas, L.; 2008]

Convergence

- Compares favorably with Alternating Least Squares.

Higher order eigenfaces

Principal cumulant subspaces supplement varimax subspace from PCA. Take face recognition for example, eigenfaces $(p=2)$ becomes skewfaces $(p=3)$ and kurtofaces $(p=4)$.

- Eigenfaces: given image \times pixel matrix $A \in \mathbb{R}^{m \times n}$ with centered columns where $m \ll n$.
- Eigenvectors of pixel \times pixel covariance matrix $\mathcal{K}_{2}^{\text {pixel }} \in S^{2}\left(\mathbb{R}^{n}\right)$ are the eigenfaces.
- For efficiency, compute image \times image covariance matrix $\mathcal{K}_{2}^{\text {image }} \in \mathrm{S}^{2}\left(\mathbb{R}^{m}\right)$ instead.
- SVD $A=U \Sigma V^{\top}$ gives both implicitly,

$$
\begin{aligned}
\mathcal{K}_{2}^{\text {image }} & =\frac{1}{n}\left(A^{\top}, A^{\top}\right) \cdot \mathcal{I}_{2}=\frac{1}{n} A^{\top} A=\frac{1}{n} V \Lambda V^{\top} \\
\mathcal{K}_{2}^{\text {pixel }} & =\frac{1}{n}(A, A) \cdot \mathcal{I}_{2}=\frac{1}{m} A A^{\top}=\frac{1}{m} U \Lambda U^{\top}
\end{aligned}
$$

- Orthonormal columns of U, eigenvectors of $n \mathcal{K}_{2}^{\text {pixel }}$, are the eigenfaces.

Computing image and pixel skewness

- Want to implicitly compute $\mathcal{K}_{3}^{\text {pixel }} \in S^{3}\left(\mathbb{R}^{n}\right)$, third cumulant tensor of the pixels (huge).
- Just need projector Π onto the subspace of skewfaces that best explain $\mathcal{K}_{3}^{\text {pixel }}$.
- Let $A=U \Sigma V^{\top}, U \in O(n, m), \Sigma \in \mathbb{R}^{m \times m}, V \in O(m)$.

$$
\begin{aligned}
\mathcal{K}_{3}^{\text {pixel }} & =\frac{1}{m}(A, A, A) \cdot \mathcal{I}_{m} \\
& =\frac{1}{m}(U, U, U) \cdot(\Sigma, \Sigma, \Sigma) \cdot\left(V^{\top}, V^{\top}, V^{\top}\right) \cdot \mathcal{I}_{m} \\
\mathcal{K}_{3}^{\text {image }} & =\frac{1}{n}\left(A^{\top}, A^{\top}, A^{\top}\right) \cdot \mathcal{I}_{n} \\
& =\frac{1}{n}(V, V, V) \cdot(\Sigma, \Sigma, \Sigma) \cdot\left(U^{\top}, U^{\top}, U^{\top}\right) \cdot \mathcal{I}_{n}
\end{aligned}
$$

- $\mathcal{I}_{n}=\llbracket \delta_{i j k} \rrbracket \in \mathrm{~S}^{3}\left(\mathbb{R}^{n}\right)$ is the 'Kronecker delta tensor', i.e. $\delta_{i j k}=1$ iff $i=j=k$ and $\delta_{i j k}=0$ otherwise.

Computing skewmax projection

- Define $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{m}\right)$ by

$$
\mathcal{A}=(\Sigma, \Sigma, \Sigma) \cdot\left(V^{\top}, V^{\top}, V^{\top}\right) \cdot \mathcal{I}_{m}
$$

- Want $Q \in O(m, s)$ and core tensor $\mathcal{C} \in S^{3}\left(\mathbb{R}^{s}\right)$ not necessarily diagonal, so that $\mathcal{A} \approx(Q, Q, Q) \cdot \mathcal{C}$ and thus

$$
\mathcal{K}_{3}^{\text {pixel }} \approx \frac{1}{m}(U, U, U) \cdot(Q, Q, Q) \cdot \mathcal{C}=\frac{1}{m}(U Q, U Q, U Q) \cdot \mathcal{C}
$$

- Solve

$$
\min _{Q \in \mathrm{O}(m, s), \mathcal{C} \in \mathrm{S}^{3}\left(\mathbb{R}^{s}\right)}\|\mathcal{A}-(Q, Q, Q) \cdot \mathcal{C}\|_{F}
$$

- $\Pi=U Q \in \mathrm{O}(n, s)$ is our orthonormal-column projection matrix onto the 'skewmax' subspace.
- Caveat: Q only determined up to $O(s)$-equivalence. Not a problem if we are just interested in the associated subspace or its projector.

Combining eigen-, skew-, and kurto-faces

Combine information from multiple cumulants:

- Same procedure for the kurtosis tensor (a little more complicated).
- Say we keep the first r eigenfaces (columns of U), s skewfaces, and t kurtofaces. Their span is our optimal subspace.
- These three subspaces may overlap; orthogonalize the resulting $r+s+t$ column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

- first r vectors best explain the pixel covariance $\mathcal{K}_{2}^{\text {pixel }} \in \mathrm{S}^{2}\left(\mathbb{R}^{n}\right)$,
- next s vectors, with $W_{1: r}$, best explain the pixel skewness $\mathcal{K}_{3}^{\text {pixel }} \in S^{3}\left(\mathbb{R}^{n}\right)$,
- last t vectors, with $W_{1: r+s}$, best explain pixel kurtosis $\mathcal{K}_{4}^{\text {pixel }} \in S^{4}\left(\mathbb{R}^{n}\right)$.

Advertisement and acknowledgement

Jason Morton, "Algebraic models for multilinear dependence," SAMSI Workshop on Algebraic Statistical Models, Research Triangle Park, NC, January 15-17, 2009.

Thanks:

- J.M. Landsberg
- Berkant Savas

