Tensors for chemists and psychologists ${ }^{\dagger}$

Lek-Heng Lim
Institute for Computational and Mathematical Engineering Stanford University

6th ERCIM Workshop on Matrix Computations and Statistics Copenhagen, Denmark

April 1-3, 2005
\dagger : with apologies to Rasmus Bro and Richard Harshman

Acknowledgement

Vin de Silva
Department of Mathematics
Stanford University

Rasmus Bro

Chemometrics Group
Royal Veterinary and Agricultural University

Richard Harshman

Department of Psychology
University of Western Ontario

Overview

- definition
- ranks
- decompositions
- norms and inner products
- approximations
- hyperdeterminants
- covariance and contravariance
- contraction products
- multilinear functions
- eigenvalues and singular values
- technical stuff best left to the end

What is a Matrix

Question: What makes a matrix a matrix as opposed to merely a 2-array of numbers?

Answer: The algebraic operations of matrix addition, scalar multiplication, and, most importantly, matrix multiplication:

1. $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathbb{R}^{m \times n}, \lambda \in \mathbb{R}$,

$$
A+B:=\left[a_{i j}+b_{i j}\right] \quad \text { and } \quad \lambda A:=\left[\lambda a_{i j}\right]
$$

2. $A=\left[a_{i j}\right] \in \mathbb{R}^{l \times m}, B=\left[b_{j k}\right] \in \mathbb{R}^{m \times n}, A B:=\left[c_{i k}\right] \in \mathbb{R}^{l \times n}$ where

$$
c_{i k}:=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

We are so used to seeing these operations performed on 2-arrays of numbers that we sometimes forget that they are defined by us and not something that comes automatically with a 2-array.

Tensors in a nutshell

A matrix is an order-2 tensor.

An order- k tensor is simply a k-array of numbers with natural generalizations of the aforementioned algebraic operations.

Caution: What physicists and geometers call tensors are really tensor fields (ie. tensor-valued functions on manifolds). E.g. stress tensor, moment-of-intertia tensor, Einstein tensor, metric tensor, curvature tensor, Ricci tensor, etc.

Two-sided matrix multiplication

Before coming to that, observe that matrix multiplication is a special case of a more general algebraic operation: a matrix may be simultaneously multiplied on both sides by two matrices.

Given $A=\left[a_{j k}\right] \in \mathbb{R}^{m \times n}, L_{1}=\left[\ell_{i j}^{1}\right] \in \mathbb{R}^{r \times m}$ and $L_{2}=\left[\ell_{l k}^{2}\right] \in \mathbb{R}^{s \times n}$:

$$
L_{1} A L_{2}^{t}=C
$$

where $C=\left[c_{i l}\right] \in \mathbb{R}^{r \times s}$ has entries

$$
c_{i l}=\sum_{j=1}^{m} \sum_{k=1}^{n} \ell_{i j}^{1} \ell_{l k}^{2} a_{j k}
$$

The result is independent of the order we perform the left and right matrix multiplications, ie. $L_{1}\left(A L_{2}^{t}\right)=\left(L_{1} A\right) L_{2}^{t}$ - a property known as associativity.

Matrix-matrix multiplications (ie. $A B, B A$), matrix-vector multiplications (ie. $A \mathbf{x}, \mathbf{y}^{t} A \mathbf{x}$) are all special cases of this.

Order-3 Tensors

A tensor of order 3 is a 3-way array $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$ on which the following algebraic operations are defined:

1. Addition/Scalar Multiplication: for $\llbracket b_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}, \lambda \in \mathbb{R}$,

$$
\llbracket a_{i j k} \rrbracket+\llbracket b_{i j k} \rrbracket:=\llbracket a_{i j k}+b_{i j k} \rrbracket \quad \text { and } \quad \lambda \llbracket a_{i j k} \rrbracket:=\llbracket \lambda a_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}
$$

2. Multilinear Matrix Multiplication: for matrices $L=\left[\lambda_{i^{\prime} i}\right] \in$ $\mathbb{R}^{p \times l}, M=\left[\mu_{j^{\prime} j}\right] \in \mathbb{R}^{q \times m}, N=\left[\nu_{k^{\prime} k}\right] \in \mathbb{R}^{r \times n}$,

$$
(L, M, N) A:=\llbracket c_{i^{\prime} j^{\prime} k^{\prime}} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{i^{\prime} j^{\prime} k^{\prime}}:=\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{i^{\prime} i} \mu_{j^{\prime} j} \nu_{k^{\prime} k} a_{i j k}
$$

Tensors

A tensor of order k and size $\left(d_{1}, \ldots, d_{k}\right)$ is a k-array of real numbers with two properties:

1. Addition/Scalar Multiplication: We may add two arrays of the same size or multiply an array by a scalar.
2. Multilinear Matrix Multiplication: We may multiply an array in each 'mode' by matrices.

An order k-array of size $\left(d_{1}, \ldots, d_{k}\right)$ is denoted by $\llbracket a_{j_{1} \ldots j_{k}} \rrbracket_{j_{1}, \ldots, j_{k}=1}^{d_{1}, \ldots, d_{k}}$, where the entries $a_{j_{1} \ldots j_{k}}$ are understood to be real numbers.

Usually, we just write $\llbracket a_{j_{1} \ldots j_{k}} \rrbracket$.
The set of all k-arrays of size $\left(d_{1}, \ldots, d_{k}\right)$ is denoted by by $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.

Quick example on the notation

For $k=2$, we have $\llbracket a_{i j} \rrbracket_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$. For example,

$$
\llbracket a_{i j} \rrbracket_{i, j=1}^{3,2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]=\left[\begin{array}{rr}
3.511 & -100.231 \\
34.435 & 0.000 \\
-46.566 & 23.278
\end{array}\right] \in \mathbb{R}^{3 \times 2} .
$$

For $k=3$, we have $\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{l \times m \times n}$. For example,

$$
\begin{aligned}
\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{3,4,2} & =\left[\begin{array}{rrrr|rrrr}
a_{111} & a_{121} & a_{131} & a_{141} & a_{112} & a_{122} & a_{132} & a_{142} \\
a_{211} & a_{221} & a_{231} & a_{241} & a_{212} & a_{222} & a_{232} & a_{242} \\
a_{311} & a_{321} & a_{331} & a_{341} & a_{312} & a_{322} & a_{332} & a_{342}
\end{array}\right] \\
& =\left[\begin{array}{rrrrrrr}
3.5 & -1.2 & 3.1 & -1.1 & 3.1 & -1.1 & -1.5 \\
\hline 3.4 & 0.0 & 4.4 & 0.1 & 4.5 & 0.3 & -4.5 \\
6.2 \\
6.5 & -0.2 & -4.6 & 0.8 & 4.6 & 0.7 & -6.6
\end{array}\right] \in \mathbb{R}^{3 \times 4 \times 2}
\end{aligned}
$$

The above array should be viewed as a 3-array where the left slab $\left[a_{i j 1} \mid\right.$ is laying on top of the right slab $\left.\mid a_{i j 2}\right]$.

Property 1: Vector space structure

Addition/Scalar Multiplication: We may add two arrays of the same size or multiply an array by a scalar - by performing the operations coordinatewise, ie.

$$
\begin{gathered}
A+B:=\llbracket a_{j_{1} \ldots j_{k}}+b_{j_{1} \ldots j_{k}} \rrbracket, \\
\lambda A:=\llbracket \lambda a_{j_{1} \ldots j_{k}} \rrbracket,
\end{gathered}
$$

for $A=\llbracket a_{j_{1} \ldots j_{k}} \rrbracket, B=\llbracket b_{j_{1} \ldots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}, \lambda \in \mathbb{R}$.

Property 1 says that $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ is a vector space of dimension $d_{1} \cdots d_{k}$.

Property 2: Multilinear structure

Multilinear Matrix Multiplication: We may multiply an array in each 'mode' by matrices.

For an order- k tensor $A=\llbracket a_{j_{1} \ldots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and matrices

$$
L_{1}=\left[\ell_{i_{1} j_{1}}^{1}\right] \in \mathbb{R}^{r_{1} \times d_{1}}, \quad \ldots \quad, L_{k}=\left[\ell_{i_{k} j_{k}}^{k}\right] \in \mathbb{R}^{r_{k} \times d_{k}}
$$

the multiplication is written as $\left(L_{1}, \ldots, L_{k}\right) A$ and is defined by

$$
\left(L_{1}, \ldots, L_{k}\right) A=C
$$

where $C=\llbracket c_{i_{1} \ldots i_{k}} \rrbracket \in \mathbb{R}^{r_{1} \times \cdots \times r_{k}}$ has entries

$$
c_{i_{1} \ldots i_{k}}=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} \ell_{i_{1} j_{1}}^{1} \cdots \ell_{i_{k} j_{k}}^{k} a_{j_{1} \ldots j_{k}}
$$

Property 2 distinguishes $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ from being simply a vector space of dimension $d_{1} \cdots d_{k}$. It is the reason why, for instance, $\mathbb{R}^{l \times m \times n}$ (order-3 tensors) is different from $\mathbb{R}^{l m \times n}$ (matrices) or $\mathbb{R}^{l m n}$ (vectors).

Examples: Orders 2 and 3

Example. For $A \in \mathbb{R}^{m \times n},\left(L_{1}, L_{2}\right) A$ is just left and right multiplication by matrices:

$$
\left(L_{1}, L_{2}\right) A=L_{1} A L_{2}^{t}=L_{1}\left(A L_{2}^{t}\right)=\left(L_{1} A\right) L_{2}^{t}
$$

This is equivalent to multiplying every column vector of A by L_{1} and then every row vector of the result by L_{2}. These operations can be done in any order. We may multiply every row of A by L_{2} first and then multiply every column of the result by L_{1}.

Example. For $A \in \mathbb{R}^{l \times m \times n},\left(L_{1}, L_{2}, L_{3}\right) A$ is equivalent to multiplying every horizontal slabs of A by L_{1}, every lateral slabs of the result by L_{2}, and then every frontal slabs of the result by L_{3} :

$$
\begin{align*}
B & \leftarrow\left[L_{1} A_{1 \bullet \bullet}|\cdots| L_{1} A_{p \bullet \bullet}\right] ; \tag{S-1}\\
C & \leftarrow\left[L_{2} B \bullet 1 \bullet|\cdots| L_{2} B \bullet q \bullet\right] ; \tag{S-2}\\
\left(L_{1}, L_{2}, L_{3}\right) A & \leftarrow\left[L_{3} C \bullet \bullet 1|\cdots| L_{3} C \bullet \bullet r\right] ; \tag{S-3}
\end{align*}
$$

As before, (S-1), (S-2), (S-3) may be performed in any order.

Outer product

The outer product of k vectors, $\mathbf{x}^{1}=\left(x_{1}^{1}, \ldots, x_{d_{1}}^{1}\right)^{t} \in \mathbb{R}^{d_{1}}, \ldots, \mathbf{x}^{k}=$ $\left(x_{1}^{k}, \ldots, x_{d_{k}}^{k}\right)^{t} \in \mathbb{R}^{d_{k}}$ is an order- k tensor of size $\left(d_{1}, \ldots, d_{k}\right)$:

$$
\mathbf{x}^{1} \otimes \cdots \otimes \mathbf{x}^{k}:=\llbracket x_{i_{1}}^{1} \ldots x_{i_{k}}^{k} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}
$$

The outer product of k vector spaces, $\mathbb{R}^{d_{1}}, \ldots, \mathbb{R}^{d_{k}}$, is simply

$$
\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}:=\operatorname{span}_{\mathbb{R}}\left\{\mathbf{x}^{1} \otimes \cdots \otimes \mathbf{x}^{k} \mid \mathbf{x}^{1} \in \mathbb{R}^{d_{1}}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{d_{k}}\right\}
$$

By definition, $\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}$ is a subspace of the vector space $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Counting dimensions, we see immediately that

$$
\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}=\mathbb{R}^{d_{1} \times \cdots \times d_{k}}
$$

This leads to an alternative definition of tensors.

Property 2': Outer product structure

The fact that $\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}=\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ tells us that every $A \in \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}$ may be written as

$$
A=\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha}^{1} \otimes \cdots \otimes \mathbf{x}_{\alpha}^{k}
$$

for some $\mathrm{x}_{\alpha}^{j} \in \mathbb{R}^{d_{j}}(\alpha=1, \ldots, r ; j=1, \ldots, k)$.

This is exactly what gives a tensor its multilinear structure. Given $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k} \in \mathbb{R}^{r_{k} \times d_{k}}$,

$$
\left(L_{1}, \ldots, L_{k}\right) A=\sum_{\alpha=1}^{r} L_{1} \mathbf{x}_{\alpha}^{1} \otimes \cdots \otimes L_{k} \mathbf{x}_{\alpha}^{k}
$$

So the multilinear structure (Property 2) and outer product structure (Property 2') are one and the same thing. We could have instead defined a tensor as one that satisfies Properties 1 and 2' - a k-array that can be decomposed into a sum of outer products of k vectors.

Matrix rank

$A \in \mathbb{R}^{m \times n}$. $\operatorname{rank}(A)$ may be defined in either one of the three (among other) ways:

- outer product rank: $\operatorname{rank}(A)=r$ iff there exists $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in$ $\mathbb{R}^{m}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in \mathbb{R}^{n}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r}
$$

and r is minimal over all such decompositions.

- row rank: $\operatorname{rank}(A)=r$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right)=r
$$

where $A_{i \bullet} \in \mathbb{R}^{n}$ denotes the i th row vector of A.

- column rank: $\operatorname{rank}(A)=r$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right)=r
$$

where $A_{\bullet j} \in \mathbb{R}^{m}$ denotes the j th column vector of A.

Order-3 tensor rank

For an order-3 tensor $A \in \mathbb{R}^{l \times m \times n}$, we have

- outer product rank: rank $_{\otimes}(A)=r$ iff there exists $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in$ $\mathbb{R}^{l}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in \mathbb{R}^{m}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in \mathbb{R}^{n}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

and r is minimal over all such decompositions.

- 1-slab rank: $\operatorname{rank}_{1}(A)=r_{1}$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet \bullet}, \ldots, A_{l \bullet \bullet}\right\}\right)=r_{1}
$$

where $A_{i \bullet \bullet} \in \mathbb{R}^{m \times n}$ denotes the i th 1 -slab of A.

- 2-slab rank: $\operatorname{rank}_{2}(A)=r_{2}$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1 \bullet}, \ldots, A_{\bullet m \bullet}\right\}\right)=r_{2}
$$

where $A_{\bullet j \bullet} \in \mathbb{R}^{l \times n}$ denotes the j th 2 -slab of A.

- 3-slab rank: $\operatorname{rank}_{3}(A)=r_{3}$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet 1}, \ldots, A \bullet \bullet n\right\}\right)=r_{3}
$$

where $A_{\bullet \bullet k} \in \mathbb{R}^{l \times m}$ denotes the k th 3-slab of A.

- trilinear rank: $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right)$.

Note: In general, $\operatorname{rank}_{1}(A) \neq \operatorname{rank}_{2}(A) \neq \operatorname{rank}_{3}(A) \neq \operatorname{rank}_{\otimes}(A)$.

Tensor Rank

$A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Different notions of tensor ranks:

- outer product rank: $\operatorname{rank}_{\otimes}(A)=r$ iff there exists $\mathbf{x}_{i}^{j} \in \mathbb{R}^{d_{j}}$, $j=1, \ldots, k$, such that

$$
A=\sum_{i=1}^{r} \mathbf{x}_{i}^{1} \otimes \cdots \otimes \mathbf{x}_{i}^{k}
$$

and r is minimal over all such decompositions.

- multilinear rank of A is defined as

$$
\operatorname{rank}_{\boxplus}(A)=\left(\operatorname{rank}_{1}(A), \ldots, \operatorname{rank}_{k}(A)\right)
$$

- p-slab rank $(p=1, \ldots, k)$: $\operatorname{rank}_{p}(A)=r_{p}$ iff

$$
\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \ldots \bullet 1 \bullet \ldots \bullet}, \ldots, A_{\bullet \ldots \bullet d_{p} \bullet \ldots \bullet}\right\}\right)=r_{p}
$$

where $A_{\bullet \cdots \bullet \cdots \bullet} \in \mathbb{R}^{d_{1} \times \cdots \times \widehat{d}_{p} \times \cdots \times d_{k}}$ denotes the i th p-slab of A, an $\operatorname{order}-(k-1)$ tensor.

Why no bilinear rank

When $k=2$, then 1 -slab $=$ row, 2 -slab $=$ column, bilinear rank of a matrix $A \in \mathbb{R}^{m \times n}$ is simply

$$
\operatorname{rank}_{\boxplus}(A)=(\operatorname{rowrank}(A), \operatorname{colrank}(A))=(\operatorname{rank}(A), \operatorname{rank}(A))
$$

When $k \geq 3, \operatorname{rank}_{p}(A) \neq \operatorname{rank}_{q}(A) \neq \operatorname{rank}_{\otimes}(A)$ in general (for $p \neq q$).

Outer product decomposition

Let $A \in \mathbb{R}^{l \times m \times n}$ and $\operatorname{rank}_{\otimes}(A)=r$. The outer product or Candecomp/Parafac decomposition of A is

$$
A=\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}
$$

In other words,

$$
a_{i j k}=\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}
$$

for some $\mathbf{x}_{\alpha}=\left(x_{1 \alpha}, \ldots, x_{l \alpha}\right)^{t} \in \mathbb{R}^{l}, \mathbf{y}_{\alpha}=\left(y_{1 \alpha}, \ldots, y_{m \alpha}\right)^{t} \in \mathbb{R}^{m}$, $\mathbf{z}_{\alpha}=\left(z_{1 \alpha}, \ldots, z_{n \alpha}\right)^{t} \in \mathbb{R}^{n}, \alpha=1, \ldots, r$.

The vectors $\mathbf{x}_{\alpha}, \mathbf{y}_{\alpha}, \mathbf{z}_{\alpha}$ are sometimes regarded as column vectors of matrices $X=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right] \in \mathbb{R}^{l \times r}, Y=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{r}\right] \in \mathbb{R}^{m \times r}$, $Z=\left[\mathrm{z}_{1}, \ldots, \mathrm{z}_{r}\right] \in \mathbb{R}^{n \times r}$.

Multilinear decomposition

Let $A \in \mathbb{R}^{l \times m \times n}$ and $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right)$. Multilinear or Tucker decomposition of A is

$$
A=(X, Y, Z) C
$$

In other words,

$$
a_{i j k}=\sum_{\alpha=1}^{r_{1}} \sum_{\beta=1}^{r_{2}} \sum_{\gamma=1}^{r_{3}} x_{i \alpha} y_{j \beta} z_{k \gamma} c_{\alpha \beta \gamma}
$$

for some full-rank matrices $X=\left[x_{i \alpha}\right] \in \mathbb{R}^{l \times r_{1}}, Y=\left[y_{j \beta}\right] \in \mathbb{R}^{m \times r_{2}}$, $Z=\left[z_{k \gamma}\right] \in \mathbb{R}^{n \times r_{3}}$, and core tensor $C=\llbracket c_{\alpha \beta \gamma} \rrbracket \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$.
X, Y, Z may be chosen to have orthonormal columns.

For matrices, this is just the $L_{1} D L_{2}^{t}$ or $Q_{1} R Q_{2}^{t}$ decompositions.

Norms and inner products

In order to discuss approximations, we need to define a norm on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.

The most convenient one to use is the Frobenius norm, $\|\cdot\|_{F}$, defined by

$$
\left\|\llbracket a_{j_{1} \ldots j_{k}} \rrbracket\right\|_{F}^{2}=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} a_{j_{1} \ldots j_{k}}^{2}
$$

for $\llbracket a_{j_{1} \ldots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.
It is the norm associated with the trace inner product, $\langle\cdot, \cdot\rangle_{\text {tr }}$, defined by

$$
\left\langle\llbracket a_{j_{1} \ldots j_{k}} \rrbracket \mid \llbracket b_{j_{1} \ldots j_{k}} \rrbracket\right\rangle_{\mathrm{tr}}:=\sum_{j_{1}=1}^{d_{1}} \ldots \sum_{j_{k}=1}^{d_{k}} a_{j_{1} \ldots j_{k}} b_{j_{1} \ldots j_{k}}
$$

for $\llbracket a_{j_{1} \ldots j_{k}} \rrbracket, \llbracket b_{j_{1} \ldots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Thus $\|A\|_{F}^{2}=\langle A \mid A\rangle_{\mathrm{tr}}$.

Outer product approximation

A Candecomp/Parafac or outer product model has the following form

$$
a_{i j k}=\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}+e_{i j k}
$$

where $E=\llbracket e_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$ denotes the (unknown) error.

To minimize the error, we want an outer product approximation

$$
\operatorname{argmin}\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}
$$

where the minimum is taken over all matrices $X=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right] \in$ $\mathbb{R}^{l \times r}, Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right] \in \mathbb{R}^{m \times r}, Z=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{r}\right] \in \mathbb{R}^{n \times r}$.

In short, we want an optimal solution $B_{\otimes}^{*}=\underset{\operatorname{rank}_{\otimes}(B) \leq r}{\operatorname{argmin}}\|A-B\|_{F}$.

Multilinear approximation

A Tucker or multilinear model has the following form

$$
a_{i j k}=\sum_{\alpha=1}^{r_{1}} \sum_{\beta=1}^{r_{2}} \sum_{\gamma=1}^{r_{3}} x_{i \alpha} y_{j \beta} z_{k \gamma} c_{\alpha \beta \gamma}+e_{i j k}
$$

where $E=\llbracket e_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$ denotes the (unknown) error.

To minimize the error, we want a multilinear approximation

$$
\operatorname{argmin}\|A-(X, Y, Z) C\|_{F}
$$

where minimum is taken over all full-rank matrices $X \in \mathbb{R}^{l \times r_{1}}$, $Y \in \mathbb{R}^{m \times r_{2}}, Z \in \mathbb{R}^{n \times r_{3}}$ and tensor $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$.

In short, we want an optimal solution

$$
B_{\boxplus}^{*}=\operatorname{argmin}_{\operatorname{rank}_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F} .
$$

Outer product decomposition: analytical chemistry

Application to fluorescence spectral analysis by Bro.
$a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{\mathrm{em}}$ of i th sample excited with light at wavelength $\lambda_{k}^{e x}$. Get 3-way data $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$.

Decomposing A into a sum of outer products,

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

yield the true chemical factors responsible for the data.

- r : number of pure substances in the mixtures,
- $\mathbf{x}_{\alpha}=\left(x_{1 \alpha}, \ldots, x_{l \alpha}\right)$: relative concentrations of α th substance in samples $1, \ldots, l$,
- $\mathbf{y}_{\alpha}=\left(y_{1 \alpha}, \ldots, y_{m \alpha}\right):$ excitation spectrum of α th substance,
- $\mathbf{z}_{\alpha}=\left(z_{1 \alpha}, \ldots, z_{n \alpha}\right):$ emission spectrum of α th substance.

Multilinear decomposition: computer vision

Application to facial recognition (TensorFaces) by Vasilescu and Terzopoulos. Facial image database of p male subjects photographed in q poses, r illuminations, s expressions, and stored as a grayscale image with t pixels.
$a_{i j k l m}=$ grayscale level of m th pixel of the image of i th person photographed in j th pose, with l th expression, under k th illumination level. Get 5-way data array $A=\llbracket a_{i j k l m} \rrbracket \in \mathbb{R}^{p \times q \times r \times s \times t}$.

Let multilinear decomposition of A be

$$
A=(V, W, X, Y, Z) C
$$

matrices V, W, X, Y, Z chosen to have orthonormal columns.
The column vectors of V, W, X, Y, Z are the 'principal components' or 'parameterizing factors' of the spaces of male subjects, poses, illuminations, expressions, and images respectively. The tensor C governs the interactions between these factors.

Properties of matrix rank

1. Rank of $A \in \mathbb{R}^{m \times n}$ easy to determine (Gaussian Elimination)
2. Optimal rank-r approximation to $A \in \mathbb{R}^{m \times n}$ always exist (Eckart-Young Theorem)
3. Optimal rank-r approximation to $A \in \mathbb{R}^{m \times n}$ easy to find (Singular Value Decomposition)
4. Pick $A \in \mathbb{R}^{m \times n}$ at random, then A has full rank with probability 1 , ie. $\operatorname{rank}(A)=\min \{m, n\}$
5. $\operatorname{rank}(A)$ from a non-orthogonal rank-revealing decomposition (e.g. $A=L_{1} D L_{2}^{t}$) and $\operatorname{rank}(A)$ from an orthogonal rankrevealing decomposition (e.g. $A=Q_{1} R Q_{2}^{t}$) are equal
6. Let A be a matrix with real entries. Then $\operatorname{rank}(A)$ is the same whether we regard A as an element of $\mathbb{R}^{m \times n}$ or as an element of $\mathbb{C}^{m \times n}$

Outer product rank vs multilinear rank

Every statement on the preceding slide is false for the outer product rank of order- k tensors, $k \geq 3$.

Every statement on the preceding slide is true for the multilinear rank of order- k tensors, $k \geq 3$.

In the next two slides we will spell these out explicitly for order-3 tensors. The restriction to order-3 tensors is strictly for notational simplicity. All statements generalize to order- k tensors for any $k \geq 3$.

Properties of outer product rank

1. Computing $\operatorname{rank}_{\otimes}(A)$ for $A \in \mathbb{R}^{l \times m \times n}$ is NP-hard
2. For some $A \in \mathbb{R}^{l \times m \times n}$, $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does not have a solution
3. When $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does have a solution, computing the solution is an NP-complete problem in general
4. For some l, m, n, if we sample $A \in \mathbb{R}^{l \times m \times n}$ at random, there is no r such that rank $_{\otimes}(A)=r$ with probability 1
5. An outer product decomposition of $A \in \mathbb{R}^{l \times m \times n}$ with orthogonality constraints on X, Y, Z will in general require a sum with more than rank $_{\otimes}(A)$ number of terms
6. Let A be a 3-array with real entries. Then rank $_{\otimes}(A)$ can take different values depending on whether we regard $A \in \mathbb{R}^{l \times m \times n}$ or $A \in \mathbb{C}^{l \times m \times n}$

Properties of multilinear rank

1. Computing $\operatorname{rank}_{\boxplus}(A)$ for $A \in \mathbb{R}^{l \times m \times n}$ is easy
2. Solution to $\operatorname{argmin}_{\operatorname{rank}_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ always exist
3. Solution to $\operatorname{argmin}_{\operatorname{rank}_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ easy to find
4. Pick $A \in \mathbb{R}^{l \times m \times n}$ at random, then A has

$$
\operatorname{rank}_{\boxplus}(A)=(\min (l, m n), \min (m, l n), \min (n, l m))
$$

with probability 1
5. If $A \in \mathbb{R}^{l \times m \times n}$ has $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right)$. Then there exist full-rank matrices $X \in \mathbb{R}^{l \times r_{1}}, Y \in \mathbb{R}^{m \times r_{2}}, Z \in \mathbb{R}^{n \times r_{3}}$ and core tensor $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ such that $A=(X, Y, Z) C . X, Y, Z$ may be chosen to have orthonormal columns
6. Let A be a matrix with real entries. Then $\operatorname{rank}_{\boxplus}(A)$ is the same whether we regard A as an element of $\mathbb{R}^{l \times m \times n}$ or as an element of $\mathbb{C}^{l \times m \times n}$

Generalization to higher order

- It is straight forward to generalize all statements on the last two slides to order- k tensors for any $k \geq 3$; we give two examples:
- Statement 2 for outer product rank:
- For some $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does not have a solution
- Statement 4 for multilinear rank:
- Pick $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ at random, then A has

$$
\operatorname{rank}_{\boxplus}(A)=\left(\min \left(d_{1}, d_{2} \cdots d_{k}\right), \ldots, \min \left(d_{k}, d_{1} \cdots d_{k-1}\right)\right)
$$

with probability 1 . The p-th slab rank above is just

$$
\min \left(d_{p}, d_{1} \cdots \widehat{d}_{p} \cdots d_{k}\right)
$$

What about 'row rank $=$ column rank'

At first glance, this is one property of matrix rank that doesn't seem to generalize to multilinear rank. Actually, it does in a more subtle way. We use the order-3 case as illustration.

Let $A \in \mathbb{R}^{l \times m \times n}$. Recall that we have defined the p-slab ranks:

$$
\begin{aligned}
& \operatorname{rank}_{1}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{i \bullet \bullet} \mid i=1, \ldots, l\right\}\right) \\
& \operatorname{rank}_{2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet j \bullet} \mid j=1, \ldots, m\right\}\right) \\
& \operatorname{rank}_{3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet k} \mid k=1, \ldots, n\right\}\right)
\end{aligned}
$$

We may also define the (p, q)-slab ranks:

$$
\begin{aligned}
& \operatorname{rank}_{2,3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet j k} \mid j=1, \ldots, m ; k=1, \ldots, n\right\}\right) \\
& \operatorname{rank}_{1,3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{i \bullet k} \mid i=1, \ldots, l ; k=1, \ldots, n\right\}\right) \\
& \operatorname{rank}_{1,2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{i j \bullet} \mid i=1, \ldots, l ; j=1, \ldots, m\right\}\right)
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
\operatorname{rank}_{1}(A) & =\operatorname{rank}_{2,3}(A) \\
\operatorname{rank}_{2}(A) & =\operatorname{rank}_{1,3}(A) \\
\operatorname{rank}_{3}(A) & =\operatorname{rank}_{1,2}(A)
\end{aligned}
$$

Higher level trilinear rank

The 1st level trilinear rank for an order-3 tensor is what we simply called trilinear rank earlier:

$$
\operatorname{rank}_{\boxplus 1}^{1}(A)=\left(\operatorname{rank}_{1}(A), \operatorname{rank}_{2}(A), \operatorname{rank}_{3}(A)\right)
$$

The 2nd level trilinear rank for an order-3 tensor is:

$$
\operatorname{rank}_{\boxplus}^{2}(A)=\left(\operatorname{rank}_{2,3}(A), \operatorname{rank}_{1,3}(A), \operatorname{rank}_{1,2}(A)\right)
$$

Hence the result at the end of the previous slide may be restated for $A \in \mathbb{R}^{l \times m \times n}$ as simply

$$
\operatorname{rank}_{\boxplus}^{1}(A)=\operatorname{rank}_{\boxplus}^{2}(A)
$$

Note that for $A \in \mathbb{R}^{m \times n}=\mathbb{R}^{1 \times m \times n}$, this reduces to
$(1, \operatorname{rowrank}(A), \operatorname{colrank}(A))=(1, \operatorname{colrank}(A), \operatorname{rowrank}(A))$, and thus $\operatorname{rowrank}(A)=\operatorname{colrank}(A)$.

Higher level multilinear rank

Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. For any $\left\{p_{1}, \ldots, p_{l}\right\} \subset\{1, \ldots, k\}, p_{1}<\cdots<p_{k}$, we may define (p_{1}, \ldots, p_{l})-slab rank accordingly.

The $\binom{k}{l}$-tuple of $\left(p_{1}, \ldots, p_{l}\right)$-slab ranks gives the l th level multilinear rank, for $l=1, \ldots, k-1$.

May show: The l th level multilinear rank is equal to the $(k-l)$ th level multilinear rank, $l=1, \ldots, k-1$.

Appendix 1: Some technical properties

- Let $A, B \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k} \in$ $\mathbb{R}^{r_{k} \times d_{k}}$. Then

$$
\left(L_{1}, \ldots, L_{k}\right)(\lambda A+\mu B)=\lambda\left(L_{1}, \ldots, L_{k}\right) A+\mu\left(L_{1}, \ldots, L_{k}\right) B
$$

- Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k} \in \mathbb{R}^{r_{k} \times d_{k}}$, and $M_{1} \in \mathbb{R}^{s_{1} \times r_{1}}, \ldots, M_{k} \in \mathbb{R}^{s_{k} \times r_{k}}$. Then

$$
\left(M_{1}, \ldots, M_{k}\right)\left(L_{1}, \ldots, L_{k}\right) A=\left(M_{1} L_{1}, \ldots, M_{k} L_{k}\right) A
$$

where $M_{i} L_{i} \in \mathbb{R}^{s_{i} \times d_{i}}$ is simply the matrix-matrix product of M_{i} and L_{i}.

- Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{j}, M_{j} \in$ $\mathbb{R}^{r_{j} \times d_{j}}, \ldots, L_{k} \in \mathbb{R}^{r_{k} \times d_{k}}$. Then

$$
\begin{aligned}
\left(L_{1}, \ldots, \lambda L_{j}\right. & \left.+\mu M_{j}, \ldots, L_{k}\right) A= \\
& \lambda\left(L_{1}, \ldots, L_{j}, \ldots, L_{k}\right) A+\mu\left(L_{1}, \ldots, M_{j}, \ldots, L_{k}\right) A
\end{aligned}
$$

Appendix 2: NP problems

- NP is the set of problems for which a proposed solution can be verified or rejected in polynomial time
- A problem is NP-hard if an algorithm to solve it in polynomial time would make it possible to solve all NP problems in polynomial time
- NP-complete is the class of problems which are both NP-hard and themselves members of NP
- NP-hard problems are at least as hard as (possibly harder than) any other NP (and thus NP-complete) problems
- The bottom line is that NP-hard and NP (including NPcomplete) problems are difficult to solve - no known polynomialtime algorithm exists for finding the solution

