Globally convergent algorithms for

PARAFAC with semi-definite programming

Lek-Heng Lim

6th ERCIM Workshop on Matrix Computations and Statistics Copenhagen, Denmark

April 1-3, 2005

Thanks: Vin de Silva, Gunnar Carlsson, Gene Golub, NSF DMS 01-01364

Acknowledgement

MATLAB Toolbox for Semidefinite Programming — SDPT3

Joint work with:
Kim-Chuan Toh
Department of Mathematics
National University of Singapore

Thanks to:
Vin de Silva
Department of Mathematics
Stanford University

Long term goal

Numerical Multilinear Algebra: Theory, Algorithms and Applications of Tensor Computations

- Develop a collection of standard computational methods for higher order tensors that parallel the methods that have been developed for order-2 tensors, ie. matrices
- Develop the mathematical foundations to facilitate this goal
- Applications

Motivation

Past 50 years, Numerical Linear Algebra played crucial role in:

- the statistical analysis of two-way data,
- the numerical solution of partial differential equations arising from vector fields,
- the numerical solution of second-order optimization methods.

Next step — develop Numerical Multilinear Algebra for:

- the statistical analysis of multi-way data,
- the numerical solution of partial differential equations arising from tensor fields,
- the numerical solution of higher-order optimization methods.

Outer product approximation

A Candecomp/Parafac or outer product model has the following form

$$
a_{i j k}=\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}+e_{i j k}
$$

where $E=\llbracket e_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$ denotes the (unknown) error.
To minimize the error, we want an outer product approximation

$$
\operatorname{argmin}\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}
$$

where the minimum is taken over all matrices $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right] \in$ $\mathbb{R}^{l \times r}, Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right] \in \mathbb{R}^{m \times r}, Z=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{r}\right] \in \mathbb{R}^{n \times r}$.

In short, we want an optimal solution

$$
B_{\otimes}^{*}=\underset{\operatorname{rank}_{\otimes}(B) \leq r}{\operatorname{argmin}}\|A-B\|_{F}
$$

Alternating least squares

 exists, B_{\otimes}^{*} is not easy to compute since the objective function is non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm, better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

```
initialize X }\mp@subsup{X}{(0)}{(0)}\mp@subsup{\mathbb{R}}{}{l\timesr},\mp@subsup{Y}{}{(0)}\in\mp@subsup{\mathbb{R}}{}{m\timesr},\mp@subsup{Z}{}{(0)}\in\mp@subsup{\mathbb{R}}{}{n\timesr}\mathrm{ ;
initialize s}\mp@subsup{s}{}{(0)},\varepsilon>0,k=0
while }\mp@subsup{\rho}{}{(k+1)}/\mp@subsup{\rho}{}{(k)}>\varepsilon
    X}\mp@subsup{}{(k+1)}{~}\leftarrow\mp@subsup{\operatorname{argmin}}{\overline{X}\in\mp@subsup{\mathbb{R}}{}{\\timesN}}{}|T-\mp@subsup{\sum}{\alpha=1}{r}\mp@subsup{\overline{x}}{\alpha}{(k+1)}\otimes\mp@subsup{y}{\alpha}{(k)}\otimes\mp@subsup{z}{\alpha}{(k)}\mp@subsup{|}{F}{2}
    Y(k+1)}\leftarrow\operatorname{argmin
    Z
    \rho}\mp@subsup{}{(k+1)}{\leftarrow||\mp@subsup{\sum}{\alpha=1}{r}[\mp@subsup{x}{a}{(k+1)}\otimes\mp@subsup{y}{\alpha}{(k+1)}\otimes\mp@subsup{z}{\alpha}{(k+1)}-\mp@subsup{x}{\alpha}{(k)}\otimes\mp@subsup{y}{\alpha}{(k)}\otimes\mp@subsup{z}{\alpha}{(k)}]\mp@subsup{|}{F}{2};
    k\leftarrowk+1;
```


Word of caution

A sequence $\left(\theta_{k}\right)_{k=1}^{\infty}$ is said to converge if $\lim _{k \rightarrow \infty} \theta_{k}$ exists.

An iterative algorithm for solving a particular problem is said to converge if the sequence of iterates $\left(\theta_{k}\right)_{k=1}^{\infty}$ is convergent and $\lim _{k \rightarrow \infty} \theta_{k}$ is the solution to that problem.

The sequence of iterates generate by ALS may be a convergent sequence but the ALS is not convergent as an algorithm for finding the optimal PARAFAC solution.

Pitfall: An algorithm that monotonically decreases the objective function must converge to the infimum/minimum of the function. (Not necessary, eg. $f_{k}=f\left(\theta_{k}\right)=2+\frac{1}{k}$ and $f^{*}=\inf _{D} f=1$.

Some history

f polynomial in variables $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$. Suppose $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ non-negative valued, ie. $f(\mathrm{x}) \geq 0$ for all $\mathrm{x} \in \mathbb{R}^{N}$.

Question: Can we write f as a sum of squares of polynomials, ie. p_{1}, \ldots, p_{M} such that

$$
f(\mathrm{x})=\sum_{j=1}^{M} p_{j}(\mathrm{x})^{2}
$$

Answer (Hilbert): Not in general, eg. $f(w, x, y, z)=w^{4}+x^{2} y^{2}+$ $y^{2} z^{2}+z^{2} x^{2}-4 x y z w$.

Hilbert's 17th Problem: Can we write f as a sum of squares of rational functions, ie. p_{1}, \ldots, p_{M} and q_{1}, \ldots, q_{M} such that

$$
f(\mathrm{x})=\sum_{j=1}^{M}\left(\frac{p_{j}(\mathrm{x})}{q_{j}(\mathrm{x})}\right)^{2}
$$

Answer (Artin): Yes!

SDP-based algorithm

Observation 1:

$$
\begin{aligned}
F\left(x_{11}, \ldots, z_{n r}\right) & =\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}^{2} \\
& =\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
\end{aligned}
$$

is a polynomial of total degree 6 (resp. $2 k$ for order k-tensors) in variables $x_{11}, \ldots, z_{n r}$.

Recent breakthroughs in multivariate polynomial optimization [Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show that the non-convex problem

$$
\operatorname{argmin} F\left(x_{11}, \ldots, z_{n r}\right)
$$

may be relaxed to a convex problem (thus global optima is guranteed) which can in turn be solved using SDP.

How it works

Observation 2: If $F-\lambda$ can be expressed as a sum of squares of polynomials

$$
F\left(x_{11}, \ldots, z_{n r}\right)-\lambda=\sum_{i=1}^{n} P_{i}\left(x_{11}, \ldots, z_{n r}\right)^{2}
$$

then λ is a global lower bound for F, ie.

$$
F\left(x_{11}, \ldots, z_{n r}\right) \geq \lambda
$$

for all $x_{11}, \ldots, z_{n r} \in \mathbb{R}$.

Simple strategy: Find the largest λ^{*} such that $F-\lambda^{*}$ is a sum of squares. Then λ^{*} is often $\min F\left(x_{11}, \ldots, z_{n r}\right)$.

Write $\mathbf{v}=\left(1, x_{11}, \ldots, z_{n r}, \ldots, x_{l 1} y_{m 1} z_{n 1}, \ldots, z_{n r}^{6}\right)^{t}$, the D-tuple of monomials of total degree ≤ 6, where

$$
D:=\binom{r(l+m+n)+3}{3}
$$

Write $F\left(x_{11}, \ldots, z_{n r}\right)=\boldsymbol{\alpha}^{t} \mathbf{v}$ where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{D}\right) \in \mathbb{R}^{D}$ are the coefficients of the respective monomials.

Since $\operatorname{deg}(F)$ is even, F may also be written as

$$
F\left(x_{11}, \ldots, z_{n r}\right)=\mathbf{v}^{t} M \mathbf{v}
$$

for some $M \in \mathbb{R}^{D \times D}$. So

$$
F\left(x_{11}, \ldots, z_{n r}\right)-\lambda=\mathbf{v}^{t}\left(M-\lambda E_{11}\right) \mathbf{v}
$$

where $E_{11}=\mathbf{e}_{1} \mathbf{e}_{1}^{t} \in \mathbb{R}^{D \times D}$.

Observation 3: The rhs is a sum of squares iff $M-\lambda E_{11}$ is positive semi-definite (since $M-\lambda E_{11}=B^{t} B$).

Hence we have

$$
\begin{aligned}
\text { minimize } & -\lambda \\
\text { subjected to } & \mathbf{v}^{t}\left(S+\lambda E_{11}\right) \mathbf{v}=F, \\
& S \succeq 0
\end{aligned}
$$

This is an SDP problem

$$
\begin{array}{rll}
\operatorname{minimize} & 0 \circ S-\lambda & \\
\text { subjected to } & S \circ B_{1}+\lambda=\alpha_{1}, & \\
& S \circ B_{k}=\alpha_{k}, & k=2, \ldots, D \\
& S \succeq 0, & \lambda \in \mathbb{R} .
\end{array}
$$

This problem can be solved in polynomial time. Like all SDPbased algorithms, the SPD duality produces a certificate that tells us whether we have arrived at a globally optimal solution.

The duality gap, ie. difference between the values of the primal and dual objective functions, is 0 at a global minima.

Reducing the complexity

Complexity: For rank-r approximations to order- k tensors $A \in$ $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$,

$$
D=\binom{r\left(d_{1}+\cdots+d_{k}\right)+k}{k}
$$

is large even for moderate d_{i}, r and k.

Sparsity to the rescue: The polynomials that we are interested in are always sparse (eg. for $k=3$, only terms of the form $x y z$ or $x^{2} y^{2} z^{2}$ or uvwxyz appear). This can be exploited.

Newton polytope

Newton polytope of a polynomial f is the convex hull of the powers of the monomials in f.

Example. The Newton polytope of the polynomial $f(x, y)=$ $3.67 x^{4} y^{1} 0+-2.03 x^{3} y^{3}+5.74 x^{3}-20.1 y^{2}-7.23$ is the convex hull of the points $(4,10),(3,3),(3,0),(2,0),(0,0)$ in \mathbb{R}^{2}.

Example. The Newton polytope of the polynomial $f(x, y, z)=$ $1.7 x^{4} y^{6} z^{2}+7.4 x^{3} z^{5}-3.0 y^{4}+0.1 y z^{2}$ is the convex hull of the points $(4,6,2),(3,0,5),(0,4,0),(0,1,2)$ in \mathbb{R}^{3}.

Theorem (Reznick). If $f(\mathbf{x})=\sum_{i=1}^{m} p_{i}(\mathbf{x})^{2}$, then the powers of the monomials in p_{i} must lie in $\frac{1}{2} \operatorname{Newton}(f)$.

PARAFAC polynomial

The Newton polytope for a polynomial of the form

$$
f\left(x_{11}, \ldots, z_{n r}\right)=-\lambda+\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
$$

is spanned by 1 and monomials of the form $x_{i \alpha}^{2} y_{j \alpha}^{2} z_{k \alpha}^{2}$ (ie. monomials of the form $x_{i \alpha} y_{j \alpha} z_{k \alpha}$ and $x_{i \alpha} y_{j \alpha} z_{k \alpha} x_{i \beta} y_{j \beta} z_{k \beta}$ may all be dropped).

So if $f\left(x_{11}, \ldots, z_{n r}\right)=\sum_{j=1}^{N} p_{j}\left(x_{11}, \ldots, z_{n r}\right)^{2}$, then only 1 and monomials of the form $x_{i \alpha} y_{j \alpha} z_{k \alpha}$ may occur in p_{1}, \ldots, p_{N}.

In other words, we have reduced the size of the problem from $\binom{r(l+m+n)+3}{3}$ to $r l m n+1$.

Global convergence issues

If polynomials of the form

$$
-\lambda+\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
$$

can always be written as a sum of polynomials (we don't know), then the SDP algorithm for optimal low-rank tensor approximation will always converge globally.

Numerical experiments performed by Parrilo on general polynomials yield $\lambda^{*}=\min F$ in all cases.

III-posedness of PARAFAC: existence

Well known to practitioners in multiway data analysis, the problem $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ may not have an optimal solution when $r \geq 2, k \geq 3$. In fact

Theorem (L. and Golub, 2004). For tensors of any order $k \geq 3$ and with respect to any choice of norm on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, there exists an instance $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ such that A fails to have an optimal rank-r approximation for some $r \geq 2$. On the other hand, an optimal solution always exist for $k=2$ and $r=1$.

In the next slide, we give an explicit example.

Example

\mathbf{x}, \mathbf{y} two linearly independent vectors in \mathbb{R}^{2}. Consider the order-3 tensor in $\mathbb{R}^{2 \times 2 \times 2}$,

$$
A:=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}
$$

A has rank 3: straight forward.
A has no optimal rank-2 approximation: consider sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{R}^{2 \times 2 \times 2}$,

$$
B_{n}:=\mathbf{x} \otimes \mathbf{x} \otimes(\mathbf{x}-n \mathbf{y})+\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right) \otimes\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right) \otimes n \mathbf{y}
$$

Clear that rank $_{\otimes}\left(B_{n}\right) \leq 2$ for all n. By multilinearity of \otimes,

$$
\begin{aligned}
B_{n}=\mathbf{x} & \otimes \mathbf{x} \otimes \mathbf{x}-n \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+n \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y} \\
& +\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}+\frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}=A+\frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}
\end{aligned}
$$

For any choice of norm on $\mathbb{R}^{2 \times 2 \times 2}$,

$$
\left\|A-B_{n}\right\|=\frac{1}{n}\|\mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Quick but flawed fix

Current way to force a solution: perturb the problem by small $\varepsilon>0$ and find approximate solution $\mathbf{x}_{i}^{*}(\varepsilon), \mathbf{y}_{i}^{*}(\varepsilon) \in \mathbb{R}^{d_{i}}(i=1,2,3)$ with

$$
\begin{aligned}
& \left\|A-\mathbf{x}_{1}^{*}(\varepsilon) \otimes \mathbf{y}_{1}^{*}(\varepsilon) \otimes \mathbf{z}_{1}^{*}(\varepsilon)-\mathbf{x}_{2}^{*}(\varepsilon) \otimes \mathbf{y}_{2}^{*}(\varepsilon) \otimes \mathbf{z}_{2}^{*}(\varepsilon)\right\| \\
& \quad=\varepsilon+\inf _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d} d_{i}}\left\|A-\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}-\mathbf{x}_{2} \otimes \mathbf{y}_{2} \otimes \mathbf{z}_{2}\right\| .
\end{aligned}
$$

Serious numerical problems due to ill-conditioning (a phenomenon often referred to as degeneracy or swamp in Chemometrics and Psychometrics).

Reason? Rule of thumb in Computational Math:
A well-posed problem near to an ill-posed one is ill-conditioned.
So, even if we may perturb an ill-posed problem slightly to get a well-posed one, the perturbed problem will more often than not be ill-conditioned.

Weak solutions to PARAFAC

Theorem (de Silva and L., 2004). Let $l, m, n \geq 2$. Let $A \in$ $\mathbb{R}^{l \times m \times n}$ with $\operatorname{rank}_{\otimes}(A)=3 . A$ is the limit of a sequence $B_{n} \in$ $\mathbb{R}^{l \times m \times n}$ with rank $_{\otimes}\left(B_{n}\right) \leq 2$ if and only if

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\mathbf{x}_{2} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{2}+\mathbf{x}_{2} \otimes \mathbf{y}_{2} \otimes \mathbf{z}_{1}
$$

where $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\},\left\{\mathbf{y}_{1}, \mathbf{y}_{2}\right\},\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$ are linearly independent sets in $\mathbb{R}^{l}, \mathbb{R}^{m}$, and \mathbb{R}^{n} respectively.

With this, we can overcome the ill-posedness of $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r} \| A-$ $B \|_{F}$ by replacing rank $_{\otimes}$ with closedrank ${ }_{\otimes}$, defined by

$$
\left\{A \mid \text { closedrank }_{\otimes}(A) \leq r\right\}=\overline{\left\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}}
$$

For order-3 tensor, it follows from the theorem that

$$
\begin{aligned}
& \left\{A \in \mathbb{R}^{l \times m \times n} \mid \text { closedrank }_{\otimes}(A) \leq 2\right\}= \\
& \quad\left\{\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\mathbf{x}_{2} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{2}+\mathbf{x}_{2} \otimes \mathbf{y}_{2} \otimes \mathbf{z}_{1} \mid \mathbf{x}_{i} \in \mathbb{R}^{l}, \mathbf{y}_{i} \in \mathbb{R}^{m}, \mathbf{z}_{i} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$$
\cup\left\{\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\mathbf{x}_{2} \otimes \mathbf{y}_{2} \otimes \mathbf{z}_{2} \mid \mathbf{x}_{i} \in \mathbb{R}^{l}, \mathbf{y}_{i} \in \mathbb{R}^{m}, \mathbf{z}_{i} \in \mathbb{R}^{n}\right\}
$$

III-posedness of PARAFAC: uniqueness

Note that in PARAFAC:

$$
\operatorname{argmin}\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}
$$

we are really interested in minimizer $X^{*}=\left[\mathrm{x}_{1}^{*}, \ldots, \mathbf{x}_{r}^{*}\right] \in \mathbb{R}^{l \times r}$, $Y^{*}=\left[\mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{r}^{*}\right] \in \mathbb{R}^{m \times r}, Z^{*}=\left[\mathbf{z}_{1}^{*}, \ldots, \mathbf{z}_{r}^{*}\right] \in \mathbb{R}^{n \times r}$ rather than the minimum value.

If X^{*}, Y^{*}, Z^{*} is a minimizer, then so is $X^{*} D_{1}, Y^{*} D_{2}, Z^{*} D_{3}$ for any diagonal $D_{1}, D_{2}, D_{3} \in \mathbb{R}^{r \times r}$ with $D_{1} D_{2} D_{3}=I$.

In fact, the SDP method will not work if there is an infinite number of possible minimizers.

Right now, we impose constraints (eg. requiring $\left\|\mathbf{y}_{\alpha}\right\|=\left\|z_{\alpha}\right\|=$ 1) to get uniqueness up to signs but every additional constraint increases the complexity of the problem.

