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Hope

Past 50 years, Numerical Linear Algebra played indispensable role in

the statistical analysis of two-way data,

the numerical solution of partial differential equations arising from
vector fields,

the numerical solution of second-order optimization methods.

Next step — development of Numerical Multilinear Algebra for

the statistical analysis of multi-way data,

the numerical solution of partial differential equations arising from
tensor fields,

the numerical solution of higher-order optimization methods.
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

Polynomial f ∈ R[x1, . . . , xn] of degree d can be expressed as

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x).

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n.

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Motivation

Why multilinear:

“Classification of mathematical problems as linear and nonlinear is
like classification of the Universe as bananas and non-bananas.”

Nonlinear — too general. Multilinear — next natural step.

Why numerical:

Different from Computer Algebra.

Numerical rather than symbolic: floating point operations — cheap
and abundant; symbolic operations — expensive.

Like other areas in numerical analysis, will entail the approximate
solution of approximate multilinear problems with approximate data
but under controllable and rigorous confidence bounds on the errors
involved.
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Tensors: mathematician’s definition

U,V ,W vector spaces. Think of U ⊗ V ⊗W as the vector space of
all formal linear combinations of terms of the form u⊗ v ⊗w,∑

αu⊗ v ⊗w,

where α ∈ R,u ∈ U, v ∈ V ,w ∈W .

One condition: ⊗ decreed to have the multilinear property

(αu1 + βu2)⊗ v ⊗w = αu1 ⊗ v ⊗w + βu2 ⊗ v ⊗w,

u⊗ (αv1 + βv2)⊗w = αu⊗ v1 ⊗w + βu⊗ v2 ⊗w,

u⊗ v ⊗ (αw1 + βw2) = αu⊗ v ⊗w1 + βu⊗ v ⊗w2.

Up to a choice of bases on U,V ,W , A ∈ U ⊗ V ⊗W can be
represented by a 3-hypermatrix A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.
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Tensors: physicist’s definition

“What are tensors?” ≡ “What kind of physical quantities can be
represented by tensors?”

Usual answer: if they satisfy some ‘transformation rules’ under a
change-of-coordinates.

Theorem (Change-of-basis)

Two representations A,A′ of A in different bases are related by

(L,M,N) · A = A′

with L,M,N respective change-of-basis matrices (non-singular).

Pitfall: tensor fields (roughly, tensor-valued functions on manifolds)
often referred to as tensors — stress tensor, piezoelectric tensor,
moment-of-inertia tensor, gravitational field tensor, metric tensor,
curvature tensor.
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Tensors: data analyst’s definition

Data structure: k-array A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

Algebraic structure:

1 Addition/scalar multiplication: for JbijkK ∈ Rl×m×n, λ ∈ R,

JaijkK + JbijkK := Jaijk + bijkK and λJaijkK := JλaijkK ∈ Rl×m×n

2 Multilinear matrix multiplication: for matrices
L = [λi ′i ] ∈ Rp×l ,M = [µj′j ] ∈ Rq×m,N = [νk′k ] ∈ Rr×n,

(L,M,N) · A := Jci ′j′k′K ∈ Rp×q×r

where

ci ′j′k′ :=
∑l

i=1

∑m

j=1

∑n

k=1
λi ′iµj′jνk′kaijk .

Think of A as 3-dimensional hypermatrix. (L,M,N) · A as
multiplication on ‘3 sides’ by matrices L,M,N.

Generalizes to arbitrary order k . If k = 2, ie. matrix, then
(M,N) · A = MANT.
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Hypermatrices

Totally ordered finite sets: [n] = {1 < 2 < · · · < n}, n ∈ N.

Vector or n-tuple
f : [n]→ R.

If f (i) = ai , then f is represented by a = [a1, . . . , an]> ∈ Rn.

Matrix
f : [m]× [n]→ R.

If f (i , j) = aij , then f is represented by A = [aij ]
m,n
i ,j=1 ∈ Rm×n.

Hypermatrix (order 3)

f : [l ]× [m]× [n]→ R.

If f (i , j , k) = aijk , then f is represented by A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Normally RX = {f : X → R}. Ought to be R[n],R[m]×[n],R[l ]×[m]×[n].

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5–7, 2009 8 / 55



Hypermatrices and tensors

Up to choice of bases

a ∈ Rn can represent a vector in V (contravariant) or a linear
functional in V ∗ (covariant).

A ∈ Rm×n can represent a bilinear form V ∗ ×W ∗ → R
(contravariant), a bilinear form V ×W → R (covariant), or a linear
operator V →W (mixed).

A ∈ Rl×m×n can represent trilinear form U × V ×W → R
(covariant), bilinear operators V ×W → U (mixed), etc.

A hypermatrix is the same as a tensor if

1 we give it coordinates (represent with respect to some bases);

2 we ignore covariance and contravariance.
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Basic operation on a hypermatrix

A matrix can be multiplied on the left and right: A ∈ Rm×n,
X ∈ Rp×m, Y ∈ Rq×n,

(X ,Y ) · A = XAY> = [cαβ] ∈ Rp×q

where
cαβ =

∑m,n

i ,j=1
xαiyβjaij .

A hypermatrix can be multiplied on three sides: A = JaijkK ∈ Rl×m×n,
X ∈ Rp×l , Y ∈ Rq×m, Z ∈ Rr×n,

(X ,Y ,Z ) · A = JcαβγK ∈ Rp×q×r

where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .
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Basic operation on a hypermatrix

Covariant version:

A · (X>,Y>,Z>) := (X ,Y ,Z ) · A.

Gives convenient notations for multilinear functionals and multilinear
operators. For x ∈ Rl , y ∈ Rm, z ∈ Rn,

A(x, y, z) := A · (x, y, z) =
∑l ,m,n

i ,j ,k=1
aijkxiyjzk ,

A(I , y, z) := A · (I , y, z) =
∑m,n

j ,k=1
aijkyjzk .
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Segre outer product

If U = Rl , V = Rm, W = Rn, Rl ⊗ Rm ⊗ Rn may be identified with
Rl×m×n if we define ⊗ by

u⊗ v ⊗w = JuivjwkKl ,m,ni ,j ,k=1.

A tensor A ∈ Rl×m×n is said to be decomposable if it can be written in
the form

A = u⊗ v ⊗w

for some u ∈ Rl , v ∈ Rm,w ∈ Rn.
The set of all decomposable tensors is known as the Segre variety in
algebraic geometry. It is a closed set (in both the Euclidean and Zariski
sense) as it can be described algebraically:

Seg(Rl ,Rm,Rn) = {A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3al1l2l3 , {iα, jα} = {kα, lα}}
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Symmetric hypermatrices

Cubical hypermatrix JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

Invariant under all permutations σ ∈ Sk on indices.

Sk(Rn) denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, . . . ,Xn):

mk(x) =
ˆ
E(xi1xi2 · · · xik )

˜n
i1,...,ik=1

=

»Z
· · ·
Z

xi1xi2 · · · xik dµ(xi1) · · · dµ(xik )

–n

i1,...,ik=1

.
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, . . . ,Xn):

κk(x) =

24 X
A1t···tAp={i1,...,ik}

(−1)p−1(p − 1)!E

„ Q
i∈A1

xi

«
· · ·E

„ Q
i∈Ap

xi

«35n

i1,...,ik=1

.

For n = 1, κk(x) for k = 1, 2, 3, 4 are the expectation, variance, skewness,
and kurtosis.

Important in Independent Component Analysis (ICA).

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5–7, 2009 14 / 55



Inner products and norms

`2([n]): a,b ∈ Rn, 〈a,b〉 = a>b =
∑n

i=1 aibi .

`2([m]× [n]): A,B ∈ Rm×n, 〈A,B〉 = tr(A>B) =
∑m,n

i ,j=1 aijbij .

`2([l ]× [m]× [n]): A,B ∈ Rl×m×n, 〈A,B〉 =
∑l ,m,n

i ,j ,k=1 aijkbijk .

In general,

`2([m]× [n]) = `2([m])⊗ `2([n]),

`2([l ]× [m]× [n]) = `2([l ])⊗ `2([m])⊗ `2([n]).

Frobenius norm

‖A‖2F =
∑l ,m,n

i ,j ,k=1
a2
ijk .

Norm topology often more directly relevant to engineering
applications than Zariski toplogy.
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Other norms

Let ‖·‖αi be a norm on Rdi , i = 1, . . . , k . Then operator norm of
multilinear functional A : Rd1 × · · · × Rdk → R is

‖A‖α1,...,αk
:= sup

|A(x1, . . . , xk)|
‖x1‖α1 · · · ‖xk‖αk

.

Deep and important results about such norms in functional analysis.

E -norm and G -norm:

‖A‖E =
∑d1,...,dk

i1,...,ik=1
|aj1···jk |

and

‖A‖G = max{|aj1···jk | | j1 = 1, . . . , d1; . . . ; jk = 1, . . . , dk}.

Multiplicative on rank-1 tensors:

‖u⊗ v ⊗ · · · ⊗ z‖E = ‖u‖1‖v‖1 · · · ‖z‖1,
‖u⊗ v ⊗ · · · ⊗ z‖F = ‖u‖2‖v‖2 · · · ‖z‖2,
‖u⊗ v ⊗ · · · ⊗ z‖G = ‖u‖∞‖v‖∞ · · · ‖z‖∞.
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Tensor ranks (Hitchcock, 1927)

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
>
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.
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Properties of matrix rank

1 Rank of A ∈ Rm×n easy to determine (Gaussian elimination)

2 Best rank-r approximation to A ∈ Rm×n always exist (Eckart-Young
theorem)

3 Best rank-r approximation to A ∈ Rm×n easy to find (singular value
decomposition)

4 Pick A ∈ Rm×n at random, then A has full rank with probability 1,
ie. rank(A) = min{m, n}

5 rank(A) from a non-orthogonal rank-revealing decomposition (e.g.
A = L1DLT

2 ) and rank(A) from an orthogonal rank-revealing
decomposition (e.g. A = Q1RQT

2 ) are equal

6 rank(A) is base field independent, ie. same value whether we regard
A as an element of Rm×n or as an element of Cm×n
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Properties of outer product rank

1 Computing rank⊗(A) for A ∈ Rl×m×n is NP-hard [Håstad 1990]

2 For some A ∈ Rl×m×n, argminrank⊗(B)≤r‖A− B‖F does not have a
solution

3 When argminrank⊗(B)≤r‖A− B‖F does have a solution, computing
the solution is an NP-complete problem in general

4 For some l ,m, n, if we sample A ∈ Rl×m×n at random, there is no r
such that rank⊗(A) = r with probability 1

5 An outer product decomposition of A ∈ Rl×m×n with orthogonality
constraints on X ,Y ,Z will in general require a sum with more than
rank⊗(A) number of terms

6 rank⊗(A) is base field dependent, ie. value depends on whether we
regard A ∈ Rl×m×n or A ∈ Cl×m×n
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Properties of multilinear rank

1 Computing rank�(A) for A ∈ Rl×m×n is easy

2 Solution to argminrank�(B)≤(r1,r2,r3)‖A− B‖F always exist

3 Solution to argminrank�(B)≤(r1,r2,r3)‖A− B‖F easy to find

4 Pick A ∈ Rl×m×n at random, then A has

rank�(A) = (min(l ,mn),min(m, ln),min(n, lm))

with probability 1

5 If A ∈ Rl×m×n has rank�(A) = (r1, r2, r3). Then there exist full-rank
matrices X ∈ Rl×r1 , Y ∈ Rm×r2 , Z ∈ Rn×r3 and core tensor
C ∈ Rr1×r2×r3 such that A = (X ,Y ,Z ) · C . X ,Y ,Z may be chosen
to have orthonormal columns

6 rank�(A) is base field independent, ie. same value whether we
regard A ∈ Rl×m×n or A ∈ Cl×m×n
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Algebraic computational complexity

For A = (aij),B = (bjk) ∈ Rn×n,

AB =
∑n

i ,j ,k=1
aikbkjEij =

∑n

i ,j ,k=1
ϕik(A)ϕkj(B)Eij

where Eij = eie
>
j ∈ Rn×n. Let

T =
∑n

i ,j ,k=1
ϕik ⊗ ϕkj ⊗ Eij .

O(n2+ε) algorithm for multiplying two n × n matrices gives O(n2+ε)
algorithm for solving system of n linear equations [Strassen 1969].

Conjecture. log2(rank⊗(T )) ≤ 2 + ε.

Best known result. O(n2.376) [Coppersmith-Winograd 1987;
Cohn-Kleinberg-Szegedy-Umans 2005].

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5–7, 2009 21 / 55



More tensor ranks

For u ∈ Rl , v ∈ Rm,w ∈ Rn,

u⊗ v ⊗w := JuivjwkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Outer product rank. A ∈ Rl×m×n,

rank⊗(A) = min{r | A =
∑r

i=1σiui ⊗ vi ⊗wi , σi ∈ R}.

Symmetric outer product rank. A ∈ Sk(Rn),

rankS(A) = min{r | A =
∑r

i=1λivi ⊗ vi ⊗ vi , λi ∈ R}.

Nonnegative outer product rank. A ∈ Rl×m×n
+ ,

rank+(A) = min{r | A =
∑r

i=1δixi ⊗ yi ⊗ zi , δi ∈ R+}.
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SVD, EVD, NMF of a matrix

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑r

i=1
σiui ⊗ vi

where rank(A) = r , U ∈ O(m) left singular vectors, V ∈ O(n) right
singular vectors, Σ singular values.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑r

i=1
λivi ⊗ vi ,

where rank(A) = r , V ∈ O(n) eigenvectors, Λ eigenvalues.

Nonnegative matrix factorization of A ∈ Rn×n
+ ,

A = X ∆Y> =
∑r

i=1
δixi ⊗ yi

where rank+(A) = r , X ,Y ∈ Rm×r
+ unit column vectors (in the

1-norm), ∆ positive values.
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SVD, EVD, NMF of a hypermatrix

Outer product decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi

where rank⊗(A) = r , ui ∈ Rl , vi ∈ Rm,wi ∈ Rn unit vectors, σi ∈ R.

Symmetric outer product decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi

where rankS(A) = r , vi unit vector, λi ∈ R.

Nonnegative outer product decomposition for hypermatrix
A ∈ Rl×m×n

+ is

A =
∑r

i=1
δixi ⊗ yi ⊗ zi

where rank+(A) = r , xi ∈ Rl
+, yi ∈ Rm

+, zi ∈ Rn
+ unit vectors,

δi ∈ R+.
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Best low rank approximation of a matrix

Given A ∈ Rm×n. Want

argminrank(B)≤r‖A− B‖.

More precisely, find σi ,ui , vi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 − σ2u2 ⊗ v2 − · · · − σrur ⊗ vr‖.

Theorem (Eckart–Young)

Let A = UΣV> =
∑rank(A)

i=1 σiuiv
>
i be singular value decomposition. For

r ≤ rank(A), let

Ar :=
∑r

i=1
σiuiv

>
i .

Then
‖A− Ar‖F = minrank(B)≤r‖A− B‖F .

No such thing for hypermatrices of order 3 or higher.
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Segre variety and its secant varieties

The set of all rank-1 hypermatrices is known as the Segre variety in
algebraic geometry.

It is a closed set (in both the Euclidean and Zariski sense) as it can
be described algebraically:

Seg(Rl ,Rm,Rn) = {A ∈ Rl×m×n | A = u⊗ v ⊗w} =

{A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3al1l2l3 , {iα, jα} = {kα, lα}}

Hypermatrices that have rank > 1 are elements on the higher secant
varieties of S = Seg(Rl ,Rm,Rn).

E.g. a hypermatrix has rank 2 if it sits on a secant line through two
points in S but not on S , rank 3 if it sits on a secant plane through
three points in S but not on any secant lines, etc.

Minor technicality: should really be secant quasiprojective variety.
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Scientific data mining

Spectroscopy: measure light absorption/emission of specimen as
function of energy.

Typical specimen contains 1013 to 1016 light absorbing entities or
chromophores (molecules, amino acids, etc).

Fact (Beer’s Law)

A(λ) = − log(I1/I0) = ε(λ)c. A = absorbance, I1/I0 = fraction of
intensity of light of wavelength λ that passes through specimen, c =
concentration of chromophores.

Multiple chromophores (f = 1, . . . , r) and wavelengths (i = 1, . . . ,m)
and specimens/experimental conditions (j = 1, . . . , n),

A(λi , sj) =
∑r

f =1
εf (λi )cf (sj).

Bilinear model aka factor analysis: Am×n = Em×r Cr×n

rank-revealing factorization or, in the presence of noise, low-rank
approximation min‖Am×n − Em×r Cr×n‖.
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Modern data mining

Text mining is the spectroscopy of documents.

Specimens = documents.

Chromophores = terms.

Absorbance = inverse document frequency:

A(ti ) = − log
(∑

j
χ(fij)/n

)
.

Concentration = term frequency: fij .∑
j χ(fij)/n = fraction of documents containing ti .

A ∈ Rm×n term-document matrix. A = QR = UΣV T rank-revealing
factorizations.

Bilinear model aka vector space model.

Due to Gerald Salton and colleagues: SMART (system for the
mechanical analysis and retrieval of text).
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Bilinear models

Bilinear models work on ‘two-way’ data:

I measurements on object i (genomes, chemical samples, images,
webpages, consumers, etc) yield a vector ai ∈ Rn where n = number of
features of i ;

I collection of m such objects, A = [a1, . . . , am] may be regarded as an
m-by-n matrix, e.g. gene × microarray matrices in bioinformatics,
terms × documents matrices in text mining, facial images ×
individuals matrices in computer vision.

Various matrix techniques may be applied to extract useful
information: QR, EVD, SVD, NMF, CUR, compressed sensing
techniques, etc.

Examples: vector space model, factor analysis, principal component
analysis, latent semantic indexing, PageRank, EigenFaces.

Some problems: factor indeterminacy — A = XY rank-revealing
factorization not unique; unnatural for k-way data when k > 2.
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Ubiquity of multiway data

Batch data: batch × time × variable

Time-series analysis: time × variable × lag

Computer vision: people × view × illumination × expression × pixel

Bioinformatics: gene × microarray × oxidative stress

Phylogenetics: codon × codon × codon

Analytical chemistry: sample × elution time × wavelength

Atmospheric science: location × variable × time × observation

Psychometrics: individual × variable × time

Sensory analysis: sample × attribute × judge

Marketing: product × product × consumer

Fact (Inevitable consequence of technological advancement)

Increasingly sophisticated instruments, sensor devices, data collecting and
experimental methodologies lead to increasingly complex data.
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Fundamental problem of multiway data analysis

A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.

Solve
argminrank(B)≤r‖A − B‖.

rank may be outer product rank, multilinear rank, symmetric rank (for
symmetric hypermatrix), or nonnegative rank (nonnegative
hypermatrix).

Example

Given A ∈ Rd1×d2×d3 , find ui , vi ,wi , i = 1, . . . , r , that minimizes

‖A − u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖

or C ∈ Rr1×r2×r3 and U ∈ Rd1×r1 ,V ∈ Rd2×r2 ,W ∈ Rd3×r3 , that minimizes

‖A − (U,V ,W ) · C‖.
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Fundamental problem of multiway data analysis

Example

Given A ∈ Sk(Cn), find ui , i = 1, . . . , r , that minimizes

‖A − u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖

or C ∈ Rr1×r2×r3 and U ∈ Rn×ri that minimizes

‖A − (U,U,U) · C‖.
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Outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by [Bro; 1997].

Specimens with a number of pure substances in different
concentration

I aijk = fluorescence emission intensity at wavelength λem
j of ith sample

excited with light at wavelength λex
k .

I Get 3-way data A = JaijkK ∈ Rl×m×n.
I Get outer product decomposition of A

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr .

Get the true chemical factors responsible for the data.

I r : number of pure substances in the mixtures,
I xα = (x1α, . . . , xlα): relative concentrations of αth substance in

specimens 1, . . . , l ,
I yα = (y1α, . . . , ymα): excitation spectrum of αth substance,
I zα = (z1α, . . . , znα): emission spectrum of αth substance.

Noisy case: find best rank-r approximation (candecomp/parafac).
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Uniqueness of tensor decompositions

M ∈ Rm×n, spark(M) = size of minimal linearly dependent subset of
column vectors [Donoho, Elad; 2003].

Theorem (Kruskal)

X = [x1, . . . , xr ],Y = [y1, . . . , yr ],Z = [z1, . . . , zr ]. Decomposition is
unique up to scaling if

spark(X ) + spark(Y ) + spark(Z ) ≥ 2r + 5.

May be generalized to arbitrary order [Sidiroupoulos, Bro; 2000].

Avoids factor indeterminacy under mild conditions.
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Multilinear decomposition in bioinformatics

Application to cell cycle studies [Omberg, Golub, Alter; 2008].

Collection of gene-by-microarray matrices A1, . . . ,Al ∈ Rm×n

obtained under varying oxidative stress.

I aijk = expression level of jth gene in kth microarray under ith stress.
I Get 3-way data array A = JaijkK ∈ Rl×m×n.
I Get multilinear decomposition of A

A = (X ,Y ,Z ) · C,

to get orthogonal matrices X ,Y ,Z and core tensor C by applying SVD
to various ’flattenings’ of A.

Column vectors of X ,Y ,Z are ‘principal components’ or
‘parameterizing factors’ of the spaces of stress, genes, and
microarrays; C governs interactions between these factors.

Noisy case: approximate by discarding small cijk (Tucker Model).
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Code of life is a 3-tensor
Codons: triplets of nucleotides, (i , j , k) where i , j , k ∈ {A,C ,G ,U}.
Genetic code: these 43 = 64 codons encode the 20 amino acids.
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Tensors in algebraic statistical biology

Problem (Salmon conjecture)

Find the polynomial equations that defines the set

{P ∈ C4×4×4 | rank⊗(P) ≤ 4}.

Why interested? Here P = JpijkK is understood to mean
‘complexified’ probability density values with i , j , k ∈ {A,C ,G ,T}
and we want to study tensors that are of the form

P = ρA⊗σA⊗θA +ρC ⊗σC ⊗θC +ρG ⊗σG ⊗θG +ρT ⊗σT ⊗θT ,

in other words,

pijk = ρAiσAjθAk + ρCiσCjθCk + ρGiσGjθGk + ρTiσTjθTk .

Why over C? Easier to deal with mathematically.

Ultimately, want to study this over R+.
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