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modern definition



recap: definitions

e tensors capture three great ideas

@ equivariance
@ multilinearity
® separability

e roughly correspond to three common definitions of a tensor
@® a multi-indexed object that satisfies tensor transformation rules
@ a multilinear map

® an element of a tensor product of vector spaces



modern approach

e instead of defining an object directly, define the space of all such
objects

e what is vector?
e it is an element of a vector space
e what is a tensor?

e it is an element of a tensor product of vector spaces
Vi ®@Vy

or more generally, a tensor product of modules

e just need to define ®



adopted in most modern books
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on @ itself has three definitions

e definition @ itself may be defined in three different ways

@ via tensor product of function spaces
® via tensor product of more general vector spaces
© via the universal mapping property

e we will start with @ and deduce @

e ignore covariance and contravariance for time being



tensor product of vector spaces



1-tensors

e a vector space V is essentially a space in which linear combination
are well-defined

e pick a basis # = {fy,....f,} of V

e any element of V takes the form
A+ dofo + -+ A f,

with scalar coefficients Aq,..., A\, € R
e elements of R = scalars = tensors of order 0

e elements of V = vectors = tensors of order 1



2-tensors

e suppose we now have a second vector space U

e key to tensor product construction:

’ replace scalars A1,..., A\, € R by vectors uy,...,u, € U‘

e get ‘linear combination’
uify +uofy + - +u,f,

with vector coefficients uy,...,u, € U
e pick a basis & = {ey,...,en} of U, then

u; = Ajje; + Ayjer + -+ Apjen,

with scalar coefficients \j € R, i=1,...,m, j=1,...,n

e 50 linear combination becomes

Allelfl + )\21€2f2 TP ecoSF )\mnem n = Z Z )\Ue if;
i=1 j=1



2-tensors

e the object
m n
33w
i=1 j=1
is called a dyadic in older literature
e modern notation:

> write ® for product, e; ® f; instead of e;f;
> write U® V for the set of all dyadics

e elements of U® V = dyadics = tensors of order 2

U ® V = {all linear combinations of u®@ v, u € U, v € V}

= {all linear combinations of ; @ f;, i=1,....,m, j=1,...,n}



3-tensors

e may recursively apply this construction to get higher-order tensors
e suppose W a third vector space with basis ¢ = {g1,...,8p}

e triadic is a ‘linear combination’
o181 + aogr + - - + ap8p

with dyadic coefficients a1,..., a0, e U®V
e clements of U®V ® W = triadics = tensors of order 3

U®V®W = {all linear combinations of u®@ v ® w,
uelU, veV, weW}
= {all linear combinations of e; ® f; ® g,

i=1,....m j=1....n, k=1 ...,p}



d-tensors

e vector spaces Vq,...,V,, construction gives new vector space
Vig---®Vy
with dimension
dim(V; ® --- @ Vg) = dim(Vy) - - - dim(V4)

e covariance and contravariance?

e replace last few vector spaces by duals V7, ;,..., V7
V1®...®VP®V:+1®...®V;§

set of d-tensors of contravariant order p covariant order d — p



example: stress tensor

e siress o at a point has three components in directions given by unit
vectors ey, e, e;

o=o0xex+o,e +o0ze,

o coefficients o, o, o, not scalars but vectors

e nature of stress: in every direction, stress in that direction has a
normal component in that direction and two shear components in
the plane perpendicular to it, e.g.,

Ox = Oxx€x + Oyx€y + 0zx€;

e normal stress: component o,y in the direction of e,
e shear stress: components oy, and o, in el = span{e,,e,}

o coefficients 0., 0yx, 0 are scalars
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example: stress tensor
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example: stress tensor

o likewise

Oy = 0x€x +0ye, + 0z €,

O; = 0xz€x + 0y,€) + 0;,€;.
e since coefficients oy, 0,, 0, in
o =o0xe,t+o,e, +0,€;
are vectors, insert ® for modern notation
oc=0,Qe+0o,Q0e +0,Re,
e or alternatively

O = 0xx€x @ ey + Oyx€y @ ex + 0x€; X ey
+oxyex e, +o,e, Qe +0,€;, e,

+ UXZeX ® eZ + Uyzey ® eZ + UZZeZ ® eZ
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example: stress tensor

e verdict: stress is a dyadic = 2-tensor

e what kind of 2-tensor?
e set basis # = {e,,e,,e,}, may represent o as
Oxx Oxy Oxz

Yi=[olz=|ox oy o0y

Ozx Ozy Oz

e normal stresses on diagonal and shear stresses off diagonal
e different basis ' = {e|, ¢, e;} gives different representation
/ / /
O xx ny Oxz
0 o — / / /
Y =[o]la = Tp Oy Oy
/! / !
0 2x Jzy Ozz
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example: stress tensor

e plug in change-of-basis relations

I
€, = Cx€x + Cyxey + Cx€e; Co Gy G
/ ——
€, = Gyex + ¢ ey + e, C=|ex @y 6
e, = cwex + ¢, + Csre, Cox  Czy Gz
into
. ! ! / / / !/ !/ ! /
g = Uxxex ® ex + Jy><ey ® ex + szez ® ex
+ol e e +0 e, e +0.e e
xy ©x y yy Sy y zy©z y
_"_ ! / ® ! + ! ! ® / + ! / ® /
Oxz€x €, Uyzey €, 02,€; €,
e get
! / /
Oxx Oxy Oxz Cxx ny Cxz Oy ny Oy Cxx ny Czx
— / ! /
Oyx  Oyy Oyz| = [Cx Gy Gy yw Oy Oy| | &y Gy Czy
! / !
Ozx Ozy Ozz Czx Czy Czz zx zy zz Cxz Cyz Czz
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example: stress tensor

e two coordinate representations of o satisfy transformation rule
Y =C'ECcT

e stress is a contravariant 2-tensor

e exact same discussion applies to any contravariant 2-tensors, e.g.,
inertia, polarization, strain, tidal force, viscosity

e stress important for defining piezo-electric tensor D € R3*3%3,
piezo-magnetic tensor Q € R3*3%3 elastic tensor S € R3*3%3x3
0’6 8?6 826

ik =—7——F—, QGx=—F5—F—1 SiK=—F5—F—
Y 80;1'66/(’ 3 aa‘yahk’ 2 800‘80}/

where G = G(o,E,H, T) is Gibbs potential depending on stress o,
electric field E, magnetic field H, temperature T
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common pitfall

e suppose with respect to # = {ey.e,,e,}, stress o has

Oxx Oxy Oxz 1 2 3
Y=lo]lg=|ox oy o =1|2 3 4| € R3*3
3 4 5

Ozx Ozy Ozz

e suppose with respect to B’ = {e,,eg, es}, stress o’ has

O Or9  Org 2 3 4
Z/:[O'/]gg/: oor Og9 Oep| = |3 4 5 €R3X3
Ogpr O0¢0 O¢pg 4 5 6
e makes perfect sense to add the 2-tensors
/
o+ o
e makes no sense to add the matrices
12 3 2 3 4
Y+¥Y =12 3 4|+ (3 4 5
3 45 4 5 6
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formula for u

e is there a ‘formula’ to evaluate tensor product of vectors u ® v?

e not in general, these are abstract products of abstract vectors in
abstract vector spaces

e all we may say is that ® is associative, + is associative and
commutative, ® is distributive over + in the sense of

M+ V) ve - Qw= Qv - aw+Nu v - @w

URMAWHIMV)® - QW= uQVR - QW+ NudVv e - -Qw

/

URVR - @AW+ AW) = ueve - dw+Nuve - -Qw

forallu,u’ e U,v,v e V,...,ww €W, A\, X eR
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interpretation

OBJECT PROPERTY

scalar a has magnitude |a|

vector v has magnitude ||v|| and a direction v

dyad v w has magnitude ||[v ® w|| and two directions v, w

triad uvew has magnitude |ju ® v ® w|| and three directions U, v, w

d-ad u®Vv® --- ®w has magnitude |[u® v ® --- ® w|| and d directions u,v,...,w

e.g., dyadic vi @ w; + v @ Wp + - - - + v, ® w, is placeholder for

(magnitude 1, first direction 1, second direction 1)
& (magnitude 2, first direction 2, second direction 2) & - --

& (magnitude r, first direction r, second direction r)
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trivial yet important

e property of tensor product
(av) @w =v® (aw) = a(v ® w)

e this is why tensor products, not direct sums, are used to combine
quantum state spaces

e quantum state is not described by v but entire one-dimensional
subspace spanned by v

e property ensures that in combining two quantum states, it matters
not which vector in the subspace we pick to represent the state

e direct sum does not have this property
(av) Dw # v d (aw) # a(v D w)
e more sophisticated argument in [Aerts—Daubechies, 1978, 1979]
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formula for u ® v!

as soon as we pick concrete vector spaces, we get concrete formulas for ®

e outer product of vectors a € R™, b € R”
a1b1 alb,,
a®b=ab'=| : . | eR™"
ambi -+ ambn
e Kronecker product of matrices A € R™*" B ¢ RP*9
anB - aiB
AR B = : : € R™MPxnq
amB -+ amnB
e separable product of functions f: X = R, g: Y =R
fog: XxY =R, fog(xy)="f(x)g(y)
e separable product of kernels K: X x X' = R, H: Y xY' =R
K ® H((x,x),(y,y")) = K(x,xX')H(y,y")
20



tensor product via functions




separable product of functions

e separable product of functions gives another way to define U ® V

e vector space of real-valued functions on set X
RX = {f: X = R}
e separable function is

(p@Y)(x,y) = p(X)(y) forallxeX,yeY

e define tensor product RX @ RY to be subspace of RX*Y comprising
all finite sums of separable functions

R @R := {feRXXY: f=Y ¢i®, g €RY, ¢ GRY}
i=1

e any f e RX @ RY takes form
F(x,y) =Y @i(x)¢iy)
i=1
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example: separable function

f(x,y)
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higher order

e extends to any d sets X1, Xs,..., Xy

RX1®RX2®' . ®Rxd — {f c RX1><X2><"'><Xd . f = Z ¢/®¢:® . '®9ia
i=1

i ERM o e R®, ... 0 € Rxd}
e each summand is a separable function

(p@Y @ ®O)(x1,X2, ..., Xa) = p(x1)P(x2) - - - 0(xa)

and
RX1><~-><Xd — {f Xl X -+ X Xd — R}

e moral: multivariate functions = tensors
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another way to define ®

e if Xq,...,Xy are finite sets, then
Rxl ® . ® Rxd — RX1><~~><XQ/

e any finite-dimensional vector space V may be regarded as real-valued
functions on basis # = {v1,...,v,}

Vov=avi+- --+an, «— F:ZB—=R, f(v;)=a c R?
e may define tensor product via

Vi®---®Vy =R? ® ... R%! = R#1X " x%d
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infinite dimension?

e polynomials
Rlx1, .-y Xm] QR[y1, ..., ¥n] = R[X1, s Xmy V1, -« -5 Yn)

L2 functions

L2(X)®L2(Y) = LA(X xY)

Schwartz, smooth, compactly supported smooth, holomorphic

S(X)®S(Y)=S(XxY), C®X)&C®(Y)=C®XxY)
CR(X)® CX(Y) = C®(X x Y), H(X)® H(Y) = H(X x Y)

tempered, compactly supported, distributions, analytic functionals

(Y)=E(X xY)

SX)RS(Y)=S(XxY), EX)®E
QH(Y)=H(XxY)

D'(X)®D'(Y)=D'(X xY), H(X)

caveat: need appropriate topological tensor product &
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topological tensor product

e separable Hilbert space H with inner product (-,-) and norm || - ||

e complete H ® H* with respect to the nuclear, Hilbert—-Schmidt,
spectral norms respectively

trace class H®, H* = {QDEB ZZ\ )] <oo}

iel jel

Hilbert-Schmidt H & H* = {cb € B(H): Y [¢(e)]? < }
iel
X C H bounded }

= ®(X) C H compact

compact H&, H* = {CD € B(H):

26



topological tensor product

e they have Schmidt decomposition

o0
b = E 0’,'U,'®V?
i=1

e {u;: i € N} and {v;: i € N} orthonormal sets, o; > 0

e for trace-class, Hilbert—-Schmidt, compact operators

o0 o0
2 : _
o; < 00, o7 <00, lim og;=0
=i =i i—00
= i=

and

o 1/2
1o, =3 o ||¢|F—<Za?> - loll =sup o
i=1 !

i—1
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example: Gaussian

e quintessential example
f(x) = exp(x*Ax + b*x + ¢)
(A+ A*)/2 negative definite, b purely imaginary
e normal random variable X ~ N(u, X)
SIS 1 *
ox(x) =exp|ip'x — 5X Yx
e Gaussian wave functions for quantum harmonic oscillator

2\ 3 H_(Bx)H,(8y)H 2
Vmnp(X,y,2) = (i) (62);)+n+(f;!)nfl()!ﬁz) exp{—i( +y*+2%)

Michael Peskin

Physics is that subset of human experience which can be reduced to
coupled harmonic oscillators
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