Multilinear algebra in machine learning and signal processing

Pierre Comon and Lek-Heng Lim

ICIAM Minisymposium on Numerical Multilinear Algebra

July 17, 2007

Some metaphysics

- Question: What is numerical analysis?
- One answer: Numerical analysis is a functor.
- Better answer: Numerical analysis is a functor from the category of continuous objects to the category of discrete objects.
- Doug Arnold et. al.: observing functoriality yields better numerical methods (in terms of stability, accuracy, speed).
- Numerical analysis:

CONTINUOUS \longrightarrow DISCRETE

- Machine learning:

DISCRETE \longrightarrow CONTINUOUS

- Message: The continuous counterpart of a discrete model tells us a lot about the discrete model.

Tensors: mathematician's definition

- U, V, W vector spaces. Think of $U \otimes V \otimes W$ as the vector space of all formal linear combinations of terms of the form $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$,

$$
\sum \alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

where $\alpha \in \mathbb{R}, \mathbf{u} \in U, \mathbf{v} \in V, \mathbf{w} \in W$.

- One condition: \otimes decreed to have the multilinear property

$$
\begin{array}{r}
\left(\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}\right) \otimes \mathbf{v} \otimes \mathbf{w}=\alpha \mathbf{u}_{1} \otimes \mathbf{v} \otimes \mathbf{w}+\beta \mathbf{u}_{2} \otimes \mathbf{v} \otimes \mathbf{w} \\
\mathbf{u} \otimes\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right) \otimes \mathbf{w}=\alpha \mathbf{u} \otimes \mathbf{v}_{1} \otimes \mathbf{w}+\beta \mathbf{u} \otimes \mathbf{v}_{2} \otimes \mathbf{w} \\
\mathbf{u} \otimes \mathbf{v} \otimes\left(\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}\right)=\alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{1}+\beta \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{2} .
\end{array}
$$

- Up to a choice of bases on $U, V, W, \mathbf{A} \in U \otimes V \otimes W$ can be represented by a 3-way array $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$.

Tensors: physicist's definition

- "What are tensors?" 三"What kind of physical quantities can be represented by tensors?"
- Usual answer: if they satisfy some 'transformation rules' under a change-of-coordinates.

Theorem (Change-of-basis)

Two representations A, A^{\prime} of \mathbf{A} in different bases are related by

$$
(L, M, N) \cdot A=A^{\prime}
$$

with L, M, N respective change-of-basis matrices (non-singular).

- Pitfall: tensor fields (roughly, tensor-valued functions on manifolds) often referred to as tensors - stress tensor, piezoelectric tensor, moment-of-inertia tensor, gravitational field tensor, metric tensor, curvature tensor.

Tensors: computer scientist's definition

- Data structure: k-array $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$
- Algebraic structure:
(1) Addition/scalar multiplication: for $\llbracket b_{i j k} \rrbracket \in \mathbb{R}^{I \times m \times n}, \lambda \in \mathbb{R}$,

$$
\llbracket a_{i j k} \rrbracket+\llbracket b_{i j k} \rrbracket:=\llbracket a_{i j k}+b_{i j k} \rrbracket \quad \text { and } \quad \lambda \llbracket a_{i j k} \rrbracket:=\llbracket \lambda a_{i j k} \rrbracket \in \mathbb{R}^{\prime \times m \times n}
$$

(2) Multilinear matrix multiplication: for matrices

$$
\begin{gathered}
L=\left[\lambda_{i^{\prime}}\right] \in \mathbb{R}^{p \times 1}, M=\left[\mu_{j^{\prime} j}\right] \in \mathbb{R}^{q \times m}, N=\left[\nu_{k^{\prime} k}\right] \in \mathbb{R}^{r \times n}, \\
(L, M, N) \cdot A:=\llbracket c_{i^{\prime} j^{\prime} k^{\prime}} \rrbracket \in \mathbb{R}^{p \times q \times r}
\end{gathered}
$$

where

$$
c_{i^{\prime} j^{\prime} k^{\prime}}:=\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{i^{\prime} i} \mu_{j^{\prime} j} \nu_{k^{\prime} k} a_{i j k} .
$$

- Think of A as 3 -dimensional array of numbers. $(L, M, N) \cdot A$ as multiplication on '3 sides' by matrices L, M, N.
- Generalizes to arbitrary order k. If $k=2$, ie. matrix, then $(M, N) \cdot A=M A N^{\top}$.

Continuous data mining

- Spectroscopy: measure light absorption/emission of specimen as function of energy.
- Typical specimen contains 10^{13} to 10^{16} light absorbing entities or chromophores (molecules, amino acids, etc).

Fact (Beer's Law)

$A(\lambda)=-\log \left(I_{1} / I_{0}\right)=\varepsilon(\lambda) c$. $A=$ absorbance, $I_{1} / I_{0}=$ fraction of intensity of light of wavelength λ that passes through specimen, $c=$ concentration of chromophores.

- Multiple chromophores $(k=1, \ldots, r)$ and wavelengths $(i=1, \ldots, m)$ and specimens/experimental conditions $(j=1, \ldots, n)$,

$$
A\left(\lambda_{i}, s_{j}\right)=\sum_{k=1}^{r} \varepsilon_{k}\left(\lambda_{i}\right) c_{k}\left(s_{j}\right)
$$

- Bilinear model aka factor analysis: $A_{m \times n}=E_{m \times r} C_{r \times n}$ rank-revealing factorization or, in the presence of noise, low-rank approximation $\min \left\|A_{m \times n}-E_{m \times r} C_{r \times n}\right\|$.

Discrete data mining

- Text mining is the spectroscopy of documents.
- Specimens $=$ documents (n of these).
- Chromophores $=$ terms (m of these).
- Absorbance $=$ inverse document frequency:

$$
A\left(t_{i}\right)=-\log \left(\sum_{j} \chi\left(f_{i j}\right) / n\right)
$$

- Concentration $=$ term frequency: $f_{i j}$.
- $\sum_{j} \chi\left(f_{i j}\right) / n=$ fraction of documents containing t_{j}.
- $A \in \mathbb{R}^{m \times n}$ term-document matrix. $A=Q R=U \Sigma V^{\top}$ rank-revealing factorizations.
- Bilinear models:
- Gerald Salton et. al.: vector space model (QR);
- Sue Dumais et. al.: latent sematic indexing (SVD).
- Art Owen: what do we get when $m, n \rightarrow \infty$?

Bilinear models

- Bilinear models work on 'two-way' data:
- measurements on object i (genomes, chemical samples, images, webpages, consumers, etc) yield a vector $\mathbf{a}_{i} \in \mathbb{R}^{n}$ where $n=$ number of features of i;
- collection of m such objects, $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right]$ may be regarded as an m-by- n matrix, e.g. gene \times microarray matrices in bioinformatics, terms \times documents matrices in text mining, facial images \times individuals matrices in computer vision.
- Various matrix techniques may be applied to extract useful information: QR, EVD, SVD, NMF, CUR, compressed sensing techniques, etc.
- Examples: vector space model, factor analysis, principal component analysis, latent semantic indexing, PageRank, EigenFaces.
- Some problems: factor indeterminacy $-A=X Y$ rank-revealing factorization not unique; unnatural for k-way data when $k>2$.

Ubiquity of multiway data

- Batch data: batch \times time \times variable
- Time-series analysis: time \times variable \times lag
- Computer vision: people \times view \times illumination \times expression \times pixel
- Bioinformatics: gene \times microarray \times oxidative stress
- Phylogenetics: codon \times codon \times codon
- Analytical chemistry: sample \times elution time \times wavelength
- Atmospheric science: location \times variable \times time \times observation
- Psychometrics: individual \times variable \times time
- Sensory analysis: sample \times attribute \times judge
- Marketing: product \times product \times consumer

Outer product

- If $U=\mathbb{R}^{\prime}, V=\mathbb{R}^{m}, W=\mathbb{R}^{n}, \mathbb{R}^{\prime} \otimes \mathbb{R}^{m} \otimes \mathbb{R}^{n}$ may be identified with $\mathbb{R}^{I \times m \times n}$ if we define \otimes by

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n} .
$$

- A tensor $A \in \mathbb{R}^{I \times m \times n}$ is said to be decomposable if it can be written in the form

$$
A=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

for some $\mathbf{u} \in \mathbb{R}^{\prime}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$. For order $2, \mathbf{u} \otimes \mathbf{v}=\mathbf{u} \mathbf{v}^{\top}$.

- In general, any $A \in \mathbb{R}^{I \times m \times n}$ may be written as a sum of decomposable tensors

$$
A=\sum_{i=1}^{r} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

- May be written as a multilinear matrix multiplication:

$$
\begin{gathered}
A=(U, V, W) \cdot \Lambda . \\
U \in \mathbb{R}^{1 \times r}, V \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{n \times r} \text { and diagonal } \Lambda \in \mathbb{R}^{r \times r \times r} .
\end{gathered}
$$

Tensor ranks

- Matrix rank. $A \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank). }
\end{aligned}
$$

- Multilinear rank. $A \in \mathbb{R}^{I \times m \times n}$. rank $_{\boxplus}(A)=\left(r_{1}(A), r_{2}(A), r_{3}(A)\right)$ where

$$
\begin{aligned}
& r_{1}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet \bullet}, \ldots, A_{l \bullet \bullet}\right\}\right) \\
& r_{2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1 \bullet}, \ldots, A_{\bullet m \bullet}\right\}\right) \\
& r_{3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet 1}, \ldots, A_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $A \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(A)=\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

- In general, $\operatorname{rank}_{\otimes}(A) \neq r_{1}(A) \neq r_{2}(A) \neq r_{3}(A)$.

Data analysis for numerical analysts

Idea
rank \rightarrow rank revealing decomposition \rightarrow low-rank approximation \rightarrow data analytic model

Fundamental problem of multiway data analysis

$$
\operatorname{argmin}_{r a n k}(B) \leq r\|A-B\|
$$

Examples

(1) Outer product rank: $A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}$:

$$
\min \left\|A-\mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{z}_{r}\right\|
$$

(2) Multilinear rank: $A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}, L_{i} \in \mathbb{R}^{d_{i} \times r_{i}}$:

$$
\min \left\|A-\left(L_{1}, L_{2}, L_{3}\right) \cdot C\right\| .
$$

(3) Symmetric rank: $A \in \mathrm{~S}^{k}\left(\mathbb{C}^{n}\right)$, find \mathbf{u}_{i} :

$$
\min \left\|A-\mathbf{u}_{1}^{\otimes k}-\mathbf{u}_{2}^{\otimes k}-\cdots-\mathbf{u}_{r}^{\otimes k}\right\| .
$$

(9) Nonnegative rank: $0 \leq A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i} \geq 0, \mathbf{v}_{i} \geq 0, \mathbf{w}_{i} \geq 0$.

Feature revelation

- More generally, $\mathcal{D}=$ dictionary. Minimal r with

$$
A \approx \alpha_{1} B_{1}+\cdots+\alpha_{r} B_{r} \in \mathcal{D}_{r}
$$

$B_{i} \in \mathcal{D}$ often reveal features of the dataset A.

Examples

(1) parafac: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid \operatorname{rank}_{\otimes}(A) \leq 1\right\}$.
(2) Tucker: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid\right.$ rank $\left._{\boxplus}(A) \leq(1,1,1)\right\}$.
(3) De Lathauwer: $\mathcal{D}=\left\{A \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid\right.$ rank $\left._{\boxplus}(A) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\}$.
(9) ICA: $\mathcal{D}=\left\{A \in \mathrm{~S}^{k}\left(\mathbb{C}^{n}\right) \mid\right.$ ranks $\left._{\mathrm{S}}(A) \leq 1\right\}$.
(5) NTF: $\mathcal{D}=\left\{A \in \mathbb{R}_{+}^{d_{1} \times d_{2} \times d_{3}} \mid \operatorname{rank}_{+}(A) \leq 1\right\}$.

Outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by Bro.
- Specimens with a number of pure substances in different concentration
- $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{\text {em }}$ of i th sample excited with light at wavelength $\lambda_{k}^{\text {ex }}$.
- Get 3 -way data $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get outer product decomposition of A

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

- Get the true chemical factors responsible for the data.
- r : number of pure substances in the mixtures,
- $\mathbf{x}_{\alpha}=\left(x_{1 \alpha}, \ldots, x_{I_{\alpha}}\right)$: relative concentrations of α th substance in specimens $1, \ldots, l$,
- $\mathbf{y}_{\alpha}=\left(y_{1 \alpha}, \ldots, y_{m \alpha}\right)$: excitation spectrum of α th substance,
- $\mathbf{z}_{\alpha}=\left(z_{1 \alpha}, \ldots, z_{n \alpha}\right)$: emission spectrum of α th substance.
- Noisy case: find best rank-r approximation (CANDECOMP/PARAFAC).

Multilinear decomposition in bioinformatics

- Application to cell cycle studies by Alter and Omberg.
- Collection of gene-by-microarray matrices $A_{1}, \ldots, A_{I} \in \mathbb{R}^{m \times n}$ obtained under varying oxidative stress.
- $a_{i j k}=$ expression level of j th gene in k th microarray under i th stress.
- Get 3-way data array $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get multilinear decomposition of A

$$
A=(X, Y, Z) \cdot C
$$

to get orthogonal matrices X, Y, Z and core tensor C by applying SVD to various 'flattenings' of A.

- Column vectors of X, Y, Z are 'principal components' or 'parameterizing factors' of the spaces of stress, genes, and microarrays; C governs interactions between these factors.
- Noisy case: approximate by discarding small $c_{i j k}$ (Tucker Model).

Bad news: outer product approximations are ill-behaved

- D. Bini, M. Capovani, F. Romani, and G. Lotti, " $O\left(n^{2.7799}\right)$ complexity for $n \times n$ approximate matrix multiplication," Inform. Process. Lett., 8 (1979), no. 5, pp. 234-235.
- Let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ be linearly independent. Define

$$
A:=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}+\mathbf{y} \otimes \mathbf{z} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{w} \otimes \mathbf{z}+\mathbf{z} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{z} \otimes \mathbf{y} \otimes \mathbf{w} .
$$

- For $\varepsilon>0$, define

$$
\begin{aligned}
B_{\varepsilon}:= & (\mathbf{y}+\varepsilon \mathbf{x}) \otimes(\mathbf{y}+\varepsilon \mathbf{w}) \otimes
\end{aligned} \varepsilon^{-1} \mathbf{z}+(\mathbf{z}+\varepsilon \mathbf{x}) \otimes \varepsilon^{-1} \mathbf{x} \otimes(\mathbf{x}+\varepsilon \mathbf{y}) . ~\left(\begin{array}{rl}
-\varepsilon^{-1} \mathbf{y} \otimes \mathbf{y} \otimes(\mathbf{x}+\mathbf{z}+ & \varepsilon \mathbf{w})-\varepsilon^{-1} \mathbf{z} \otimes(\mathbf{x}+\mathbf{y}+\varepsilon \mathbf{z}) \otimes \mathbf{x} \\
& +\varepsilon^{-1}(\mathbf{y}+\mathbf{z}) \otimes(\mathbf{y}+\varepsilon \mathbf{z}) \otimes(\mathbf{x}+\varepsilon \mathbf{w}) .
\end{array}\right.
$$

- Then $\operatorname{rank}_{\otimes}\left(B_{\varepsilon}\right) \leq 5, \operatorname{rank}_{\otimes}(A)=6$ and $\left\|B_{\varepsilon}-A\right\| \rightarrow 0$ as $\varepsilon \rightarrow 0$.
- A has no optimal approximation by tensors of rank ≤ 5.

Worse news: ill-posedness is common

Theorem (de Silva and Lim)

(1) Tensors failing to have a best rank-r approximation exist for
(1) all orders $k>2$,
(2) all norms and Brègman divergences,
(3) all ranks $r=2, \ldots, \min \left\{d_{1}, \ldots, d_{k}\right\}$.
(2) Tensors that fail to have best low-rank approximations occur with non-zero probability and sometimes with certainty - all $2 \times 2 \times 2$ tensors of rank 3 fail to have a best rank-2 approximation.
(3) Tensor rank can jump arbitrarily large gaps. There exists sequence of rank-r tensor converging to a limiting tensor of rank $r+s$.

Message

- That the best rank- r approximation problem for tensors has no solution poses serious difficulties.
- Incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? ie. what is the 'approximate solution' an approximate of?
- Problems near an ill-posed problem are generally ill-conditioned.

CP degeneracy

- CP degeneracy: the phenomenon that individual rank-1 terms in PARAFAC solutions sometime diverges to infinity but in a way that the sum remains finite.
- Example: minimize $\|A-\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$ via, say, alternating least squares,

$$
\left\|\mathbf{u}_{k} \otimes \mathbf{v}_{k} \otimes \mathbf{w}_{k}\right\| \quad \text { and } \quad\left\|\mathbf{x}_{k} \otimes \mathbf{y}_{k} \otimes \mathbf{z}_{k}\right\| \rightarrow \infty
$$

but not

$$
\left\|\mathbf{u}_{k} \otimes \mathbf{v}_{k} \otimes \mathbf{w}_{k}+\mathbf{x}_{k} \otimes \mathbf{y}_{k} \otimes \mathbf{z}_{k}\right\| .
$$

- If a sequence of rank- r tensors converges to a limiting tensor of rank $>r$, then all rank-1 terms must become unbounded [de Silva and L].
- In other words, rank jumping always imply CP degeneracy.

Some good news: separation rank avoids this problem

- G. Beylkin and M.J. Mohlenkamp, "Numerical operator calculus in higher dimensions," Proc. Natl. Acad. Sci., 99 (2002), no. 16, pp. 10246-10251.
- Given ε, find small $r(\varepsilon) \in \mathbb{N}$ so that

$$
\left\|A-\mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\mathbf{u}_{r(\epsilon)} \otimes \mathbf{v}_{r(\epsilon)} \otimes \mathbf{z}_{r(\epsilon)}\right\|<\varepsilon
$$

- Great for compressing A.
- However, data analytic models sometime require a fixed, predetermined r.

More good news: weak solutions may be characterized

- For a tensor A that has no best rank- r approximation, we will call a
$C \in \overline{\left\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}}$ attaining

$$
\inf \left\{\|C-A\| \mid \operatorname{rank}_{\otimes}(A) \leq r\right\}
$$

a weak solution. In particular, we must have rank $_{\otimes}(C)>r$.

Theorem (de Silva and L)

Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $A_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ be a sequence of tensors with $\operatorname{rank}_{\otimes}\left(A_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} A_{n}=A,
$$

where the limit is taken in any norm topology. If the limiting tensor A has rank higher than 2 , then rank $_{\otimes}(A)$ must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}, \mathbf{x}_{3}, \mathbf{y}_{3} \in \mathbb{R}^{d_{3}}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} .
$$

Even more good news: nonnegative tensors are better behaved

- Let $0 \leq A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. The nonnegative rank of A is

$$
\operatorname{rank}_{+}(A):=\min \left\{r \mid \sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}, \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

Clearly, such a decomposition exists for any $A \geq 0$.
Theorem (Golub and L)
Let $A=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ be nonnegative. Then

$$
\inf \left\{\left\|A-\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}\right\| \mid \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

is always attained.

Corollary

Nonnegative tensor approximation always have solutions.

Continuous and semi-discrete PARAFAC

Khoromskij, Tyrtyshnikov: approximation by sum of separable functions

- Continuous PARAFAC

$$
f(x, y, z)=\int \theta(x, t) \varphi(y, t) \psi(z, t) d t
$$

- Semi-discrete parafac

$$
\begin{gathered}
f(x, y, z)=\sum_{p=1}^{r} \theta_{p}(x) \varphi_{p}(y) \psi_{p}(z) \\
\theta_{p}(x)=\theta\left(x, t_{p}\right), \varphi_{p}(y)=\varphi\left(y, t_{p}\right), \psi_{p}(z)=\psi\left(z, t_{p}\right), r \text { possibly } \infty
\end{gathered}
$$

- Discrete Parafac

$$
\begin{gathered}
a_{i j k}=\sum_{p=1}^{r} u_{i p} v_{j p} w_{k p} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i p}=\theta_{p}\left(x_{i}\right), v_{j p}=\varphi_{p}\left(y_{j}\right), w_{k p}=\psi_{p}\left(z_{k}\right)
\end{gathered}
$$

Continuous and semi-discrete Tucker models

- Continuous Tucker model

$$
f(x, y, z)=\iiint K\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \theta\left(x, x^{\prime}\right) \varphi\left(y, y^{\prime}\right) \psi\left(z, z^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}
$$

- Semi-discrete Tucker model

$$
f(x, y, z)=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} \theta_{i^{\prime}}(x) \varphi_{j^{\prime}}(y) \psi_{k^{\prime}}(z)
$$

$$
\begin{aligned}
& c_{i^{\prime} j^{\prime} k^{\prime}}=K\left(x_{i^{\prime}}^{\prime}, y_{j^{\prime}}^{\prime}, z_{k^{\prime}}^{\prime}\right), \theta_{i^{\prime}}(x)=\theta\left(x, x_{i^{\prime}}^{\prime}\right), \varphi_{j^{\prime}}(y)=\varphi\left(y, y_{j^{\prime}}^{\prime}\right), \\
& \psi_{k^{\prime}}(z)=\psi\left(z, z_{k^{\prime}}^{\prime}\right), p, q, r \text { possibly } \infty
\end{aligned}
$$

- Discrete Tucker model

$$
\begin{gathered}
a_{i j k}=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} u_{i i^{\prime}} v_{j j^{\prime}} w_{k k^{\prime}} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i i^{\prime}}=\theta_{i^{\prime}}\left(x_{i}\right), v_{j j^{\prime}}=\varphi_{j^{\prime}}\left(y_{j}\right), w_{k k^{\prime}}=\psi_{k^{\prime}}\left(z_{k}\right)
\end{gathered}
$$

What continuous tells us about the discrete

Noisy case - approximation instead of exact decomposition. In both

$$
f(x, y, z) \approx \sum_{p=1}^{r} \theta_{p}(x) \varphi_{p}(y) \psi_{p}(z)
$$

and

$$
f(x, y, z) \approx \sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} \theta_{i^{\prime}}(x) \varphi_{j^{\prime}}(y) \psi_{k^{\prime}}(z)
$$

we almost always want the functions θ, φ, ψ to come from some restricted subspaces of $\mathbb{R}^{\mathbb{R}}-$ eg. $L^{p}(\mathbb{R}), C^{k}(\mathbb{R}), C_{0}^{k}(\mathbb{R})$, etc.; or take some special forms - eg. splines, wavelets, Chebyshev polynomials, etc.

What continuous tells us about the discrete

View discrete models

$$
a_{i j k}=\sum_{p=1}^{r} u_{i p} v_{j p} w_{k p}
$$

and

$$
a_{i j k}=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} u_{i i^{\prime}} v_{j j^{\prime}} w_{k k^{\prime}}
$$

as discretization of continuous counterparts.
Conditions on θ, φ, ψ tells us how to pick $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

Example: probability densities

- X, Y, Z random variables, $f(x, y, z)=\operatorname{Pr}(X=x, Y=y, Z=z)$
- X, Y, Z conditionally independent upon some hidden H
- Semi-discrete Parafac - Naïve Bayes Model, Nonnegative Tensor Decomposition (Lee \& Seung, Paatero), Probabilistic Latent Sematic Indexing (Hoffman)

$$
\begin{aligned}
& \operatorname{Pr}(X=x, Y=y, Z=z)= \\
& \quad \sum_{h=1}^{r} \operatorname{Pr}(H=h) \operatorname{Pr}(X=x \mid H=h) \\
& \quad \operatorname{Pr}(Y=y \mid H=h) \operatorname{Pr}(Z=z \mid H=h)
\end{aligned}
$$

Example: probability densities

- X, Y, Z random variables, $f(x, y, z)=\operatorname{Pr}(X=x, Y=y, Z=z)$
- X, Y, Z conditionally independent hidden $X^{\prime}, Y^{\prime}, Z^{\prime}$ (not necessarily independent)
- Semi-discrete Tucker - Information Theoretic Co-clustering (Dhillon et. al.) Nonnegative Tucker (Mørup et. al.)

$$
\begin{aligned}
& \operatorname{Pr}(X=x, Y=y, Z=z)= \\
& \sum_{x^{\prime}, y^{\prime}, z^{\prime}=1}^{p, q, r} \operatorname{Pr}\left(X^{\prime}=x^{\prime}, Y^{\prime}=y^{\prime}, Z^{\prime}=z^{\prime}\right) \operatorname{Pr}\left(X=x \mid X^{\prime}=x^{\prime}\right) \\
& \quad \operatorname{Pr}\left(Y=y \mid Y^{\prime}=y^{\prime}\right) \operatorname{Pr}\left(Z=z \mid Z^{\prime}=z^{\prime}\right)
\end{aligned}
$$

Coming Attractions

- Brett Bader and Tammy Kolda's minisympoisum on Thursday, 11:15-13:15 \& 15:45-17:45, CAB G 51
- Speakers: Brett Bader, Morten Mørup, Lars Eldén, Evrim Acar, Lieven De Lathauwer, Derry FitzGerald, Giorgio Tomasi, Tammy Kolda
- Berkant Savas's talk on Thursday, 11:15, KO2 F 172
- Given $A \in \mathbb{R}^{1 \times m \times n}$, want rank $_{\boxplus}(B)=\left(r_{1}, r_{2}, r_{3}\right)$ with

$$
\min \|A-B\|_{F}=\min \|A-(X, Y, Z) \cdot C\|_{F}
$$

$C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}, X \in \mathbb{R}^{/ \times r_{1}}, Y \in \mathbb{R}^{m \times r_{2}}$. Quasi-Newton method on a product of Grassmannians.

- Ming Gu's talk on Thursday, 16:15, KOL F 101
- The Hessian of $F(X, Y, Z)=\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}^{2}$ can be approximated by a semiseparable matrix.

