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Basic Idea I: Geometric Sparsity

Notion of geometric sparsity — accounting for sparse matrix rep-

resentation of linear maps using underlying geometry of problem.

A geometrically sparse matrix with a scale parameter r0 has the

following form modulo row- and column-permutations:
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Strongly filtered matrix : block triangular where the diagonal

blocks are themselves block decomposed.



Basic Idea II: Decomposing Strongly Filtered Matrices

The block structure of strongly filtered matrices suggests natural

algorithms for LU and QR decomposition.
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Basic Idea III: Multiscale Character

The ‘remaining’ submatrix on the bottom right is geometrically

sparse with a larger scale parameter r1 > r0.

The same process may be repeated to this submatrix.
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Geometrically Sparse Matrices

‘Definition’ (Wilkinson). A sparse matrix is any matrix with

enough zeros that it pays to take advantage of them.

Attempt to give a more concrete definition that accounts for

how the sparseness arise.

Definition. A matrix A = (aij) ∈ Rm×n is geometrically sparse

with scale parameter r if there exist maps ϕ : {1, . . . ,m} → X and

ψ : {1, . . . , n} → X maps sending row and column indices of A into

a metric space (X, d) so that aij = 0 whenever d(ϕ(i), ψ(j)) > r.
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Slogan I

Conjecture. Sparse matrices that arise from physical problems

are naturally geometrically sparse or perturbations of geometri-

cally sparse matrices.

The metric space (X, d) is suggested by the problem at hand.
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Examples

A banded with bandwidth 2`+ 1:

X = Z or R with usual metric | · |, aij = 0 if |i− j| > `.

A = diag[A1, . . . , An] block diagonal (with square blocks):

X = {1, . . . , n} with discrete metric δ, aij = 0 if δ(ϕ(i), ϕ(j)) > 0.

A =

× × ×
× × ×
× × ×
···

× × ×

 ∈ Rn×n:

X = S1 with usual (Riemannian) metric on circle d, ϕ : {1, . . . n} →
S1, i 7→ (cos(2πi/n), sin(2πi/n)), aij = 0 if d(ϕ(i), ϕ(j)) > 1.
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Examples: Computational Topology

Σ simplicial complex embedded in Rn. To compute Hk(Σ), need

to find null space of boundary map

∂k : Ck(Σ)→ Ck−1(Σ),

[v0, . . . , vk] 7→
k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk].

Basis for Ck(Σ): k-simplices;

basis for Ck−1(Σ): (k − 1)-simplices;

X = Rn;
ϕ: label each k-simplex by its barycenter;

ψ: label each (k − 1)-simplex by its barycenter;

` = maximal diameter of any simplex of Σ.

Then the matrix representation of ∂k is geometrically sparse with

scale ` (likewise for the Laplacian ∆ := δ∂ + ∂δ).
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Examples: Numerical PDE

Finite Difference Methods: discrete approximations of partial

differential operators are geometrically sparse.

Finite Element Methods: stiffness matrices in Galerkin’s method

are geometrically sparse.
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Čech complex

X a space, U = {Uα}α∈A a covering of X.

Nerve of the covering is an abstract simplicial complex:

vertex ←→ Uα 6= ∅
edge ←→ Uα ∩ Uβ 6= ∅

...

d-simplex ←→ Uα0 ∩ · · · ∩ Uαk 6= ∅

Also called Čech complex and denoted by Č(U).

Č(U) is an ‘approximation’ of X topologically: for nice spaces

X, may choose U so that Č(U) is homotopy equivalent to X (in

particular H∗(X) ≡ H∗(Č(U)).
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Sparse Matrices

‘Definition’ (Wilkinson). A sparse matrix is any matrix with

enough zeros that it pays to take advantage of them.

Main savings in using sparse matrix algorithms and data struc-

tures come in:

time — avoid floating point operations on zero entries;

memory — avoid storing zero entries.

In decomposing a sparse matrix A, e.g. A = LU or A = QR, we

would like to ensure that the corresponding factors L, U , Q, R

are similarly sparse.
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LU and QR Decompositions

A ∈ Rm×n. Want to determine, in a numerically stable fashion,

the decompositions

P1AP2 = LU or P1AP2 = QR

where L lower-triangular; U,R upper-triangular; Q orthogonal;

P1, P2 permutations.

LU — Gaussian elimination with complete pivoting

QR — similar, with rotations and reflections in place of elemen-

tary transformations
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Engineering Applications

Example. Numerical solutions of partial differential equations

typically involve one of the following techniques:

Finite Difference Schemes – approximate the partial differential

operators by finite difference operators and then solve the result-

ing system of equations;

Finite Element Methods – decompose the domain of interest

into simpler pieces (e.g. triangulation); approximate the solution

by linear combinations of simpler functions supported on these

pieces (e.g. splines) and then solve the system of equations com-

ing from the variational formulation of the PDE.

When the PDE is linear, the linear system of equations yields a

geometrically sparse matrix.
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Using the FEM

We solve −∇· (c∇u)+au = f with Dirichlet boundary conditions
u = 0 on the straight edges and Neumann boundary conditions
c∂u/∂ν = −5 on the circular arcs. Delaunay triangulation algo-
rithm yields:
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A Mesh Ordering Strategy
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