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Blaming the math
Wired: Gaussian copulas for CDOs.

NYT: normal market in VaR.

January 4, 2009

Risk Mismanagement

By JOE NOCERA

THERE AREN’T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s
one that made the rounds in 2007, back when the big investment banks were first starting to write down
billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before
Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,
before Lehman fell and Merrill Lynch was sold and A.I.G. saved, before the $700 billion bailout bill was
rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment
firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy
that they threatened to bring down the financial system itself. On the contrary: this was back when the
major investment firms were still assuring investors that all was well, these little speed bumps
notwithstanding — assurances based, in part, on their fantastically complex mathematical models for
measuring the risk in their various portfolios.

There are many such models, but by far the most widely used is called VaR — Value at Risk. Built around
statistical ideas and probability theories that have been around for centuries, VaR was developed and
popularized in the early 1990s by a handful of scientists and mathematicians — “quants,” they’re called in
the business — who went to work for JPMorgan. VaR’s great appeal, and its great selling point to people
who do not happen to be quants, is that it expresses risk as a single number, a dollar figure, no less.

VaR isn’t one model but rather a group of related models that share a mathematical framework. In its most
common form, it measures the boundaries of risk in a portfolio over short durations, assuming a “normal”
market. For instance, if you have $50 million of weekly VaR, that means that over the course of the next
week, there is a 99 percent chance that your portfolio won’t lose more than $50 million. That portfolio could
consist of equities, bonds, derivatives or all of the above; one reason VaR became so popular is that it is the
only commonly used risk measure that can be applied to just about any asset class. And it takes into account
a head-spinning variety of variables, including diversification, leverage and volatility, that make up the kind
of market risk that traders and firms face every day.

Another reason VaR is so appealing is that it can measure both individual risks — the amount of risk
contained in a single trader’s portfolio, for instance — and firmwide risk, which it does by combining the
VaRs of a given firm’s trading desks and coming up with a net number. Top executives usually know their
firm’s daily VaR within minutes of the market’s close.
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Why not Gaussian

Log characteristic function

log E(exp(i〈t, x〉)) =
∞∑
|α|=1

i |α|κα(x)
tα

α!
.

Gaussian assumption equivalent to quadratic approximation:

∞ = 2.

If x is multivariate Gaussian, then

log E(exp(i〈t, x〉)) = i〈E(x), t〉+
1

2
t> Cov(x)t.

K1(x) mean, K2(x) (co)variance, K3(x) (co)skewness, K4(x)
(co)kurtosis,. . . .

Non-Gaussian data: Not enough to look at just mean and
covariance.
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Why not copulas
Nassim Taleb: “Anything that relies on correlation is charlatanism.”
Even if marginals normal, dependence might not be.
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Why not VaR

Paul Wilmott: “The relationship between two assets can never be
captured by a single scalar quantity.”

Multivariate f : Rn → R

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ak(x, . . . , x) + · · · ,

grad f (x) ∈ Rn, Hess f (x) ∈ Rn×n, . . . , D(k)f (x) ∈ Rn×···×n.

Hooke’s law in 1D: x extension, F force, k spring constant,

F = −kx .

Hooke’s law in 3D: x = (x1, x2, x3), elasticity tensor C ∈ R3×3×3×3,
stress Σ ∈ R3×3, strain Γ ∈ R3×3

σij =
∑3

k,l=1
cijklγkl .
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Cumulants

Univariate distribution: First four cumulants are
I mean K1(x) = E(x) = µ,
I variance K2(x) = Var(x) = σ2,
I skewness K3(x) = σ3 Skew(x),
I kurtosis K4(x) = σ4 Kurt(x).

Multivariate distribution: Covariance matrix partly describes the
dependence structure — enough for Gaussian. Cumulants describe
higher order dependence among random variables.
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Examples of cumulants

Univariate: Kp(x) for p = 1, 2, 3, 4 are mean, variance, skewness,
kurtosis (unnormalized)

Discrete: x ∼ Poisson(λ), Kp(x) = λ for all p.

Continuous: x ∼ Uniform([0, 1]), Kp(x) = Bp/p where Bp = pth
Bernoulli number.

Nonexistent: x ∼ Student(3), Kp(x) does not exist for all p ≥ 3.

Multivariate: K1(x) = E(x) and K2(x) = Cov(x).

Discrete: x ∼Multinomial(n,q),

κj1···jp (x) = n ∂p

∂tj1 ···∂tjp
log(q1e

t1x1 + · · ·+ qketkxk )
∣∣∣
t1,...,tk=0

.

Continuous: x ∼ Normal(µ,Σ), Kp(x) = 0 for all p ≥ 3.

L.-H. Lim (Berkeley) Principal Cumulant Component Analysis July 4, 2009 7 / 20



Tensors as hypermatrices

Choose bases, ignore contra/covariance, write A ∈ U ⊗ V ⊗W as

A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Matrix rank. A ∈ Rm×n.

I rank(A) = min{r | A =
∑r

i=1uiv>i }
= dim(spanR{A•1, . . . ,A•n}) = dim(spanR{A1•, . . . ,Am•}).

Tensor rank. A ∈ Rl×m×n.

I outer-product rank: u⊗ v ⊗w := JuivjwkK
l,m,n
i,j,k=1,

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi};

I multilinear rank: generalizes row and column ranks,

rank�(A) = (r1(A), r2(A), r3(A)).

Generalizing A = UΣV> =
∑r

i=1σiui ⊗ vi : either keep Σ diagonal or
U,V orthonormal but not both.
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Humans cannot understand ‘raw’ tensors

Humans cannot make sense out of more than O(n) numbers. For most
people, 5 ≤ n ≤ 9 [Miller; ’56].

VaR: single number

I Readily understandable.
I Not sufficiently informative and discriminative.

Covariance matrix: O(n2) numbers

I Hard to make sense of without further processing.
I Eigenvalue decomposition: PCA, MDS, ISOMAP, LLE, Laplacian

Eigenmap, etc.

Cumulant of order d : O(nd) numbers

I How to make sense of these?
I Want analogue of ‘eigenvalue decomposition’ for symmetric tensors.
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SVD for tensors

Linear combination of decomposable tensors

A = (X ,Y ,Z ) · Σ =
∑r

i=1
σixi ⊗ yi ⊗ zi .

I Computational complexity: Strassen matrix multiplication/inversion

inf
{
ω
∣∣ rank⊗

(∑n
i,j,k=1ϕik ⊗ ϕkj ⊗ Eij

)
= O(nω)

}
= 2?

I Quantum computing: algebraic measure of entanglement

|GHZ〉 = |0〉 ⊗ |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 ⊗ |1〉 ∈ C2×2×2.

I Geometry: secant varieties of Segre and Veronese varieties.

Multilinear combination of orthonormal U,V ,W

A = (U,V ,W ) · C =
∑r1,r2,r3

i ,j ,k=1
cijkui ⊗ vj ⊗wk .

I Geometry: subspace varieties, symmetric subspace varieties

Gr(l , p)× Gr(m, q)× Gr(n, r)× Rp×q×r → Subp,q,r (Rl ,Rm,Rn).
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Eliminating the impossible

Computing 3-tensor rank is NP hard [Håstad; 1990].

Just about every tensor problem is NP hard in both the
Cook-Karp-Levin and the Blum-Shub-Smale sense [L & Hillar; 2009]:

I best rank-1 approximation of a 3-tensor;
I best rank-1 approximation of a symmetric 3-tensor;
I singular values/vectors of a 3-tensor [L; 2005];
I eigenvalues/vectors of a symmetric 3-tensor [L; 2005], [Qi; 2005];
I spectral norm of a 3-tensor;
I feasibility of a system of bilinear equations;
I solving a system of bilinear equations in both the exact and least

squares sense.

Best rank-r tensor approximation problems are unsolvable in general
[de Silva & L; 2008], [Comon, Golub, L, Mourrain; 2008].
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Among whatever remains

Principal Component Analysis: components accounting for
variation in covariance.

Principal Cumulant Component Analysis: components accounting
for variation in all cumulants simultaneously [L & Morton; 2008],
[Morton & L; 2009],

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2F .

Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n − r),

maxQ∈Gr(n,r)

∑∞

p=1
αp‖(Q>, . . . ,Q>) · K̂p(y)‖2F .

Efficient algorithm exists: limited memory bfgs on Grassmannian
[Savas & L; 2009].
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Properties of cumulants

Multilinearity: If x is a Rn-valued random variable and A ∈ Rm×n

Kp(Ax) = (A, . . . ,A) · Kp(x).

Additivity: If x1, . . . , xk are mutually independent of y1, . . . , yk , then

Kp(x1 + y1, . . . , xk + yk) = Kp(x1, . . . , xk) +Kp(y1, . . . , yk).

Independence: If I and J partition {j1, . . . , jp} so that xI and xJ are
independent, then

κj1···jp (x) = 0.

Support: There are no distributions where

Kp(x)

{
6= 0 3 ≤ p ≤ n,

= 0 p > n.
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Principal and independent component analysis

Linear generative model:
y = As + ε.

Principal component analysis: s Gaussian,

K̂2(y) = QΛ2Q
> = (Q,Q) · Λ2,

Λ2 ≈ K̂2(s) diagonal matrix, Q ∈ O(n, r), [Pearson; 1901].

Independent component analysis: s statistically independent entries, ε
Gaussian

K̂p(y) = (Q, . . . ,Q) · Λp, p = 2, 3, . . . ,

Λp ≈ K̂p(s) diagonal tensor, Q ∈ O(n, r), [Comon; 1994].
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Principal cumulant component analysis

Note that if ε = 0, then

Kp(y) = Kp(Qs) = (Q, . . . ,Q) · Kp(s).

In general, want principal components that account for variation in all
cumulants simultaneously

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2F ,

We have assumed A = Q ∈ O(n, r) since otherwise A = QR and

Kp(As) = (Q, . . . ,Q) · [(R, . . . ,R) · Kp(s)].

Recover orthonormal basis of subspace spanned by A.

Cp ≈ (R, . . . ,R) · K̂p(s) not necessarily diagonal.
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Newton/quasi-Newton on a Grassmannian

Objective Φ : Gr(n, r)→ R.

TX tangent space at X ∈ Gr(n, r)

Rn×r 3 ∆ ∈ TX ⇐⇒ ∆>X = 0

1 Compute Grassmann gradient ∇Φ ∈ TX .
2 Compute Hessian or update Hessian approximation

H : ∆ ∈ TX → H∆ ∈ TX .

3 At X ∈ Gr(n, r), solve
H∆ = −∇Φ

for search direction ∆.
4 Update iterate X : Move along geodesic from X in the direction given

by ∆.

[Arias, Edelman, Smith; 1999], [Savas & L.; 2009].
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Picture
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Convergence

Left: ‖(X ,X ,X ) · S3‖2. Compares favorably with Alternating
Least Squares.

Right: 1
2!‖(X ,X )·S2‖2+ 1

3!‖(X ,X ,X )·S3‖2+ 1
4!‖(X ,X ,X ,X )·S4‖2.

0 10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

 

 
BFGS: I

L.-H. Lim (Berkeley) Principal Cumulant Component Analysis July 4, 2009 18 / 20



Skew eigenfaces

Left: Original.

Center: 30 variance eigenvectors.

Right: 20 variance eigenvectors and 10 skewness eigenvectors.
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Higher order portfolio optimization

min
n∑

d=2

αd(x>, . . . , x>) · Kd(y) s.t. x> E(y) > r .

n = 2: Markowitz mean-variance optimal portfolio theory.

n = 4: mean-variance-skewness-kurtosis optimal portfolio theory.
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