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Tensors as hypermatrices

Up to choice of bases on U,V ,W , a tensor A ∈ U ⊗ V ⊗W may be
represented as a hypermatrix

A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

where dim(U) = l , dim(V ) = m, dim(W ) = n if

1 we give it coordinates;

2 we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Multilinear matrix multiplication

Matrices can be multiplied on left and right: A ∈ Rm×n, X ∈ Rp×m,
Y ∈ Rq×n,

C = (X ,Y ) · A = XAY> ∈ Rp×q,

cαβ =
∑m,n

i ,j=1
xαiyβjaij .

3-tensors can be multiplied on three sides: A ∈ Rl×m×n, X ∈ Rp×l ,
Y ∈ Rq×m, Z ∈ Rr×n,

C = (X ,Y ,Z ) · A ∈ Rp×q×r ,

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .

Correspond to change-of-bases transformations for tensors.

Define ‘right’ (covariant) multiplication by
(X ,Y ,Z ) · A = A · (X>,Y>,Z>).
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Symmetric tensors

Cubical tensor JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

For order p, invariant under all permutations σ ∈ Sp on indices.

Sp(Rn) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X ,X ,X ) · A where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαixβjxγkaijk .
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Examples of symmetric tensors

Higher order derivatives of real-valued multivariate functions.

Moments of a vector-valued random variable x = (x1, . . . , xn):

Sp(x) =
[
E (xj1xj2 · · · xjp )

]n
j1,...,jp=1

.

Cumulants of a random vector x = (x1, . . . , xn):

Kp(x) =

 ∑
A1t···tAq={j1,...,jp}

(−1)q−1(q − 1)!E

( ∏
j∈A1

xj

)
· · ·E

( ∏
j∈Aq

xj

)n

j1,...,jp=1

.

Kp(x) for p = 1, 2, 3, 4 are expectation, variance, skewness, and
kurtosis.
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Cumulants

In terms of log characteristic and cumulant generating functions,

κj1···jp (x) =
∂p

∂tα1
j1
· · · ∂t

αp

jp

log E(exp(〈t, x〉)
∣∣∣∣
t=0

= (−1)p ∂p

∂tα1
j1
· · · ∂t

αp

jp

log E(exp(i〈t, x〉)
∣∣∣∣
t=0

.

In terms of Edgeworth expansion,

log E(exp(i〈t, x〉) =
∞∑
α=0

i |α|κα(x)
tα

α!
, log E(exp(〈t, x〉) =

∞∑
α=0

κα(x)
tα

α!
,

α = (α1, . . . , αp) is a multi-index, tα = tα1
1 · · · t

αp
p , α! = α1! · · ·αp!.

For each x, Kp(x) = [κj1···jp (x)] ∈ Sp(Rn) is a symmetric tensor.

[Fisher, Wishart; 1932]
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Properties of cumulants

Multilinearity: If x is a Rn-valued random variable and A ∈ Rm×n

Kp(Ax) = (A, . . . ,A) · Kp(x).

Independence: If x1, . . . , xk are mutually independent of y1, . . . , yk ,
then

Kp(x1+y1, . . . , xk+yk) = Kp(x1, . . . , xk)+Kp(y1, . . . , yk).

If I and J partition {j1, . . . , jn} so that xI and xJ are
independent, then

κj1···jn(x) = 0.

Gaussian: If x is multivariate normal, then Kp(x) = 0 for all p ≥ 3.

Support: There are no distributions where

Kp(x)

{
6= 0 3 ≤ p ≤ n,

= 0 p > n.

L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations December 15, 2008 7 / 28



Estimation of cumulants

How do we estimate Kp(x) given multiple observations of x?

Central and non-central moments are

m̂n =
1

n

∑
t
(xt − x̄)n, ŝn =

1

n

∑
t
xn
t , etc.

Cumulant estimator K̂p(x) for p = 1, 2, 3, 4 given by

κ̂i = m̂i = 1
n
ŝi

κ̂ij = n
n−1

m̂ij = 1
n−1

(ŝij − 1
n
ŝi ŝj)

κ̂ijk = n2

(n−1)(n−2)
m̂ijk = n

(n−1)(n−2)
[ŝijk − 1

n
(ŝi ŝjk + ŝj ŝik + ŝk ŝij) + 2

n2 ŝi ŝj ŝk ]

κ̂ijk` = n2

(n−1)(n−2)(n−3)
[(n + 1)m̂ijk` − (n − 1)(m̂ijm̂k` + m̂ikm̂j` + m̂i`m̂jk)]

= n
(n−1)(n−2)(n−3)

[(n + 1)ŝijk` − n+1
n

(ŝi ŝjk` + ŝj ŝik` + ŝk ŝij` + ŝ`ŝijk)

− n−1
n

(ŝij ŝk` + ŝik ŝj` + ŝi`ŝjk) + ŝ2
i (ŝjk + ŝj` + ŝk`)

+ ŝ2
j (ŝik + ŝi` + ŝk`) + ŝ2

k (ŝij + ŝi` + ŝj`) + ŝ2
` (ŝij + ŝik + ŝjk)

− 6
n2 ŝi ŝj ŝk ŝ`].

L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations December 15, 2008 8 / 28



Factor analysis

Linear generative model
y = As + ε

noise ε ∈ Rm, factor loadings A ∈ Rm×r , hidden factors s ∈ Rr ,
observed data y ∈ Rm.

Do not know A, s, ε, but need to recover s and sometimes A from
multiple observations of y.

Time series of observations, get matrices Y = [y1, . . . , yn],
S = [s1, . . . , sn], E = [ε1, . . . , εn], and

Y = AS + E .

Factor analysis: Recover A and S from Y by a low-rank matrix
approximation Y ≈ AS
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Principal and independent components analysis

Principal components analysis: s Gaussian,

K̂2(y) = QΛ2Q
> = (Q,Q) · Λ2,

Λ2 ≈ K̂2(s) diagonal matrix, Q ∈ O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries, ε
Gaussian

K̂p(y) = (Q, . . . ,Q) · Λp, p = 2, 3, . . . ,

Λp ≈ K̂p(s) diagonal tensor, Q ∈ O(n, r), [Comon; 1994].

What if

s not Gaussian, e.g. power-law distributed data in social networks.

s not independent, e.g. functional components in neuroimaging.

ε not white noise, e.g. idiosyncratic factors in financial modelling.
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Principal cumulant components analysis

Note that if ε = 0, then

Kp(y) = Kp(Qs) = (Q, . . . ,Q) · Kp(s).

In general, want principal components that account for variation in all
cumulants simultaneously

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2

F ,

Cp ≈ K̂p(s) not necessarily diagonal.

Appears intractable: optimization over infinite-dimensional manifold

O(n, r)×
∏∞

p=1
Sp(Rr ).

Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n − r),

maxQ∈Gr(n,r)

∑∞

p=1
αp‖K̂p(y) · (Q, . . . ,Q)‖2

F .

In practice ∞ = 3 or 4.
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Geometric insights

Secants of Veronese in Sp(Rn) — not closed, not irreducible, difficult
to study.

Symmetric subspace variety in Sp(Rn) — closed, irreducible, easy to
study.

Stiefel manifold O(n, r): set of n × r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

Grassman manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

Parameterization of Sp(Rn) via

Gr(n, r)× Sp(Rr )→ Sp(Rn).

More generally

Gr(n, r)×
∏∞

p=1
Sp(Rr )→

∏∞

p=1
Sp(Rn).
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From Stieffel to Grassmann

Given A ∈ Sp(Rn), some r � n, want

minX∈O(n,r), C∈Sp(Rr ) ‖A − (X , . . . ,X ) · C‖F ,

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.

Equivalent to

maxX∈O(n,r) ‖(X>, . . . ,X>) · A‖F = maxX∈O(n,r) ‖A · (X , . . . ,X )‖F .

Problem defined on a Grassmannian since

‖A · (X , . . . ,X )‖F = ‖A · (XQ, . . . ,XQ)‖F ,

for any Q ∈ O(r). Only the subspaces spanned by X matters.

Equivalent to
maxX∈Gr(n,r) ‖A · (X , . . . ,X )‖F .

Once we have optimal X∗ ∈ Gr(n, r), may obtain C∗ ∈ Sp(Rr ) up to
O(n)-equivalence,

C∗ = (X>∗ , . . . ,X
>
∗ ) · A.
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Coordinate-cycling heuristics

Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for
minimizing

Ψ(X ,Y ,Z ) = ‖A · (X ,Y ,Z )‖2
F

for A ∈ Rl×m×n cycling between X ,Y ,Z and solving a least squares
problem at each iteration.

What if A ∈ S3(Rn) and

Φ(X ) = ‖A · (X ,X ,X )‖2
F ?

Present approach: disregard symmetry of A, solve Ψ(X ,Y ,Z ), set

X∗ = Y∗ = Z∗ = (X∗ + Y∗ + Z∗)/3

upon final iteration.

Better: L-BFGS on Grassmannian.
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Newton/quasi-Newton on a Grassmannian

Objective Φ : Gr(n, r)→ R, Φ(X ) = ‖A · (X ,X ,X )‖2
F .

TX tangent space at X ∈ Gr(n, r)

Rn×r 3 ∆ ∈ TX ⇐⇒ ∆>X = 0

1 Compute Grassmann gradient ∇Φ ∈ TX .
2 Compute Hessian or update Hessian approximation

H : ∆ ∈ TX → H∆ ∈ TX .

3 At X ∈ Gr(n, r), solve
H∆ = −∇Φ

for search direction ∆.
4 Update iterate X : Move along geodesic from X in the direction given

by ∆.

[Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.;
2008].
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Picture
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BFGS on Grassmannian

The BFGS update

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+

yky
>
k

y>k yk

where

sk = xk+1 − xk = tkpk ,

yk = ∇fk+1 −∇fk .

On Grassmannian the vectors are defined on different points belonging to
different tangent spaces.
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Different ways of parallel transporting vectors

X ∈ Gr(n, r), ∆1,∆2 ∈ TX and X (t) geodesic path along ∆1

Parallel transport using global coordinates

∆2(t) = T∆1(t)∆2

we have also
∆1 = X⊥D1 and ∆2 = X⊥D2

where X⊥ basis for TX . Let X (t)⊥ be basis for TX (t).

Parallel transport using local coordinates

∆2(t) = X (t)⊥D2.
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Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in
the basis X (t)⊥ at all points on the path X (t).

Plus: No need to transport the gradient or the Hessian.

Minus: Need to compute X (t)⊥.

In global coordinate we compute

Tk+1 3 sk = tkT∆k
(tk)pk

Tk+1 3 yk = ∇fk+1 − T∆k
(tk)∇fk

T∆k
(tk)HkT−1

∆k
(tk) : Tk+1 −→ Tk+1

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+

yky
>
k

y>k yk
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BFGS

Compact representation of BFGS in Euclidean space:

Hk = H0 +
[
Sk H0Yk

] [R−>k (Dk + Y>k H0Yk)R−1
k −R−>k

−R−1
k 0

] [
S>k

Y>k H0

]
where

Sk = [s0, . . . , sk−1] ,

Yk = [y0, . . . , yk−1] ,

Dk = diag
[
s>0 y0, . . . , s

>
k−1yk−1

]
,

Rk =


s>0 y0 s>0 y1 · · · s>0 yk−1

0 s>1 y1 · · · s>1 yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
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L-BFGS
Limited memory BFGS [Byrd et al; 1994]. Replace H0 by γk I and keep the
m most resent sj and yj ,

Hk = γk I +
[
Sk γkYk

] [R−>k (Dk + γkY>k Yk)R−1
k −R−>k

−R−1
k 0

] [
S>k
γkY>k

]
where

Sk = [sk−m, . . . , sk−1] ,

Yk = [yk−m, . . . , yk−1] ,

Dk = diag
[
s>k−myk−m, . . . , s

>
k−1yk−1

]
,

Rk =


s>k−myk−m s>k−myk−m+1 · · · s>k−myk−1

0 s>k−m+1yk−m+1 · · · s>k−m+1yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations December 15, 2008 21 / 28



L-BFGS on the Grassmannian

In each iteration, parallel transport vectors in Sk and Yk to Tk , ie.
perform

S̄k = TSk , Ȳk = TYk

where T is the transport matrix.

No need to modify Rk or Dk

〈u, v〉 = 〈Tu,Tv〉

where u, v ∈ Tk and Tu,Tv ∈ Tk+1.

Hk nonsingular, Hessian is singular. No problem Tk at xk is invariant
subspace of Hk , ie. if v ∈ Tk then Hkv ∈ Tk .

[Savas, L.; 2008]
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Convergence

Compares favorably with Alternating Least Squares.
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Higher order eigenfaces
Principal cumulant subspaces supplement varimax subspace from PCA.
Take face recognition for example, eigenfaces (p = 2) becomes
skewfaces (p = 3) and kurtofaces (p = 4).

Eigenfaces: given image × pixel matrix A ∈ Rm×n with centered
columns where m� n.

Eigenvectors of pixel × pixel covariance matrix Kpixel
2 ∈ S2(Rn) are

the eigenfaces.

For efficiency, compute image × image covariance matrix
Kimage

2 ∈ S2(Rm) instead.

SVD A = UΣV> gives both implicitly,

Kimage
2 = 1

n (A>,A>) · I2 = 1
nA>A = 1

nV ΛV>,

Kpixel
2 = 1

n (A,A) · I2 = 1
mAA> = 1

mUΛU>.

Orthonormal columns of U, eigenvectors of nKpixel
2 , are the eigenfaces.
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Computing image and pixel skewness

Want to implicitly compute Kpixel
3 ∈ S3(Rn), third cumulant tensor of

the pixels (huge).

Just need projector Π onto the subspace of skewfaces that best
explain Kpixel

3 .

Let A = UΣV>, U ∈ O(n,m), Σ ∈ Rm×m, V ∈ O(m).

Kpixel
3 = 1

m (A,A,A) · Im
= 1

m (U,U,U) · (Σ,Σ,Σ) · (V>,V>,V>) · Im
Kimage

3 = 1
n (A>,A>,A>) · In

= 1
n (V ,V ,V ) · (Σ,Σ,Σ) · (U>,U>,U>) · In

In = JδijkK ∈ S3(Rn) is the ‘Kronecker delta tensor’, i.e. δijk = 1 iff
i = j = k and δijk = 0 otherwise.
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Computing skewmax projection

Define A ∈ S3(Rm) by

A = (Σ,Σ,Σ) · (V>,V>,V>) · Im

Want Q ∈ O(m, s) and core tensor C ∈ S3(Rs) not necessarily
diagonal, so that A ≈ (Q,Q,Q) · C and thus

Kpixel
3 ≈ 1

m (U,U,U) · (Q,Q,Q) · C = 1
m (UQ,UQ,UQ) · C.

Solve
minQ∈O(m,s), C∈S3(Rs)‖A − (Q,Q,Q) · C‖F

Π = UQ ∈ O(n, s) is our orthonormal-column projection matrix onto
the ’skewmax’ subspace.

Caveat: Q only determined up to O(s)-equivalence. Not a problem if
we are just interested in the associated subspace or its projector.
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Combining eigen-, skew-, and kurto-faces

Combine information from multiple cumulants:

Same procedure for the kurtosis tensor (a little more complicated).

Say we keep the first r eigenfaces (columns of U), s skewfaces, and t
kurtofaces. Their span is our optimal subspace.

These three subspaces may overlap; orthogonalize the resulting
r + s + t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

first r vectors best explain the pixel covariance Kpixel
2 ∈ S2(Rn),

next s vectors, with W1:r , best explain the pixel skewness
Kpixel

3 ∈ S3(Rn),

last t vectors, with W1:r+s , best explain pixel kurtosis Kpixel
4 ∈ S4(Rn).
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