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Why symmetric tensors?

Question

What lesson in algebra did we learn from the current global
economic/financial crisis?

One answer: it’s important to look beyond the quadratic term.

Taylor approximation: multivariate f (x1, . . . , xn) approximated as

f (x) ≈ a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x) + · · · .

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . .

A2 symmetric matrix: d = 2.

Ad symmetric hypermatrix: d > 2.
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Risk Mismanagement

By JOE NOCERA

‘The story that I have to tell is marked all the way through by a persistent tension between those who assert
that the best decisions are based on quantification and numbers, determined by the patterns of the past,
and those who base their decisions on more subjective degrees of belief about the uncertain future. This is a
controversy that has never been resolved.’

— FROM THE INTRODUCTION TO ‘‘AGAINST THE GODS: THE REMARKABLE STORY OF RISK,’’ BY
PETER L. BERNSTEIN

THERE AREN’T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s
one that made the rounds in 2007, back when the big investment banks were first starting to write down
billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before
Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,
before Lehman fell and Merrill Lynch was sold and A.I.G. saved, before the $700 billion bailout bill was
rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment
firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy
that they threatened to bring down the financial system itself. On the contrary: this was back when the
major investment firms were still assuring investors that all was well, these little speed bumps
notwithstanding — assurances based, in part, on their fantastically complex mathematical models for
measuring the risk in their various portfolios.

There are many such models, but by far the most widely used is called VaR — Value at Risk. Built around
statistical ideas and probability theories that have been around for centuries, VaR was developed and
popularized in the early 1990s by a handful of scientists and mathematicians — “quants,” they’re called in
the business — who went to work for JPMorgan. VaR’s great appeal, and its great selling point to people
who do not happen to be quants, is that it expresses risk as a single number, a dollar figure, no less.

VaR isn’t one model but rather a group of related models that share a mathematical framework. In its most
common form, it measures the boundaries of risk in a portfolio over short durations, assuming a “normal”
market. For instance, if you have $50 million of weekly VaR, that means that over the course of the next
week, there is a 99 percent chance that your portfolio won’t lose more than $50 million. That portfolio could
consist of equities, bonds, derivatives or all of the above; one reason VaR became so popular is that it is the
only commonly used risk measure that can be applied to just about any asset class. And it takes into account
a head-spinning variety of variables, including diversification, leverage and volatility, that make up the kind
of market risk that traders and firms face every day.

Another reason VaR is so appealing is that it can measure both individual risks — the amount of risk
contained in a single trader’s portfolio, for instance — and firmwide risk, which it does by combining the
VaRs of a given firm’s trading desks and coming up with a net number. Top executives usually know their
firm’s daily VaR within minutes of the market’s close.
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properly understood, were not a fraud after all but a potentially important signal that trouble was brewing?
Or did it suggest instead that a handful of human beings at Goldman Sachs acted wisely by putting their
models aside and making “decisions on more subjective degrees of belief about an uncertain future,” as
Peter L. Bernstein put it in “Against the Gods?”

To put it in blunter terms, could VaR and the other risk models Wall Street relies on have helped prevent
the financial crisis if only Wall Street paid better attention to them? Or did Wall Street’s reliance on them
help lead us into the abyss?

One Saturday a few months ago, Taleb, a trim, impeccably dressed, middle-aged man — inexplicably, he
won’t give his age — walked into a lobby in the Columbia Business School and headed for a classroom to
give a guest lecture. Until that moment, the lobby was filled with students chatting and eating a quick lunch
before the afternoon session began, but as soon as they saw Taleb, they streamed toward him, surrounding
him and moving with him as he slowly inched his way up the stairs toward an already-crowded classroom.
Those who couldn’t get in had to make do with the next classroom over, which had been set up as an
overflow room. It was jammed, too.

It’s not every day that an options trader becomes famous by writing a book, but that’s what Taleb did, first
with “Fooled by Randomness,” which was published in 2001 and became an immediate cult classic on Wall
Street, and more recently with “The Black Swan: The Impact of the Highly Improbable,” which came out in
2007 and landed on a number of best-seller lists. He also went from being primarily an options trader to
what he always really wanted to be: a public intellectual. When I made the mistake of asking him one day
whether he was an adjunct professor, he quickly corrected me. “I’m the Distinguished Professor of Risk
Engineering at N.Y.U.,” he responded. “It’s the highest title they give in that department.” Humility is not
among his virtues. On his Web site he has a link that reads, “Quotes from ‘The Black Swan’ that the
imbeciles did not want to hear.”

“How many of you took statistics at Columbia?” he asked as he began his lecture. Most of the hands in the
room shot up. “You wasted your money,” he sniffed. Behind him was a slide of Mickey Mouse that he had
put up on the screen, he said, because it represented “Mickey Mouse probabilities.” That pretty much sums
up his view of business-school statistics and probability courses.

Taleb’s ideas can be difficult to follow, in part because he uses the language of academic statisticians; words
like “Gaussian,” “kurtosis” and “variance” roll off his tongue. But it’s also because he speaks in a kind of
brusque shorthand, acting as if any fool should be able to follow his train of thought, which he can’t be
bothered to fully explain.

“This is a Stan O’Neal trade,” he said, referring to the former chief executive of Merrill Lynch. He clicked to
a slide that showed a trade that made slow, steady profits — and then quickly spiraled downward for a giant,
brutal loss.

“Why do people measure risks against events that took place in 1987?” he asked, referring to Black Monday,
the October day when the U.S. market lost more than 20 percent of its value and has been used ever since as
the worst-case scenario in many risk models. “Why is that a benchmark? I call it future-blindness.

“If you have a pilot flying a plane who doesn’t understand there can be storms, what is going to happen?” he
asked. “He is not going to have a magnificent flight. Any small error is going to crash a plane. This is why
the crisis that happened was predictable.”

Eventually, though, you do start to get the point. Taleb says that Wall Street risk models, no matter how
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Cumulants

Univariate distribution: Mean, variance, skewness and kurtosis
describe the shape.

Multivariate distribution: (Co)variance matrix partly describes the
dependence structure.

But if the variables are not multivariate Gaussian, not the whole story.
Covariance matrix analogs: cumulants.
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More about cumulants

For univariate x , cumulants Kd(x) for d = 1, 2, 3, 4 are
I expectation κi = E(x),
I variance κii = σ2,
I skewness κiii/κ

3/2
ii , and

I kurtosis κiiii/κ
2
ii .

For multivariate x, Kd(x) are symmetric tensors of order d .

Provide a natural measure of non-Gaussianity: If x Gaussian,

Kd(x) = 0 for all d ≥ 3.

Describe higher order dependence among random variables.

Variance is symmetric matrix, may perform eigenvalue decomposition.

How to analyze higher-order cumulants?

Want analogue of ‘eigenvalue decomposition’ for symmetric tensors.

L.-H. Lim (Algebra Seminar) Symmetric tensor decompositions January 29, 2009 7 / 29



Tensors as hypermatrices

Up to choice of bases on U,V ,W , a tensor A ∈ U ⊗ V ⊗W may be
represented as a hypermatrix

A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

where dim(U) = l , dim(V ) = m, dim(W ) = n if

1 we give it coordinates;

2 we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Multilinear matrix multiplication

Matrices can be multiplied on left and right: A ∈ Rm×n, X ∈ Rp×m,
Y ∈ Rq×n,

C = (X ,Y ) · A = XAY> ∈ Rp×q,

cαβ =
∑m,n

i ,j=1
xαiyβjaij .

3-tensors can be multiplied on three sides: A ∈ Rl×m×n, X ∈ Rp×l ,
Y ∈ Rq×m, Z ∈ Rr×n,

C = (X ,Y ,Z ) · A ∈ Rp×q×r ,

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .

Correspond to change-of-bases transformations for tensors.

Define ‘right’ (covariant) multiplication by
(X ,Y ,Z ) · A = A · (X>,Y>,Z>).
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Symmetric tensors as hypermatrices

Cubical tensor JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

For order p, invariant under all permutations σ ∈ Sp on indices.

Sp(Rn) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X ,X ,X ) · A where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαixβjxγkaijk .
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Symmetric tensors as polynomials

Jaj1···jpK ∈ Sp(Rn) associated with unique homogeneous polynomial
F ∈ C[x1, . . . , xn]p via

F (x) =
∑n

j1,...,jp=1

(
p

d1, . . . , dn

)
aj1···jp xd1

1 · · · x
dn
n ,

dj = number of times index j appears in j1, . . . , jp,

d1 + · · ·+ dn = p.

Sp(Cn) ∼= C[x1, . . . , xn]p.

L.-H. Lim (Algebra Seminar) Symmetric tensor decompositions January 29, 2009 11 / 29



Examples of symmetric tensors

Higher order derivatives of real-valued multivariate functions.

Moments of a vector-valued random variable x = (x1, . . . , xn):

Sp(x) =
q

E (xj1xj2 · · · xjp )
yn

j1,...,jp=1
.

Cumulants of a random vector x = (x1, . . . , xn):

Kp(x) =

u

v
∑

A1t···tAq={j1,...,jp}

(−1)q−1(q − 1)!E

( ∏
j∈A1

xj

)
· · ·E

( ∏
j∈Aq

xj

)}

~
n

j1,...,jp=1

.
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Tensor ranks

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1λiui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.

In general, r1(A) 6= r2(A) 6= r3(A) 6= rank⊗(A).
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Symmetric tensor ranks

Multilinear rank. A ∈ S3(Rn). Then

r1(A) = r2(A) = r3(A).

Outer product rank. A ∈ S3(Rn).

rankS(A) = min{r | A =
∑r

i=1λivi ⊗ vi ⊗ vi}.
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Matrix EVD and SVD

Rank revealing decompositions.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑r

i=1
λivi ⊗ vi ,

where rank(A) = r , V ∈ O(n) eigenvectors, Λ eigenvalues.

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑r

i=1
σiui ⊗ vi

where rank(A) = r , U ∈ O(m) left singular vectors, V ∈ O(n) right
singular vectors, Σ singular values.
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One plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the outer product
rank.

Symmetric outer product decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi

where rankS(A) = r , vi unit vector, λi ∈ R.

Outer product decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi

where rank⊗(A) = r , ui ∈ Rl , vi ∈ Rm,wi ∈ Rn unit vectors, σi ∈ R.

L.-H. Lim (Algebra Seminar) Symmetric tensor decompositions January 29, 2009 16 / 29



Another plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the multilinear rank.

Symmetric multilinear decomposition of A ∈ S3(Rn),

A = (U,U,U) · C

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .
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Eigenvalue decompositions for symmetric tensors

Let A ∈ S3(Rn).

Symmetric outer product decomposition

A =
∑r

i=1
λivi ⊗ vi ⊗ vi = (V ,V ,V ) · Λ.

where rankS(A) = r , V ∈ Rn×r , Λ = diag[λ1, . . . , λr ] ∈ S3(Rn).

In general, r can exceed n.

Symmetric multilinear decomposition

A = (U,U,U) · C =
∑s

i ,j ,k=1
cijkui ⊗ uj ⊗ uk

where rank�(A) = (s, s, s), U ∈ O(n, s), C = JcijkK ∈ S3(Rs).

s ≤ n.
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Geometry of symmetric outer product decomposition

Embedding
νn,p : Rn → Sp(Rn) ∼= R[x1, . . . , xn]p.

Image νn,p(Rn) is (real affine) Veronese variety, set of rank-1
symmetric tensors

Verp(Rn) = {v⊗p ∈ Sp(Rn) | v ∈ Rn}.

As polynomials,

Verp(Rn) = {L(x)p ∈ R[x1, . . . , xn]p | L(x) = α1x1 + · · ·+ αnxn},

cf. Bernd Sturmfels’s talk on Feb. 20.

A ∈ Sp(Rn) has rank 2 iff it sits on a bisecant line through two points
of Verp(Rn), rank 3 iff it sits on a trisecant plane through three
points of Verp(Rn), etc.
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Secant varieties

For a nondegenerate variety X ⊆ Rn, write

sr (X ) = union of s-secants to X for s ≤ r ,

r-secant quasiprojective variety of X .

r-secant variety,

σr (X ) = Zariski closure of sr (X ).

Unsymmetric version,

X = Seg(Rd1 , . . . ,Rdp ) = {v1 ⊗ · · · ⊗ vp ∈ Rd1×···×dp | vi ∈ Rdi}.

Series difficulty in applications: sr (X ) 6= σr (X ) for r > 1.
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Outer product approximation is ill-behaved

Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

Let x, y ∈ Rm be linearly independent. Define for n ∈ N,

An := n

[
x +

1

n
y

]⊗p

− nx⊗p

Define

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) ≥ p, and

lim
n→∞

An = A.

See [Comon, Golub, L, Mourrain; 08] for details. For exact
decomposition when r < n, algorithm of [Comon, Mourrain,
Tsigaridas; 09]
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Aside: happens to operators too

Approximation of an operator by a sum of Kronecker product of
lower-dimensional operators (e.g. Numerical Operator Calculus).

For linearly independent operators Pi ,Qi : Vi →Wi , i = 1, 2, 3, let
D : V1 ⊗ V2 ⊗ V3 →W1 ⊗W2 ⊗W3 be

D := P1 ⊗ Q2 ⊗ Q3 + Q1 ⊗ Q2 ⊗ P3 + Q1 ⊗ Q2 ⊗ P3.

If finite-dimensional, then ‘⊗’ may be taken to be Kronecker product
of matrices.

For n ∈ N,

Dn := n

[
P1 +

1

n
Q1

]
⊗
[

P2 +
1

n
Q2

]
⊗
[

P3 +
1

n
Q3

]
− nP1 ⊗ P2 ⊗ P3.

Then limn→∞Dn = D.

More widespread than one may think. See [de Silva, L; 08] for details.
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Geometry of symmetric multilinear decomposition

Symmetric subspace variety,

Subp
r (Rn) := {A ∈ Sp(Rn) | ∃V ≤ Rn such that A ∈ Sp(V )}.

Equivalently,

Subp
r (Rn) := {A ∈ Sp(Rn) | rank�(A) ≤ (r , r , r)}.

Unsymmetric version, cf. [Landsberg, Weyman; 07],

Subp,q,r (Rl ,Rm,Rn)

= {A ∈ Rl×m×n | ∃U,V ,W such that A ∈ U ⊗ V ⊗W }
= {A ∈ Rl×m×n | rank�(A) ≤ (p, q, r)}.

Symmetric subspace variety in Sp(Rn) — closed, irreducible, easier to
study.

Quasiprojective secant variety of Veronese in Sp(Rn) — not closed,
not irreducible, difficult to study.
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Grassmannian parameterization

Stiefel manifold O(n, r): set of n × r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

Grassman manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

Parameterization via

Gr(n, r)× Sp(Rr )→ Sp(Rn).

Image is Subp
r (Rn).

More generally

Gr(n, r)×
∏∞

p=1
Sp(Rr )→

∏∞

p=1
Sp(Rn).

Image is
∏∞

p=1 Subp
r (Rn).
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From Stieffel to Grassmann

Given A ∈ Sp(Rn), some r � n, want

minX∈O(n,r), C∈Sp(Rr ) ‖A − (X , . . . ,X ) · C‖F ,

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.

Equivalent to

maxX∈O(n,r) ‖(X>, . . . ,X>) · A‖F = maxX∈O(n,r) ‖A · (X , . . . ,X )‖F .

Problem defined on a Grassmannian since

‖A · (X , . . . ,X )‖F = ‖A · (XQ, . . . ,XQ)‖F ,

for any Q ∈ O(r). Only the subspaces spanned by X matters.

Equivalent to
maxX∈Gr(n,r) ‖A · (X , . . . ,X )‖F .

Efficient algorithm exists: Limited memory BFGS on Grassmannian
[Savas, L; ’09]
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Cumulants

In terms of log characteristic and cumulant generating functions,

κj1···jp (x) =
∂p

∂tj1 · · · ∂tjp
log E(exp(〈t, x〉)

∣∣∣∣
t=0

= (−1)p ∂p

∂tj1 · · · ∂tjp
log E(exp(i〈t, x〉)

∣∣∣∣
t=0

.

In terms of Edgeworth expansion,

log E(exp(i〈t, x〉) =
∞∑
α=0

i |α|κα(x)
tα

α!
, log E(exp(〈t, x〉) =

∞∑
α=0

κα(x)
tα

α!
,

α = (α1, . . . , αn) is a multi-index, tα = tα1
1 · · · tαn

n , α! = α1! · · ·αn!.

For each x, Kp(x) = Jκj1···jp (x)K ∈ Sp(Rn) is a symmetric tensor.

[Fisher, Wishart; 1932]
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Properties of cumulants

Multilinearity: If x is a Rn-valued random variable and A ∈ Rm×n

Kp(Ax) = (A, . . . ,A) · Kp(x).

Additivity: If x1, . . . , xk are mutually independent of y1, . . . , yk , then

Kp(x1 + y1, . . . , xk + yk) = Kp(x1, . . . , xk) +Kp(y1, . . . , yk).

Independence: If I and J partition {j1, . . . , jp} so that xI and xJ are
independent, then

κj1···jp (x) = 0.

Support: There are no distributions where

Kp(x)

{
6= 0 3 ≤ p ≤ n,

= 0 p > n.
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Principal and independent components analysis

Principal components analysis: s Gaussian,

K̂2(y) = QΛ2Q> = (Q,Q) · Λ2,

Λ2 ≈ K̂2(s) diagonal matrix, Q ∈ O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries, ε
Gaussian

K̂p(y) = (Q, . . . ,Q) · Λp, p = 2, 3, . . . ,

Λp ≈ K̂p(s) diagonal tensor, Q ∈ O(n, r), [Comon; 1994].

What if

s not Gaussian, e.g. power-law distributed data in social networks.

s not independent, e.g. functional components in neuroimaging.

ε not white noise, e.g. idiosyncratic factors in financial modelling.

L.-H. Lim (Algebra Seminar) Symmetric tensor decompositions January 29, 2009 28 / 29



Principal cumulant components analysis [L. & Morton]

Note that if ε = 0, then

Kp(y) = Kp(Qs) = (Q, . . . ,Q) · Kp(s).

In general, want principal components that account for variation in all
cumulants simultaneously

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2F ,

Cp ≈ K̂p(s) not necessarily diagonal.

Appears intractable: optimization over infinite-dimensional manifold

O(n, r)×
∏∞

p=1
Sp(Rr ).

Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n − r),

maxQ∈Gr(n,r)

∑∞

p=1
αp‖K̂p(y) · (Q, . . . ,Q)‖2F .

In practice ∞ = 3 or 4.
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