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THE COMPUTATIONAL COMPLEXITY OF DUALITY∗

SHMUEL FRIEDLAND† AND LEK-HENG LIM‡

Abstract. We show that for any given norm ball or proper cone, weak membership in its
dual ball or dual cone is polynomial-time reducible to weak membership in the given ball or cone. A
consequence is that the weak membership or membership problem for a ball or cone is NP-hard if and
only if the corresponding problem for the dual ball or cone is NP-hard. In a similar vein, we show
that computation of the dual norm of a given norm is polynomial-time reducible to computation
of the given norm. This extends to convex functions satisfying a polynomial growth condition:
for such a given function, computation of its Fenchel dual/conjugate is polynomial-time reducible
to computation of the given function. Hence the computation of a norm or a convex function of
polynomial-growth is NP-hard if and only if the computation of its dual norm or Fenchel dual is
NP-hard. We discuss implications of these results on the weak membership problem for a symmetric
convex body and its polar dual, the polynomial approximability of Mahler volume, and the weak
membership problem for the epigraph of a convex function with polynomial growth and that of its
Fenchel dual.
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1. Introduction. In convex optimization, we often encounter problems that
involve one of the following notions of duality: for convex sets, (i) norm balls and
their polar duals and (ii) proper cones and their dual cones; for convex functions,
(iii) norms and their dual norms and (iv) functions and their Fenchel duals. The
main goal of this article is to establish the equivalence between the polynomial-time
computability or NP-hardness of these objects and their duals.

We will first show in section 3 that the weak membership problem for a norm ball is
NP-hard (resp., is polynomial-time) if and only if the weak membership problem for its
dual norm ball is NP-hard (resp., is polynomial-time). For readers unfamiliar with the
notion, NP-hardness of weak membership is a stronger statement than NP-hardness
of membership, i.e., the latter is implied by the former. Since every symmetric convex
compact set with nonempty interior is a norm ball, the result applies to such objects
and their polar duals as well.

In section 4 we show that the approximation of a norm to arbitrary precision is
NP-hard (resp., is polynomial-time) if and only if weak membership in the unit ball
of the norm is NP-hard (resp., is polynomial-time). A consequence is that if the weak
membership problem for a norm ball is polynomial-time decidable, then its Mahler
volume is polynomial-time approximable. In fact, computation of Mahler volume is
polynomial-time reducible to the weak membership problem for a norm ball.
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In section 5, we establish an analogue of our norm ball result for proper cones,
showing that the weak membership problem for such a cone is NP-hard (resp., is
polynomial-time) if and only if the weak membership problem for its dual cone is
NP-hard (resp., is polynomial-time).

We conclude by showing in section 6 that for convex functions that satisfy a
polynomial-growth condition, its Fenchel dual must also satisfy the same condition
with possibly different constants. A consequence of this is that such a function is
polynomial-time approximable to arbitrary precision if and only if its Fenchel dual is
also polynomial-time approximable to arbitrary precision. On the other hand, such
a function is NP-hard to approximate if and only if its Fenchel dual is NP-hard to
approximate.

2. Weak membership, weak validity, and polynomial-time reducibility.
We introduce some basic terminologies based on [6, Chapter 2] with some natural
extensions for our context. Let B(x, δ) denote the closed Euclidean norm ball of
radius δ > 0 centered at x in Rn. For any δ > 0 and any K ⊆ Rn, we define
respectively a “thickened” K and a “shrunken” K by

(1) S(K, δ) :=
⋃

x∈K
B(x, δ) and S(K,−δ) := {x ∈ K : B(x, δ) ⊆ K}.

Note that if K has no interior point, then S(K,−δ) = ∅.

Definition 1. Let K ⊆ Rn be a convex set with nonempty interior.
(i) The membership problem ( mem) for K is as follows: Given x ∈ Qn, determine

if x is in K.
(ii) The weak membership problem ( wmem) for K is as follows: Given x ∈ Qn and

a rational δ > 0, assert that x ∈ S(K, δ) or x /∈ S(K,−δ).
(iii) The weak violation problem ( wviol) problem for K is as follows: Given c ∈ Qn

and rational γ, ε > 0, either assert that cTx ≤ γ+ ε for all x ∈ S(K,−ε) or find
y ∈ S(K, ε) with cTy ≥ γ − ε.

(iv) The weak validity problem ( wval) problem for K is as follows: Given c ∈ Qn
and rational γ, ε > 0, either assert that cTx ≤ γ + ε for all x ∈ S(K,−ε) or
assert that cTx ≥ γ − ε for some x ∈ S(K, ε).

(v) The weak optimization problem ( wopt) problem for K is as follows: Given
c ∈ Qn and a rational ε > 0, either find y ∈ Qn such that y ∈ S(K, ε) and
cTx ≤ cTy + ε for all x ∈ S(K,−ε) or assert that S(K, ε) = ∅.

For the benefit of readers unfamiliar with these notions, we highlight that in
our weak membership problem, there are x’s that satisfy both x ∈ S(K, δ) and x /∈
S(K,−δ) simultaneously. So if we can ascertain mem, we can ascertain wmem, but
not conversely. A consequence is that if the wmem problem for K is NP-hard, then
mem for K is also NP-hard.

There will be occasions, particularly in section 5, when we have to discuss weak
membership and weak validity of a convex set K ⊆ Rn of positive codimension, i.e.,
contained in an affine subspace of dimension less than n. As a subset of Rn, K will
have no interior points and wmem and wval as defined above would make little
sense as S(K,−δ) = ∅. With this in mind, we introduce the following variant of
Definition 1 that makes use of the interior of K relative to H, an affine subspace
of minimal dimension that contains K, i.e., H is the affine hull of K. We start by
defining

SH(K,−δ) := {x ∈ K : B(x, δ) ∩H ⊆ K} and SH(K, δ) := S(K, δ) ∩H.
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Note that if K 6= ∅, then there exists ε > 0 such that SH(K,−δ) 6= ∅ for each
δ ∈ (0, ε), even if K has no interior point. If K has nonempty interior, then H = Rn
and SH(K,−δ) = S(K,−δ).

Definition 2. Let K ⊆ Rn be a convex set and let H = aff(K) be its affine hull.
(i) The weak membership problem ( wmem) for K relative to H is as follows:

Given x ∈ Qn and a rational number δ > 0, assert that x ∈ SH(K, δ) or
x /∈ SH(K,−δ).

(ii) The weak validity problem ( wval) problem for K relative to H is as follows:
Given c ∈ Qn and rational numbers γ, ε > 0, either assert that cTx ≤ γ + ε for
all x ∈ SH(K,−ε) or assert that cTx ≥ γ − ε for some x ∈ SH(K, ε).

An implicit assumption throughout this article is that when we study the com-
putational complexity of wmem and wval problems for a convex set K ⊆ Rn with
nonempty interior, we assume that we know a point a ∈ Qn and a rational r > 0 such
that the Euclidean norm ball B(a, r) ⊆ K. This mild centering assumption guaran-
tees that K is “centered” in the sense of [6, Definition 2.1.16] and is needed whenever
we invoke the Yudin–Nemirovski theorem [13] and [6, Theorem 4.3.2].

Recall that a problem P is said to be polynomial-time reducible [6, p. 28] to a
problem Q if there is a polynomial-time algorithm AP for solving P by making a
polynomial number of oracle calls to an algorithm AQ for solving Q. This notion of
polynomial-time reducibility is also called Cook or Turing reducibility and will be the
one used throughout our article. There is also a more restrictive notion of polynomial-
time reducibility that allows only a single oracle call to AQ called Karp or many-one
reducibility.

Note that if AQ is a polynomial-time algorithm for Q, then AP is a polynomial-
time algorithm for P. Consequently, if Q is computable in polynomial-time, then so
is P. On the other hand, if P is NP-hard, then so is Q.

We say that P and Q are polynomial-time interreducible if P is polynomial-
time reducible to Q and Q is polynomial-time reducible to P. The polynomial-time
interreducibility of two problems P and Q implies that they are in the same time-
complexity class1 whatever it may be. Nevertheless, in this article we will restrict
ourselves to just polynomial-time computability and NP-hardness, the two most often
used cases in optimization.

3. Weak membership in dual norm balls. Our technique for this section
relies on tools introduced in [6, Chapter 4] and is inspired by [7, section 6.1]. While
our discussion below is over R, it is easy to extend it to C since Cn may be identified
with R2n ≡ Rn×Rn, where z = x+

√
−1y ∈ Cn is identified with (x, y) ∈ Rn×Rn. A

norm ν : Cn → [0,∞) induces a norm ν̃ : R2n → [0,∞) via ν̃
(
(x, y)

)
:= ν(x+

√
−1y)

and we may identify ν with ν̃. In particular, the Hermitian norm on Cn gives exactly
the Euclidean norm on R2n. Hence for the purpose of this article, it suffices to consider
norms over real vector spaces.

Let ν : Rn → [0,∞) be a norm and denote the closed ball and open ball centered
at a ∈ Rn of radius r > 0 with respect to the norm ν by

Bν(a, r) := {x ∈ Rn : ν(x− a) ≤ r} and B◦ν(a, r) := {x ∈ Rn : ν(x− a) < r},

respectively. For the special case a = 0 and r = 1, we write Bν := Bν(0, 1) and
B◦ν := B◦ν(0, 1) for the closed and open unit balls. For the special case ν = ‖ · ‖,

1Assuming that the complexity class is defined by polynomial-time interreducibility.
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the Euclidean norm on Rn, we write B(a, r) := B‖·‖(a, r) and B◦(a, r) := B◦‖·‖(a, r),
dropping the subscript. Since all norms on Rn are equivalent, it follows that there
exist constants Kν ≥ kν > 0 such that

(2) kν‖x‖ ≤ ν(x) ≤ Kν‖x‖ for all x ∈ Rn.

There is no loss of generality in assuming that kν and Kν are rational2 and we may
denote the number of bits required to specify them by 〈kν〉 and 〈Kν〉, respectively.

Recall that the dual norm of ν, denoted ν∗, is given by

ν∗(x) = max{|yTx| : ν(y) ≤ 1}

for every x ∈ Rn. Hence

(3)
1

Kν

‖x‖ ≤ ν∗(x) ≤ 1

kν
‖x‖ for all x ∈ Rn.

Observe first that B(0, 1/Kν) ⊆ Bν ⊆ B(0, 1/kν) and B(0, kν) ⊆ Bν∗ ⊆ B(0,Kν).
So Bν and Bν∗ satisfy the centering assumption after Definition 2 with a = 0. Hence

〈Bν〉 := 〈n〉+ 〈kν〉+ 〈Kν〉

may be regarded as the encoding length of Bν in number of bits. A norm or unit-
norm ball may therefore be encoded (for a Turing machine) in finitely many bits as
(n, kν ,Kν) ∈ Q3. Whenever we discuss the computation of a norm, we implicitly
assume knowledge of (n, kν ,Kν), i.e., an algorithm would have access to their values.

The main result of this section is the polynomial-time interreducibility between
a norm and its dual.

Theorem 3. Let ν be a norm and ν∗ be its dual norm. The wmem problem for
the unit ball of ν∗ is polynomial-time reducible to the wmem problem for the unit ball
of ν.

We will prove this result via two intermediate lemmas. A key step in our proof
depends on the Yudin–Nemirovski theorem [13], which may be stated as follows [6,
Theorem 4.3.2].

Theorem 4 (Yudin–Nemirovski). The wval problem for Bν is polynomial-
time reducible to the wmem problem for Bν . More generally this holds for any convex
set with nonempty interior K ⊆ Rn for which we have knowledge of a ∈ Qn and
0 < r ≤ R ∈ Q such that B(a, r) ⊆ K ⊆ B(0, R).

The original Yudin–Nemirovski theorem is in fact stronger than the version stated
here, allowing the weak violation problem wviol to be reduced to wmem. Never-
theless in this article we will only require the weaker result with wval in place of
wviol.

For a compact set K ⊂ Rn and c ∈ Rn, the support function of K at c is

max(K, c) := max{cTx : x ∈ K}.

In particular, observe that
ν(x) = max(Bν∗ , x).

2If not just pick a smaller kν or a larger Kν that is rational.
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Lemma 5. Let ν be a norm on Rn and δ > 0. Then we have inclusions

(1 + kνδ)Bν ⊆ S(Bν , δ) ⊆ (1 +Kνδ)Bν ,(4)

(1−Kνδ)Bν ⊆ S(Bν ,−δ) ⊆ (1− kνδ)Bν ,(5)

whenever Kνδ < 1, and the inequalities(
1− δ

kν

)
ν(x) ≤ max

(
S(Bν∗ ,−δ), x

)
≤
(

1− δ

Kν

)
ν(x),(6) (

1 +
δ

Kν

)
ν(x) ≤ max

(
S(Bν∗ , δ), x

)
≤
(

1 +
δ

kν

)
ν(x),(7)

whenever δ/kν < 1.

Proof. To prove (4), observe that

kνBν ⊆ B(0, 1) ⊆ KνBν , kνB
◦
ν ⊆ B◦(0, 1) ⊆ KνB

◦
ν ,

and thus

Bν(x, kνδ) ⊆ B(x, δ) ⊆ Bν(x,Kνδ), B◦ν(x, kνδ) ⊆ B◦(x, δ) ⊆ B◦ν(x,Kνδ).

Also,
⋃
x∈Bν Bν(x, r) = Bν(0, 1 + r) by the defining properties of a norm. Hence

S(Bν , δ) =
⋃
x∈Bν

B(x, δ) ⊆
⋃
x∈Bν

Bν(x,Kνδ) = Bν(0, 1 +Kνδ).

On the other hand,

S(Bν , δ) =
⋃
x∈Bν

B(x, δ) ⊇
⋃
x∈Bν

Bν(x, kνδ) = Bν(0, 1 + kνδ).

To prove (5), let T =
⋃
x : ν(x)=1B

◦(x, δ) and so S(Bν ,−δ) = Bν \ T . Let

T1 =
⋃

x : ν(x)=1

B◦ν(x,Kνδ), T2 =
⋃

x : ν(x)=1

B◦ν(x, kνδ).

Since T1 ⊇ T and T2 ⊆ T , we obtain

S(Bν ,−δ) ⊇ Bν \ T1 = (1−Kνδ)Bν , S(Bν ,−δ) ⊆ Bν \ T2 = (1− kνδ)Bν .

The last two inequalities follow from the first two inclusions and (3).

Lemma 6. Let kν ≥ 2. Then the solution to the wval problem for Bν∗ gives the
solution to the wmem problem for Bν .

Proof. Let x ∈ Qn and δ ∈ (0, 12 )∩Q. We choose γ = 1. Suppose that xTy ≤ 1+δ
for all y ∈ S(Bν∗ ,−δ). Then max

(
S(Bν∗ ,−δ), x

)
≤ 1 + δ and by (6) we have

ν(x) ≤ 1 + δ

1− δ/kν
.

Since kν ≥ 2, it follows that

1 + δ

1− δ/kν
≤ 1 + kνδ.
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It follows from (4) that x ∈ S(Bν , δ).
Suppose that xTy > 1−δ for some y ∈ S(Bν∗ , δ). Then max

(
S(Bν∗ , δ), x

)
> 1−δ

and we deduce from (7) that

ν(x) >
1− δ

1 + δ/kν
.

A straightforward calculation shows that

1− δ
1 + δ/kν

≥ 1− kνδ.

It follows from (5) that x /∈ S(Bν ,−δ).
Proof of Theorem 3. We observe that the assumption kν ≥ 2 in Lemma 6 is not

restrictive. Let r ≥ 2/kν . Then a new norm defined by νr(x) = rν(x) would satisfy
the assumption. Now note that x ∈ Bν if and only if 1

rx ∈ Bνr . With this observation,
Theorem 3 follows from

wmem for Bν∗ ⇒ wval for Bν∗ ⇒ wmem for Bν ⇒ wval for Bν ⇒ wmem for Bν∗ .

Here P ⇒ Q means that Q is polynomial-time reducible to P. The Yudin–
Nemirovski theorem gives the first and third reductions, whereas Lemma 6 gives
the second and last reductions.

Since taking the dual of a dual norm gives us back the original norm, we have the
following corollary.

Corollary 7. The wmem problem for the unit ball of a norm ν is polynomial-
time decidable (resp., NP-hard) if and only if the wmem problem for the unit ball of
the dual norm ν∗ is polynomial-time decidable (resp., NP-hard).

Since every centrally symmetric compact convex set with nonempty interior is a
norm ball for some norm and its polar dual is exactly the norm ball for the corre-
sponding dual norm, we immediately have the following.

Corollary 8. Let C be a centrally symmetric compact convex set with nonempty
interior in Rn and

C∗ = {x ∈ Rn : xTy ≤ 1}

be its polar dual. Then wmem in C is polynomial-time interreducible to wmem in
C∗. In particular, if one is polynomial-time decidable (resp., NP-hard), then so is the
other.

4. Approximation of dual norms. In this section we show that for a given
norm ν : Rn → [0,∞) satisfying (2) for kν ,Kν ∈ Q, wmem in Bν with respect to
δ ∈ Q is polynomial-time interreducible with a δ-approximation of the norm ν.

Definition 9. Let ν : Rn → [0,∞) be a norm satisfying (2) for kν ,Kν ∈ Q. The
approximation problem ( approx) for ν is as follows: Let δ ∈ Q and δ > 0. Given
any x ∈ Qn with 1/2 < ‖x‖ < 3/2, compute an approximation ω(x) ∈ Q such that

(8) ν(x)− δ < ω(x) < ν(x) + δ.

We call ω a δ-approximation of ν.

The annulus 1/2 < ‖x‖ < 3/2, where x has rational coordinates, is intended
as a rational approximation of the unit sphere ‖x‖ = 1 in Rn—points on the unit
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sphere that do not have rational coordinates can be approximated by rational points
in the annulus. The requirement that 1/2 < ‖x‖ < 3/2 is not restrictive since we
may always scale any given x to meet this condition in polynomial-time. Note that
an approximation problem has n+ 〈δ〉+ 〈Kν〉+ 〈kν〉 input bits. If we say that such a
problem can be solved in polynomial-time, we mean time polynomial in this number
of input bits.

Theorem 10. Let ν : Rn → [0,∞) be a norm satisfying (2) for kν ,Kν ∈ Q.
Then the following problems are polynomial-time interreducible:

(i) The approximation problem for ν.
(ii) The weak membership problem for Bν .

Proof. Let us use (i) as an oracle and solve (ii). Let x ∈ Qn and a let rational
δ > 0 be given. If ‖x‖ ≤ 1/Kν , then ν(x) ≤ 1, and so x ∈ S(Bν , δ). If ‖x‖ ≥ 1/kν ,
then ν(x) ≥ 1, and so x /∈ S(Bν ,−δ).

It remains to check the case ‖x‖ ∈ (1/Kν , 1/kν). Let r ∈ (2‖x‖/3, 2‖x‖) ∩Q and
let y := x/r. Observe that ν(y) ∈ (kν/2, 3Kν/2). Now let ε = k2νδ/4 and let ω(y) be
an ε-approximation of ν(y). Assume first that

rω(y) ≤ 1 + kνδ −
2ε

kν
= 1 +

kνδ

2
.

Then

ν(x) = rν(y) < r(ω(y) + ε) < rω(y) +
2

kν
ε ≤ 1 + kνδ,

and (4) yields that x ∈ S(Bν , δ). Assume now that

rω(y) > 1 +
kνδ

2
.

Then

ν(x) > r(ω(y)− ε) ≥ rω(y)− 2ε

kν
> 1 +

kνδ

2
− kνδ

2
= 1

and so x /∈ S(Bν ,−δ). This shows that we may decide weak membership in Bν with
a δ-approximation to ν. In fact we just need one oracle call to approx.

Let us use (ii) as an oracle and solve (i). Let x ∈ Qn where ‖x‖ ∈ (1/2, 3/2) and
let a rational δ > 0 be given. Again, observe that ν(x) ∈ [a1, b1], where a1 = kν/2
and b1 = 3Kν/2. Suppose that for an integer i ≥ 1 we showed that ν(x) ∈ [ai, bi].
Let

(9) r =
ai + bi

2
, ε =

bi − ai
2Kν(bi + ai)

,

and consider y = x/r. Assume first that y ∈ S(Bν , ε). Then the right inclusion in (4)
yields ν(y) ≤ 1 +Kνε and thus

ν(x) = rν(y) ≤ ai + bi
2

(1 +Kνε) =
3

4
bi +

1

4
ai.

In this case we set ai+1 = ai and bi+1 = 3bi/4+ai/4. Assume now that y /∈ S(Bν ,−ε).
Then the left inclusion in (5) yields

ν(x) > r(1−Kνε) =
1

4
bi +

3

4
ai.
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In this case we set ai+1 = bi/4 + 3ai/4 and bi+1 = bi.
In either case, we obtain that ν(x) ∈ [ai+1, bi+1]. Clearly, the sequence of intervals

{[ai, bi] : i ∈ N} is nested and their successive lengths decrease by a factor of 3/4. Let
m be the smallest integer such that

m > 1 +
log2 b1 − log2 2δ

2− log2 3
if 2δb−1 ≤ 1,

and otherwise set m = 1. Then

bm − am =

(
3

4

)m−1
(b1 − a1) <

(
3

4

)m−1
b1 < 2δ.

Clearly m is polynomial, in fact linear, in 〈Kν〉 + 〈kν〉 + 〈δ〉. Setting ω(x) := (am +
bm)/2, we obtain a δ-approximation of ν(x). This shows that we may determine a
δ-approximation to ν with m oracle calls to wmem in Bν .

Corollary 11. A norm is polynomial-time approximable (resp., NP-hard to ap-
proximate) if and only if its dual norm is polynomial-time approximable (resp., NP-
hard to approximate).

We end this section with a word about Mahler volume [2]. For any norm ν :
Rn → [0,∞), let Voln(Bν) denote the volume of its unit ball Bν . The Mahler volume
of ν is defined as

M(ν) := Voln(Bν) Voln(Bν∗).

A particularly nice property of the Mahler volume is that it is invariant under any
invertible linear transformation, regardless of whether it is volume-preserving.

Corollary 12. If the weak membership problem in Bν is polynomial-time decid-
able, then M(ν) is polynomial-time approximable.

Proof. If wmem in Bν is polynomial-time decidable, then it follows from [4] that
there exist polynomial-time algorithms to approximate Voln(Bν) to any given error
ε > 0. By Corollary 11, wmem in Bν∗ is also polynomial-time decidable and thus the
same holds for Voln(Bν∗).

Mahler volume is more commonly defined for a centrally symmetric compact
convex set but as we mentioned before Corollary 8, this is equal to a unit norm ball
for an appropriate choice of norm.

5. Weak membership in dual cones. In this section, we move our discussion
from balls to cones. While every ball is, by definition, a norm ball, a (proper) cone
may not be a norm cone, i.e., of the form {x ∈ Rn : ‖Ax‖ ≤ cTx} for some norm ‖ · ‖
and A ∈ Rn×n, c ∈ Rn. So the results in this section would not in general follow from
the previous sections.

Let K ⊂ Rn be a proper cone in Rn, i.e., K is a closed convex pointed3 cone with
nonempty interior. Then its dual cone,

K∗ := {x ∈ Rn : yTx ≥ 0 for every y ∈ K},

is also a proper cone [12]. The main result of this section is an analogue of Theorem 3
for such cones: The weak membership problem for K∗ is polynomial-time reducible
to the weak membership problem for K.

3By pointed, we mean that K ∩ (−K) = {0}.
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It is well-known that deciding mem for the cone of copositive matrices is NP-hard
[11]. This result has recently been extended [3]: wmem in the cone of copositive
matrices and wmem in its dual cone, the cone of completely positive matrices, are
both NP-hard problems. Our result in this section generalizes this to arbitrary proper
cones.

We first recall a well-known result regarding the interior points of K∗.

Lemma 13. Let K ⊆ Rn be a closed convex cone. Let b be an interior point of
K∗, i.e., b+ z ∈ K∗ for all z ∈ B(0, εb) for some εb > 0. Then

(10) bTx ≥ εb‖x‖

for every x ∈ K.

Proof. Let x ∈ K \ {0}. Then c := b − εbx/‖x‖ ∈ K∗. Hence cTx ≥ 0, which
implies (10).

We now discuss the notion of wmem in K. Recall that x ∈ K \ {0} if and only if
tx ∈ K for each t > 0. Hence it suffices to define wmem in K for x with Euclidean
norm ‖x‖ = 1, but as such an x may be not have rational coordinates, we instead
define a wmem problem for x ∈ Qn that satisfies 1

2 < ‖x‖ < 1.
Let a ∈ Qn and b ∈ Qn be in the interior ofK andK∗, respectively. By Lemma 13,

(11) Pb := {x ∈ K : bTx = 1}, P ∗a = {y ∈ K∗ : aTy = 1}

are compact convex sets of dimension n − 1. Hence the sets Pb − (bTa)−1a and
P ∗a−(aTb)−1b are full-dimensional compact convex sets in the orthogonal complements
of span(b) and span(a), respectively. In fact Pb and P ∗a are compact convex sets of
maximal dimension in the affine hyperplanes

Hb := {z ∈ Rn : bTz = 1}, Ha := {z ∈ Rn : aTz = 1},

respectively. We may also view Hb and Ha as the affine hulls of Pb and P ∗a , respec-
tively.

As the cones K and K∗ are noncompact, these hyperplane sections Pb and P ∗a
serve as their compact proxies, allowing us to encode K and K∗ (for a Turing ma-
chine). We will assume knowledge of four positive rational numbers ρ′a < ρa and
ρ′b < ρb such that

B(0, ρ′a) ∩Ha ⊆ P ∗a − (aTb)−1b ⊆ B(0, ρa) ∩Ha,

B(0, ρ′b) ∩Hb ⊆ Pb − (bTa)−1a ⊆ B(0, ρb) ∩Hb.

K will be encoded as (n, a, b, ρ′a, ρa) ∈ Q2n+3 and K∗ as (n, a, b, ρ′b, ρb) ∈ Q2n+3. So

〈K〉 := 〈n〉+ 〈a〉+ 〈b〉+ 〈ρ′a〉+ 〈ρa〉, 〈K∗〉 := 〈n〉+ 〈a〉+ 〈b〉+ 〈ρ′b〉+ 〈ρb〉.

While the numbers ρa, ρ
′
a, ρb, ρ

′
b do not appear explicitly in our proofs, they are needed

implicitly when we invoke the Yudin–Nemirovski theorem.
Given any x 6= 0, observe that x ∈ K if and only if x/(bTx) ∈ Pb. Thus the

membership problem for K is equivalent to the membership problem for Pb. We show
in the following that this extends, in an appropriate sense, to weak membership as
well.

Lemma 14. Let x ∈ Qn with 1/2 < ‖x‖ < 1 and b ∈ Qn with bTx > 0. Then the
following problems are polynomial-time interreducible:
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(i) Decide weak membership of x in K.
(ii) Decide weak membership of y := x/(bTx) in Pb relative to Hb.

Proof. Suppose that 0 < δ < bTx/(2‖b‖). Let z ∈ Rn and ‖z‖ ≤ δ. Clearly,

bT(x+ z) = bTx+ bTz ≥ bTx− ‖b‖‖z‖ ≥ 1

2
bTx > 0.

In the following, we let y := x/(bTx) and u := (x+ z)/
(
bT(x+ z)

)
∈ Hb.

Suppose that we can solve (i), i.e., for any rational δ > 0 and x ∈ Qn with
1/2 < ‖x‖ < 1 we can decide whether x ∈ S(K, δ) or x /∈ S(K,−δ). Let ε > 0 be
rational and choose δ rational so that

(bTx)2

8‖b‖
ε < δ <

(bTx)2

4‖b‖
ε.

Consider first the case x /∈ S(K,−δ). There exists z ∈ Rn, ‖z‖ ≤ δ such that
x+ z /∈ K. So u /∈ Pb. Since

y − u =
1

(bTx)(bT(x+ z))
[(bT(x+ z))x− (bTx)(x+ z)]

=
1

(bTx)(bT(x+ z))
[(bTz)x− (bTx)z],

we obtain

‖y − u‖ ≤ 2

(bTx)2
(2‖b‖‖x‖‖z‖) ≤ 4‖b‖δ

(bTx)2
< ε.

Hence y /∈ SHb(Pb,−ε).
Consider now the case x ∈ S(K, δ). There exists z ∈ Rn, ‖z‖ ≤ δ such that

x+ z ∈ K. The same line of argument as above yields that y ∈ SHb(Pb, ε). Together
the two cases show that if we can decide wmem in K with inputs x, δ, then we can
decide wmem in Pb relative to Hb with inputs y, ε.

Suppose we can solve (ii), i.e., for any rational ε > 0 and x ∈ Qn with 1/2 <
‖x‖ < 1, bTx > 0, we can decide whether y ∈ SHb(Pb, ε) or y /∈ SHb(Pb,−ε).

Let x ∈ Qn with 1/2 < ‖x‖ < 1. We start by excluding the trivial case when
bTx ≤ 0. By Lemma 13, x /∈ K and thus x /∈ S(K,−δ) for any δ > 0. So we may
assume henceforth that bTx > 0. Let δ > 0 be rational and set ε := δ/(bTx).

Consider first the case y /∈ SHb(Pb,−ε). There exists v ∈ Hb \ Pb such that

‖v − y‖ ≤ ε. Let z = (bTx)(v − y). So

‖z‖ ≤ (bTx)ε = δ.

Hence (bTx)v = x+ z /∈ K and so x /∈ S(K,−δ).
Consider now the case y ∈ SHb(Pb, ε). The same line of argument as above yields

that x ∈ S(K, δ). Together the two cases show that if we can decide wmem in Pb
relative to Hb with inputs y, ε, then we can decide wmem in K with inputs x, δ.

Lemma 14 may be viewed as a compactification result: We transform a problem
involving a noncompact object K to a problem involving a compact object Pb. The
motivation is so that we may apply the Yudin–Nemirovski theorem later.

Theorem 15. Let K ⊂ Rn be a proper cone and K∗ be its dual. Let a ∈ Qn and
b ∈ Qn be interior points of K and K∗, respectively, that satisfy bTa = 1. Then the
wmem problem for K∗ is polynomial-time reducible to the wmem problem for K.
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Proof. Note that such a pair of a and b must exist for any proper cone. Let
a, b ∈ Qn be interior points contained in balls of radii εa, εb > 0 within K, K∗,
respectively. So bTa > 0. If bTa = 1, we are done. Otherwise set a′ = a/(bTa) ∈ Qn.
Then bTa′ = 1 and a′ is contained in a ball of radius εa′ = εa/(b

Ta) within K∗.
By Lemma 14, we just need to show that the wmem problem for P ∗a relative to

Ha is polynomial-time reducible to the wmem problem for Pb relative to Hb. Since
bTa = 1, Hb − a = b⊥, the orthogonal complement of b, and can be identified with
Rn−1 by an orthogonal change of coordinates. We set Kb := Pb− a, a compact closed
set in Rn−1 containing the origin 0 ∈ Rn−1. Moreover B(0, εa) ⊂ Kb, where B(0, εa)
here is an (n − 1)-dimensional ball in Rn−1. It is enough to show that the wmem
problem for P ∗a relative to Ha is polynomial-time reducible to the wmem problem4

for Kb. We would also need to invoke the fact that the wval problem for Kb is
polynomial-time reducible to the wmem problem for Kb by the Yudin–Nemirovski
theorem. The following sequence of polynomial-time reductions outlines the idea of
our proof:

wmem for K ⇒ wmem for Pb relative to Hb

⇒ wmem for P ∗a relative to Ha ⇒ wmem for K∗.

Let c ∈ Qn ∩Ha. Given a rational δ > 0 we need to decide whether c /∈ SHa(P ∗a ,−δ)
or c ∈ SHa(P ∗a , δ). Let ε > 0 be rational with

(12) ε < min

{
1

4(1 + ‖c‖)
,

δ

4(1 + ‖c‖)(‖b− c‖)

}
,

where δ/0 :=∞ if b = c. It follows from (12) that

(13) τ := (1 + ‖c‖)ε ≤ 1

4
,

∥∥∥∥c− c+ τb

1 + τ

∥∥∥∥ ≤ δ, ∥∥∥∥c− c− 2τb

(1− 2τ

∥∥∥∥ ≤ δ.
Observe that c defines a linear functional b⊥ → R, x 7→ cTx. Consider the wval

problem for Kb with γ = −cTa: Either cTx ≥ −cTa − ε for all x ∈ SHb(Kb,−ε)
or cTx ≤ −cTa + ε for some x ∈ SHb(Kb,−ε). We will show that in the first case
c ∈ SHa(P ∗a , δ) and in the second case c 6∈ SHa(P ∗a ,−δ) for a corresponding δ > 0.

Consider first the case cTx ≥ −cTa − ε for all x ∈ SHb(Kb,−ε) or, equivalently,

cTy ≥ −ε for all y = x + a ∈ SHb(Pb,−ε). We claim that cTy ≥ −(1 + ‖c‖)ε for

all y ∈ Pb. This holds for y ∈ SHb(Pb,−ε) since cTy ≥ −ε ≥ −(1 + ‖c‖)ε. For
y ∈ Pb \ SHb(Pb,−ε), there exists x ∈ SHb(Pb,−ε) such that ‖y − x‖ ≤ ε. Thus

cTy = cTx+ cT(y − x) ≥ −ε− ‖c‖‖y − x‖ = −(1 + ‖c‖)ε. Then for any y ∈ Pb,
1

1 + τ
(c+ τb)Ty ≥ 0 ⇒ 1

1 + τ
(c+ τb) ∈ P ∗a .

By the middle inequality in (13), we obtain c ∈ SHa(P ∗a , δ).

Consider now the case cTx ≤ −cTa+ ε for some x ∈ SHb(Kb, ε) or, equivalently,

cTy ≤ ε for some y = x + a ∈ SHb(Pb, ε). Hence there exists z ∈ Pb such that

‖z−y‖ ≤ ε and so cTz = cTy+cT(z−y) ≤ (1+‖c‖)ε = τ < 1/4 by the left inequality
in (13). Then

1

1− 2τ
(c− 2τb)Tz ≤ −τ ⇒ 1

1− 2τ
(c− 2τb) 6∈ P ∗a .

4When we refer to the wmem or wval problem for Kb, we mean its wmem or wval problem as
a subset of Rn−1.
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By the right inequality in (13), we obtain c 6∈ SHa(P ∗a ,−δ).

6. Approximation of Fenchel duals. Let C ⊆ Rn and f : C → R. Since the
epigraph of f , epi(f) = {(x, t) ∈ C × R : f(x) ≤ t}, is in general noncompact, we
introduce the following variant that preserves all essential features of the epigraph
but has the added advantage of facilitating complexity theoretic discussions. For any
α ∈ R, we let

epiα(f) = {(x, t) ∈ C × (−∞, α] : f(x) ≤ t}

and call this the α-epigraph of f . Clearly f is a convex function if and only if epiα(f)
is a convex set for all α ∈ R.

Definition 16. Let C ⊆ Rn be a bounded set with nonempty interior. Let f :
C → R be a bounded function. We define the following approximation problems
( approx):

(i) Approximation problem for f : Given any x ∈ Qn ∩ C and any rational ε > 0,
find an ω(x) such that f(x)− ε < ω(x) < f(x) + ε.

(ii) Approximation problem for µ := infx∈C f(x): Given any rational ε > 0, find
µ(ε) ∈ Q such µ− ε < µ(ε) < µ+ ε.

Problem (i) is of course a generalization of Definition 9 from norms to a more
general function. We will show that (i) and (ii) are polynomial-time interreducible.
For this purpose, we will need a useful corollary [6, Corollary 4.3.12] of the Yudin–
Nemirovski theorem (cf. theorem 4) with the wopt problem in place of the wval
problem.

Corollary 17 (Yudin–Nemirovski). Let C ⊆ Rn be a compact convex set with
nonempty interior for which we have knowledge of a ∈ Qn and 0 < r ≤ R ∈ Q
such that B(a, r) ⊆ C ⊆ B(a,R). Then the wopt problem for C is polynomial-time
reducible to the wmem problem for C.

We will rely on this to show that for a convex function f : C → R, the approx-
imation problem for infx∈C f(x) is polynomial-time reducible to the approximation
problem for f .

Lemma 18. Let C ⊆ Rn be a compact convex set with nonempty interior where
mem in C can be checked in polynomial time. Let f : C → R be a continuous convex
function with |f(x)| ≤ α for some rational α > 0. Suppose that there exists a rational
δ > 0 such that

(14) µ := min
x∈C

f(x) = min
x∈S(C,−δ)

f(x).

Then the approximation problem for µ is polynomial-time reducible to the approxima-
tion problem for f .

Note that we require knowledge of the values of both α and δ, not just of their
existence. We need the condition (14) to ensure that no minimizer of f lies on the
boundary of C and that any minimizer is at least distance δ away from the boundary.

Proof of Lemma 18. We will show that wopt in epi2α(f) yields a solution to
approx for µ. The result then follows from two polynomial-time reductions: wopt
in epi2α(f) can be reduced to wmem in epi2α(f), and wmem in epi2α(f) can be
reduced to approx for f .

As f is a continuous convex function and C is compact with nonempty interior,
C ′ := epi2α(f) is a compact convex set with interior in Rn+1. We claim that the
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wmem in C ′ is polynomial-time reducible to the approximation problem for f . Let
ε ∈ Q with 0 < ε < α and (x, t) ∈ Qn+1. If x /∈ C or t > 2α, then (x, t) /∈ C ′

and so (x, t) /∈ S(C ′,−ε). Now suppose x ∈ C and t ≤ 2α. An oracle call to the
approximation problem for f gives us ω(x) with ω(x) − ε < f(x) < ω(x) + ε. If
t ≥ ω(x), then as (x, t) + (0, ε) ∈ C ′, it follows that (x, t) ∈ S(C ′, ε). If t < ω(x), then
as (x, t)− (0, ε) /∈ C ′, it follows that (x, t) /∈ S(C ′,−ε).

By Corollary 17, wopt in C ′ is polynomial-time reducible to wmem in C ′. There-
fore given ε ∈ Q with 0 < ε < min(α, δ) and γ = (0, . . . , 0,−1) ∈ Zn+1, by an oracle
call to wmem in C ′, we may find (y, s) ∈ S(C ′, ε) such that

γT(x, t) = −t ≤ γT(y, s) + ε = −s+ ε

for all (x, t) ∈ S(C ′,−ε). We claim that s = µ(ε), the required approximation to µ.
Since ε < δ, it follows that S(C ′,−ε) ⊇ S(C ′,−δ). The assumption (14) ensures that
(x?, µ) ∈ S(C,−δ), where f(x?) = µ. Hence we deduce that s ≤ µ+ ε, i.e., µ ≥ s− ε.
As (y, s) ∈ S(C ′, ε), it follow that there exists (x′, t′) ∈ C ′ such that t′ ≥ f(x′) and
|t′ − s| ≤ ε. So s ≥ t′ − ε ≥ µ − ε. Thus µ − ε ≤ s ≤ µ + ε, but starting with 2ε in
place of ε allows us to replace “≤” by “<” as required by Definition 16(ii).

We now turn to the computational complexity of the Fenchel dual [1, 12]. Our
results here require that f be defined on all of Rn. Recall that for a function f : Rn →
R, its Fenchel dual is defined to be the function f∗ : Rn → (−∞,∞],

f∗(y) := sup
x∈Rn

(
yTx− f(x)

)
.

The Fenchel dual is also known as the Fenchel conjugate and the map f 7→ f∗ is
sometimes called the Legendre transform. It is well-known that f∗ is always a convex
function, being the pointwise supremum of a family of affine functions y 7→ yTx−f(x).
It is also well-known that f is a lower semicontinuous proper convex function if and
only if f∗∗ = f .

Suppose that given any inputs x ∈ Qn and 0 < ε ∈ Q, we can compute f(x)
to within precision ε in polynomial-time. What can we say about the complexity
of computing f∗(y) for an input y ∈ Qn to a certain precision? We will see that if
f is not convex, then the computation of f∗ can be NP-hard at least for some y.
However, when f is convex and satisfies certain growth conditions, computing f∗ is
a problem that is polynomial-time reducible to computing f . Furthermore f∗ would
satisfy the same growth conditions so that computing f and computing f∗ are in fact
polynomial-time interreducible.

Let g : Rn × Rn × Rn → R, (x, y, z) 7→
∑n
i,j,k=1 aijkxiyjzk be a multilinear

function. Let D = {(x, y, z) ∈ R3n : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖z‖ ≤ 1}. We define
a nonconvex function f as follows: For (x, y, z) ∈ D, f(x, y, z) := −g(x, y, z). For
(x, y, z) /∈ D, let t = 1/max(‖x‖, ‖y‖, ‖z‖) and set f(x, y, z) := −g(tx, ty, tz). It
is trivial to compute f for any (x, y, z) ∈ R3n but f∗(0) = max(x,y,z)∈D g(x, y, z) is
NP-hard to approximate in general [9, Theorem 10.2].

In what follows let f : Rn → R be a continuous convex function. We will assume
that f satisfies the growth condition

(15) kf‖x‖s ≤ f(x) ≤ Kf‖x‖t whenever ‖x‖ ≥ r

for some constants 0 < kf ≤ Kf , 1 < s ≤ t, and r > 0 depending on f . We now show
that f∗ must satisfy similar growth conditions

(16) kf∗‖y‖s
′
≤ f∗(y) ≤ Kf∗‖y‖t

′
whenever ‖y‖ ≥ r′,
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but with possibly different constants.

Lemma 19. Let f : Rn → R be a convex function and let f∗ : Rn → (−∞,∞] be
its Fenchel dual. Then f satisfies (15) if and only if f∗ satisfies (16).

Proof. For ‖x‖ ≥ r, the lower bound in (15) and yTx ≤ ‖y‖‖x‖ give

(17) yTx− f(x) ≤ ‖y‖‖x‖ − kf‖x‖s = ‖x‖(‖y‖ − kf‖x‖s−1).

Observe that for z ∈ [0,∞), the maximum of h(z) := ‖y‖z − kfzs is attained at

z? =

(
‖y‖
kfs

)1/(s−1)

with maximum value

h(z?) =
s− 1

s
‖y‖z? =

s− 1

s(kfs)1/(s−1)
‖y‖s/(s−1).

Let µ := min‖x‖≤r f(x). Then

max
‖x‖≤r

(
yTx− f(x)

)
≤ ‖y‖r − µ.

Combine this with (17) and we obtain

f∗(y) ≤ max

(
‖y‖r − µ, s− 1

s(kfs)1/(s−1)
‖y‖s/(s−1)

)
.

This last inequality yields the upper bound in (16) with

Kf∗ =
s− 1

s(kfs)1/(s−1)
, t′ =

s

s− 1
, r′ ≥ r1,

for a corresponding r1 that depends on kf , s, r, µ. More precisely, either r1 = 0 or r1
is the unique positive solution of

r1r − µ =
s− 1

s(kfs)1/(s−1)
r
s/(s−1)
1 .

To deduce the lower bound in (16), let y be such that

‖y‖ ≥ rt−1Kf t.

Choose x = cy such that

‖x‖ =

(
‖y‖
Kf t

)1/(t−1)

.

It follows that ‖x‖ ≥ r and so the upper bound in (15) yields f∗(y) ≥ ‖y‖‖x‖−Kf‖x‖t.
Hence we have the lower bound in (16) with

kf∗ =
t− 1

t(Kf t)1/(t−1)
, s′ =

t

t− 1
.
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Theorem 20. Let f : Rn → R be a convex function satisfying (15). Then the ap-
proximation problem for f∗ is polynomial-time reducible to the approximation problem
for f .

Proof. We will compute an approximation of f∗(y) with oracle calls to approxi-
mations of f(x).

Suppose first that y = 0 and we need to compute an approximation of f∗(0) =
supx∈Rn−f(x). By the lower bound in (15), there is some ρ0 = ρ(r, kf , s) ∈ Q∩(0,∞)
such that −f(x) < −f(0) whenever ‖x‖ ≥ ρ0. Hence

f∗(0) = max
‖x‖≤ρ0

−f(x) = − min
‖x‖≤ρ0

f(x) = − min
‖x‖≤ρ0+1

f(x).

Let C = B(0, ρ0 + 1). Since mem in a Euclidean ball B(0, ρ) is clearly polynomial-
time decidable, the conditions of Lemma 18 are satisfied. Hence approx for f∗(0) is
polynomial-time reducible to approx for f .

Suppose now that y 6= 0. Clearly f∗(y) ≥ −f(0). Let ρ > r, where r is as in (15).
Let f∗ρ (y) := max‖x‖=ρ

(
yTx− f(x)

)
. As yTx ≤ ‖y‖‖x‖, the lower bound in (15) gives

f∗ρ (y) ≤ ‖x‖(‖y‖ − kf‖x‖s−1) = ρ(‖y‖ − kfρs−1).

Hence there exists ρ1 = ρ(‖y‖, kf , s) ∈ Q ∩ (r,∞) such that −f(0) > f∗ρ (y) for all
y ∈ Rn whenever ρ ≥ ρ1. Therefore

f∗(y) = − min
‖x‖≤ρ1

(
f(x)− yTx

)
= − min

‖x‖≤ρ1+1

(
f(x)− yTx

)
.

Let 0 6= y ∈ Qn and C = B(0, ρ1 +1). Then the conditions of Lemma 18 are satisfied.
Hence approx for f∗(y) is polynomial-time reducible to approx for f .

Since f∗∗ = f for a convex function and by Lemma 15, f and f∗ both satisfy the
polynomial growth condition if either one does, we obtain the following.

Corollary 21. Let f : Rn → R be a convex function satisfying (15). The
approximation problem for f∗ is polynomial-time computable (resp., NP-hard) if and
only if the approximation problem for f is polynomial-time computable (resp., NP-
hard).

7. Conclusion. In this article, we have focused on establishing equivalence in
the computational complexity of dual objects for several common convex objects and
common notions of duality. These results are expected to have immediate applications
in many areas. We conclude our article with two such examples.

Drawing from our own work, we rely on the results in sections 3 and 4 to deduce
that the nuclear norm for higher-order tensors is NP-hard to compute [5, Corollary 8.8]
and likewise for the dual norm of an operator (p, q)-norm when 1 ≤ q < p ≤ ∞ or
when p = q /∈ {1, 2,∞} [5, section 7].

Following the notation in [10], we let Σ2
∇2
n,4

denote the cone of sos-convex quartic

forms [8] and Σ2
n,4 ∩Sn

4

cvx denote the cone of convex quartic forms that are sos. Using
the results in section 5 and [10, Proposition 5.1 and Theorem 5.4], we easily deduce
that membership in the dual cone of Σ2

∇2
n,4

is polynomial-time whereas membership
in the dual cone of Σ2

n,4 ∩ Sn4

cvx is NP-hard—observations that are new to the best of
our knowledge. Furthermore, if we assume that P 6= NP , then it follows that the
containment of Σ2

∇2
n,4

in Σ2
n,4 ∩ Sn4

cvx is strict, verifying [10, Theorem 4.1].
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