Numerical Multilinear Algebra II

Lek-Heng Lim
University of California, Berkeley
January 5-7, 2009

Recap: tensor ranks

- Matrix rank. $A \in \mathbb{R}^{m \times n}$.

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank) }
\end{aligned}
$$

- Multilinear rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}(A), r_{2}(A), r_{3}(A)\right)$,

$$
\begin{aligned}
& r_{1}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet \bullet}, \ldots, A_{l \bullet \bullet}\right\}\right) \\
& r_{2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1 \bullet}, \ldots, A_{\bullet m \bullet}\right\}\right) \\
& r_{3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet 1}, \ldots, A_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n}$.

Matrix EVD and SVD

- Rank revealing decompositions.
- Symmetric eigenvalue decomposition of $A \in S^{2}\left(\mathbb{R}^{n}\right)$,

$$
A=V \wedge V^{\top}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(A)=r, V \in O(n)$ eigenvectors, Λ eigenvalues.

- Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(\mathcal{A})=r, U \in \mathrm{O}(m)$ left singular vectors, $V \in \mathrm{O}(n)$ right singular vectors, Σ singular values.

- Ditto for nonnegative matrix decomposition.

One plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the outer product rank.
- Symmetric outer product decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}_{\mathrm{s}}(A)=r, \mathbf{v}_{i}$ unit vector, $\lambda_{i} \in \mathbb{R}$.

- Outer product decomposition of $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$,

$$
\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

where $\operatorname{rank}_{\otimes}(\mathcal{A})=r, \mathbf{u}_{i} \in \mathbb{R}^{\prime}, \mathbf{v}_{i} \in \mathbb{R}^{m}, \mathbf{w}_{i} \in \mathbb{R}^{n}$ unit vectors, $\sigma_{i} \in \mathbb{R}$.

- Ditto for nonnegative outer product decomposition.

Another plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the multilinear rank.
- Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\mathcal{A}=(U, V, W) \cdot \mathcal{C}
$$

where $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right), U \in \mathbb{R}^{1 \times r_{1}}, V \in \mathbb{R}^{m \times r_{2}}, W \in \mathbb{R}^{n \times r_{3}}$ have orthonormal columns and $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$.

- Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=(U, U, U) \cdot \mathcal{C}
$$

where $\operatorname{rank}^{\boxplus}(A)=(r, r, r), U \in \mathbb{R}^{n \times r}$ has orthonormal columns and $\mathcal{C} \in S^{3}\left(\mathbb{R}^{r}\right)$.

- Ditto for nonnegative multilinear decomposition.

Outer product rank is hard to compute

- Eugene L. Lawler: "The Mystical Power of Twoness."
- 2-SAT is easy, 3-SAT is hard;
- 2-dimensional matching is easy, 3-dimensional matching is hard;
- Order-2 tensor rank is easy, order-3 tensor rank is hard.

Theorem (Håstad)

Computing $\operatorname{rank}_{\otimes}(\mathcal{A})$ for $\mathcal{A} \in \mathbb{F}^{1 \times m \times n}$ is $N P$-hard for $\mathbb{F}=\mathbb{Q}$ and NP-complete for $\mathbb{F}=\mathbb{F}_{q}$.

- Open question: Is tensor rank NP-hard/NP-complete over $\mathbb{F}=\mathbb{R}, \mathbb{C}$ in the sense of BCSS?
- L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation, Springer-Verlag, New York, NY, 1998.

Outer product rank depends on base field

For $A \in \mathbb{R}^{m \times n} \subset \mathbb{C}^{m \times n}, \operatorname{rank}_{\mathbb{R}}(A)=\operatorname{rank}_{\mathbb{C}}(A)$. Not true for tensors.

Theorem (Bergman)

For $\mathcal{A} \in \mathbb{R}^{1 \times m \times n} \subset \mathbb{C}^{1 \times m \times n}$, $\operatorname{rank}_{\otimes}(\mathcal{A})$ is base field dependent.

- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ linearly independent and let $\mathbf{z}=\mathbf{x}+i \mathbf{y}$.

$$
\begin{aligned}
\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y} & +\mathbf{y} \otimes \mathbf{y} \otimes \mathbf{x} \\
& =\frac{1}{2}(\mathbf{z} \otimes \overline{\mathbf{z}} \otimes \overline{\mathbf{z}}+\overline{\mathbf{z}} \otimes \mathbf{z} \otimes \mathbf{z}) .
\end{aligned}
$$

- May show that $\operatorname{rank}_{\otimes, \mathbb{R}}(\mathcal{A})=3$ and $\operatorname{rank}_{\otimes, \mathbb{C}}(\mathcal{A})=2$.
- $\mathbb{R}^{2 \times 2 \times 2}$ has 8 distinct orbits under $\mathrm{GL}_{2}(\mathbb{R}) \times \mathrm{GL}_{2}(\mathbb{R}) \times \mathrm{GL}_{2}(\mathbb{R})$.
- $\mathbb{C}^{2 \times 2 \times 2}$ has 7 distinct orbits under $\mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{2}(\mathbb{C})$.

Outer product decomposition: separation of variables

Approximation by sum or integral of separable functions

- Continuous

$$
f(x, y, z)=\int \theta(x, t) \varphi(y, t) \psi(z, t) d t
$$

- Semi-discrete

$$
f(x, y, z)=\sum_{p=1}^{r} \theta_{p}(x) \varphi_{p}(y) \psi_{p}(z)
$$

$$
\theta_{p}(x)=\theta\left(x, t_{p}\right), \varphi_{p}(y)=\varphi\left(y, t_{p}\right), \psi_{p}(z)=\psi\left(z, t_{p}\right), r \text { possibly } \infty
$$

- Discrete

$$
\begin{gathered}
a_{i j k}=\sum_{p=1}^{r} u_{i p} v_{j p} w_{k p} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i p}=\theta_{p}\left(x_{i}\right), v_{j p}=\varphi_{p}\left(y_{j}\right), w_{k p}=\psi_{p}\left(z_{k}\right)
\end{gathered}
$$

Separation of variables

- Useful for data analysis, machine learning, pattern recognition.
- Gaussians are separable

$$
\exp \left(x^{2}+y^{2}+z^{2}\right)=\exp \left(x^{2}\right) \exp \left(y^{2}\right) \exp \left(z^{2}\right)
$$

- More generally for symmetric positive-definite $A \in \mathbb{R}^{n \times n}$,

$$
\exp \left(\mathbf{x}^{\top} A \mathbf{x}\right)=\exp \left(\mathbf{z}^{\top} \Lambda \mathbf{z}\right)=\prod_{i=1}^{n} \exp \left(\lambda_{i} z_{i}^{2}\right)
$$

- Gaussian mixture models

$$
f(\mathbf{x})=\sum_{j=1}^{m} \alpha_{j} \exp \left[\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)^{\top} A_{j}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)\right]
$$

f is a sum of separable functions.

Multilinear decomposition: integral kernels

Approximation by sum or integral kernels

- Continuous

$$
f(x, y, z)=\iiint K\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \theta\left(x, x^{\prime}\right) \varphi\left(y, y^{\prime}\right) \psi\left(z, z^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}
$$

- Semi-discrete

$$
f(x, y, z)=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} \theta_{i^{\prime}}(x) \varphi_{j^{\prime}}(y) \psi_{k^{\prime}}(z)
$$

$$
c_{i^{\prime} j^{\prime} k^{\prime}}=K\left(x_{i^{\prime}}^{\prime}, y_{j^{\prime}}^{\prime}, z_{k^{\prime}}^{\prime}\right), \theta_{i^{\prime}}(x)=\theta\left(x, x_{i^{\prime}}^{\prime}\right), \varphi_{j^{\prime}}(y)=\varphi\left(y, y_{j^{\prime}}^{\prime}\right)
$$

$$
\psi_{k^{\prime}}(z)=\psi\left(z, z_{k^{\prime}}^{\prime}\right), p, q, r \text { possibly } \infty
$$

- Discrete

$$
\begin{gathered}
a_{i j k}=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} u_{i i^{\prime}} v_{j j^{\prime}} w_{k k^{\prime}} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i i^{\prime}}=\theta_{i^{\prime}}\left(x_{i}\right), v_{j j^{\prime}}=\varphi_{j^{\prime}}\left(y_{j}\right), w_{k k^{\prime}}=\psi_{k^{\prime}}\left(z_{k}\right) .
\end{gathered}
$$

Best r-term approximation

$$
f \approx \alpha_{1} f_{1}+\alpha_{2} f_{2}+\cdots+\alpha_{r} f_{r}
$$

- Target function $f \in \mathcal{H}$ vector space, cone, etc.
- $f_{1}, \ldots, f_{r} \in \mathscr{D} \subset \mathcal{H}$ dictionary.
- $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$ or \mathbb{C} (linear), \mathbb{R}_{+}(convex), $\mathbb{R} \cup\{-\infty\}$ (tropical).
- \approx with respect to $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$, some measure of 'nearness' between pairs of points (e.g. norms, metric, volumes, expectation, entropy, Brègman divergences, etc), want

$$
\operatorname{argmin}\left\{\varphi\left(f, \alpha_{1} f_{1}+\ldots \alpha_{r} f_{r}\right) \mid f_{i} \in \mathscr{D}\right\}
$$

- For concreteness, \mathcal{H} separable Hilbert space; measure of nearness is a norm, but not necessarily the one induced by its inner product.
- Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.

Dictionaries

- Number base: $\mathscr{D}=\left\{10^{n} \mid n \in \mathbb{Z}\right\} \subseteq \mathbb{R}$,

$$
\frac{22}{7}=3 \cdot 10^{0}+1 \cdot 10^{-1}+4 \cdot 10^{-2}+2 \cdot 10^{-3}+\cdots
$$

- Spanning set: $\mathscr{D}=\left\{\left[\begin{array}{c}1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{2}$,

$$
\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-1\left[\begin{array}{c}
1 \\
0
\end{array}\right] .
$$

- Taylor: $\mathscr{D}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\} \subseteq C^{\omega}(\mathbb{R})$,

$$
\exp (x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots
$$

- Fourier: $\mathscr{D}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\} \subseteq L^{2}(-\pi, \pi)$,

$$
\frac{1}{2} x=\sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\cdots
$$

- \mathscr{D} orthonormal basis, Schauder basis, Hamel basis, Riesz basis, frames, a dense spanning set.

More dictionaries

- Discrete cosine:

$$
\mathscr{D}=\left\{\left.\sqrt{\frac{2}{N}} \cos \left(k+\frac{1}{2}\right)\left(n+\frac{1}{2}\right) \frac{\pi}{N} \right\rvert\, k \in[N-1]\right\} \subseteq \mathbb{C}^{N} .
$$

- Peter-Weyl:

$$
\mathscr{D}=\left\{\left\langle\pi(x) \mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle \mid \pi \in \widehat{G}, i, j \in\left[d_{\pi}\right]\right\} \subseteq L^{2}(G)
$$

- Paley-Wiener:

$$
\mathscr{D}=\{\operatorname{sinc}(x-n) \mid n \in \mathbb{Z}\} \subseteq H^{2}(\mathbb{R})
$$

- Gabor:

$$
\mathscr{D}=\left\{e^{i \alpha n x} e^{-(x-m \beta)^{2} / 2} \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Wavelet:

$$
\mathscr{D}=\left\{2^{n / 2} \psi\left(2^{n} x-m\right) \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Friends of wavelets: $\mathscr{D} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$ beamlets, brushlets, curvelets, ridgelets, wedgelets, multiwavelets.

Approximants

Definition

Dictionary $\mathscr{D} \subset \mathcal{H}$. For $r \in \mathbb{N}$, the set of \boldsymbol{r}-term approximants is

$$
\Sigma_{r}(\mathscr{D}):=\left\{\sum_{i=1}^{r} \alpha_{i} f_{i} \in \mathcal{H} \mid \alpha_{i} \in \mathbb{C}, f_{i} \in \mathscr{D}\right\} .
$$

Let $f \in \mathcal{H}$. The error of r-term approximation is

$$
\sigma_{n}(f):=\inf _{g \in \Sigma_{r}(\mathscr{D})}\|f-g\| .
$$

- Linear combination of two r-term approximants may have more than r non-zero terms.
- $\Sigma_{r}(\mathscr{D})$ not a subspace of \mathcal{H}. Hence nonlinear approximation.
- In contrast with usual (linear) approximation, ie.

$$
\inf _{g \in \operatorname{span}(\mathscr{D})}\|f-g\| .
$$

Small is beautiful

$$
f \approx \sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_{i} f_{i}
$$

- Want good approximation, ie. $\left\|f-\sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_{i} f_{i}\right\|$ small.
- Want sparse/concentrated representation, ie. $|\mathscr{I}|$ small.
- Sparsity depends on choice of \mathscr{D}.
- $\mathscr{D}_{10}=\left\{10^{n} \mid n \in \mathbb{Z}\right\}, \mathscr{D}_{3}=\left\{3^{n} \mid n \in \mathbb{Z}\right\} \subseteq \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{3} & =[0.33333 \cdots]_{10}=\sum_{n=1}^{\infty} 3 \cdot 10^{-n} \\
& =[0.1]_{3}=1 \cdot 3^{-1} .
\end{aligned}
$$

- $\mathscr{D}_{\text {fourier }}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\}$,

$$
\frac{1}{2} x=\sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\cdots .
$$

- $\mathscr{D}_{\text {taylor }}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}$,

$$
\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots
$$

Bigger is better

- Union of dictionaries: allows for efficient (sparse) representation of different features
- $\mathscr{D}=\mathscr{D}_{\text {fourier }} \cup \mathscr{D}_{\text {wavelets }}$,
- $\mathscr{D}=\mathscr{D}_{\text {spikes }} \cup \mathscr{D}_{\text {sinusoids }} \cup \mathscr{D}_{\text {splines }}$,
- $\mathscr{D}=\mathscr{D}_{\text {wavelets }} \cup \mathscr{D}_{\text {curvelets }} \cup \mathscr{D}_{\text {beamlets }} \cup \mathscr{D}_{\text {ridgelets }}$.
- \mathscr{D} overcomplete or redundant dictionary. Trade off: computational complexity.
- Rule of thumb: the larger and more diverse the dictionary, the more efficient/sparser the representation.
- Observation: \mathscr{D} above all zero dimensional (at most countably infinite).
- Question: What about dictionaries with a continuously varying families of functions?
- Meta question: Why should tensor folks care about this?

Recap: hypermatrices are functions on finite sets

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Vector or n-tuple

$$
f:[n] \rightarrow \mathbb{R}
$$

If $f(i)=a_{i}$, then f is represented by $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]^{\top} \in \mathbb{R}^{n}$.

- Matrix

$$
f:[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j)=a_{i j}$, then f is represented by $A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{l \times m \times n}$. Normally $\mathbb{R}^{X}=\{f: X \rightarrow \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times[n]}, \mathbb{R}^{[I] \times[m] \times[n]}$.

Tensor approximations

- General tensor approximation.
- Target function

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R} .
$$

- Dictionary of separable functions,

$$
\mathscr{D}_{\otimes}=\{g:[I] \times[m] \times[n] \rightarrow \mathbb{R} \mid g(i, j, k)=\vartheta(i) \varphi(j) \psi(k)\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}, \varphi:[m] \rightarrow \mathbb{R}, \psi:[n] \rightarrow \mathbb{R}$.

- Symmetric tensor approximation.
- Target function:

$$
f:[n] \times[n] \times[n] \rightarrow \mathbb{R}
$$

with $f(i, j, k)=f(j, i, k)=\cdots=f(k, j, i)$.

- Dictionary of symmetric separable functions:

$$
\mathscr{D}_{\mathrm{S}}=\{g:[n] \times[n] \times[n] \rightarrow \mathbb{R} \mid g(i, j, k)=\vartheta(i) \vartheta(j) \vartheta(k)\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}$.

Tensor approximations

- Nonnegative tensor approximation.
- Target function

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}_{+} .
$$

- Dictionary of nonnegative separable functions,

$$
\mathscr{D}_{+}=\left\{g:[/] \times[m] \times[n] \rightarrow \mathbb{R}_{+} \mid g(i, j, k)=\vartheta(i) \varphi(j) \psi(k)\right\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}_{+}, \varphi:[m] \rightarrow \mathbb{R}_{+}, \psi:[n] \rightarrow \mathbb{R}_{+}$.

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$
\begin{aligned}
& \operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)=\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \mathcal{A}=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\right\}= \\
& \quad\left\{\mathcal{A} \in \mathbb{R}^{l \times m \times n} \mid a_{i_{1} i_{2} i_{3}} a_{j_{1} j_{2} j_{3}}=a_{k_{1} k_{2} k_{3}} a_{1} i_{2} /_{3},\left\{i_{\alpha}, j_{\alpha}\right\}=\left\{k_{\alpha}, l_{\alpha}\right\}\right\}
\end{aligned}
$$

- Hypermatrices that have rank >1 are elements on the higher secant varieties of $\mathscr{S}=\operatorname{Seg}\left(\mathbb{R}^{I}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$.
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in \mathscr{S} but not on \mathscr{S}, rank 3 if it sits on a secant plane through three points in \mathscr{S} but not on any secant lines, etc.
- Minor technicality: should really be secant quasiprojective variety.

Same thing different names

- r th secant (quasiprojective) variety of the Segre variety is the set of r term approximants.
- If $\mathscr{D}=\operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$, then

$$
\Sigma_{r}(\mathscr{D})=\left\{\mathcal{A} \in \mathbb{R}^{1 \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

- Rank revealing matrix decompositions (non-unique: LU, QR, SVD):

$$
\mathscr{D}=\left\{\mathbf{x y}^{\top} \mid(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m} \times \mathbb{R}^{n}\right\}=\left\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) \leq 1\right\} .
$$

- Often unique for tensors [Kruskal; 1977], [Sidiroupoulos, Bro; 2000]:
- $\operatorname{spark}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)=$ size of minimal linearly dependent subset [Donoho, Elad; 2003].
- Decomposition $\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}$ is unique up to scaling if

$$
\operatorname{spark}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)+\operatorname{spark}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)+\operatorname{spark}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right) \geq 2 r+5
$$

Dictionaries of positive dimensions

- Neural networks:

$$
\mathscr{D}=\left\{\sigma\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right) \mid\left(w_{0}, \mathbf{w}\right) \in \mathbb{R} \times \mathbb{R}^{n}\right\}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ sigmoid function, eg. $\sigma(x)=[1+\exp (-x)]^{-1}$.

- Exponential:

$$
\mathscr{D}=\left\{e^{-t x} \mid t \in \mathbb{R}_{+}\right\} \quad \text { or } \quad \mathscr{D}=\left\{e^{\tau x} \mid \tau \in \mathbb{C}\right\} .
$$

- Outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \mid(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq 1\right\}
\end{aligned}
$$

- Symmetric outer product decomposition:

$$
\mathscr{D}=\left\{\mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v} \mid \mathbf{v} \in \mathbb{R}^{n}\right\}=\left\{\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right) \mid \operatorname{rank}_{\mathrm{S}}(\mathcal{A}) \leq 1\right\}
$$

- Nonnegative outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \mid(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}_{+}^{\prime} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}_{+}^{\prime \times m \times n} \mid \text { rank }_{+}(\mathcal{A}) \leq 1\right\}^{2}
\end{aligned}
$$

Recall: fundamental problem of multiway data analysis

- \mathcal{A} hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix. Want

$$
\operatorname{argmin}_{\operatorname{rank}(\mathcal{B}) \leq r}\|\mathcal{A}-\mathcal{B}\| .
$$

- $\operatorname{rank}(\mathcal{B})$ may be outer product rank, multilinear rank, symmetric rank (for symmetric hypermatrix), or nonnegative rank (nonnegative hypermatrix).

Example

Given $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{w}_{r}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{d_{1} \times r_{1}}, V \in \mathbb{R}^{d_{2} \times r_{2}}, W \in \mathbb{R}^{d_{3} \times r_{3}}$, that minimizes

$$
\|\mathcal{A}-(U, V, W) \cdot \mathcal{C}\|
$$

- May assume $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}$ unit vectors and U, V, W orthonormal columns.

Recall: fundamental problem of multiway data analysis

Example

Given $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{C}^{n}\right)$, find $\mathbf{u}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\lambda_{1} \mathbf{u}_{1}^{\otimes k}-\lambda_{2} \mathbf{u}_{2}^{\otimes k}-\cdots-\lambda_{r} \mathbf{u}_{r}^{\otimes k}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{n \times r_{i}}$ that minimizes

$$
\|\mathcal{A}-(U, U, U) \cdot \mathcal{C}\|
$$

- May assume \mathbf{u}_{i} unit vector and U orthonormal columns.

Best low rank approximation of a matrix

- Given $A \in \mathbb{R}^{m \times n}$. Want

$$
\operatorname{argmin}_{\operatorname{rank}(B) \leq r}\|A-B\| .
$$

- More precisely, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r}\right\| .
$$

Theorem (Eckart-Young)
Let $A=U \Sigma V^{\top}=\sum_{i=1}^{r a n k(A)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$ be singular value decomposition. For $r \leq \operatorname{rank}(A)$, let

$$
A_{r}:=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Then

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank}(B) \leq r}\|A-B\|_{F}
$$

- No such thing for hypermatrices of order 3 or higher.

Lemma

Let $r \geq 2$ and $k \geq 3$. Given the norm-topology on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, the following statements are equivalent:
(1) The set $\mathscr{S}_{r}\left(d_{1}, \ldots, d_{k}\right):=\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}$ is not closed.
(2) There exists a sequence $\mathcal{A}_{n}, \operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq r, n \in \mathbb{N}$, converging to \mathcal{B} with rank $_{\otimes}(\mathcal{B})>r$.
(3) There exists \mathcal{B}, rank $_{\otimes}(\mathcal{B})>r$, that may be approximated arbitrarily closely by hypermatrices of strictly lower rank, i.e.

$$
\inf \left\{\|\mathcal{B}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}=0
$$

(9) There exists \mathcal{C}, rank $_{\otimes}(\mathcal{C})>r$, that does not have a best rank- r approximation, i.e.

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

is not attained (by any \mathcal{A} with $\operatorname{rank}_{\otimes}(\mathcal{A}) \leq r$).

Non-existence of best low-rank approximation

- For $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}, i=1,2,3$,

$$
\mathcal{A}:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- For $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}_{1}+\frac{1}{n} \mathbf{y}_{1}\right) \otimes\left(\mathbf{x}_{2}+\frac{1}{n} \mathbf{y}_{2}\right) \otimes\left(\mathbf{x}_{3}+\frac{1}{n} \mathbf{y}_{3}\right)-n \mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} .
$$

Lemma

$\operatorname{rank}_{\otimes}(\mathcal{A})=3$ iff $\mathbf{x}_{i}, \mathbf{y}_{i}$ linearly independent, $i=1,2,3$. Furthermore, it is clear that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

- Original result, in a slightly different form, due to:
- D. Bini, G. Lotti, F. Romani, "Approximate solutions for the bilinear form computational problem," SIAM J. Comput., 9 (1980), no. 4.

Outer product approximations are ill-behaved

- Such phenomenon can and will happen for all orders >2, all norms, and many ranks:

Theorem

Let $k \geq 3$ and $d_{1}, \ldots, d_{k} \geq 2$. For any such that

$$
2 \leq s \leq \min \left\{d_{1}, \ldots, d_{k}\right\}
$$

there exists $\mathcal{A} \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ with $\operatorname{rank}_{\otimes}(\mathcal{A})=s$ such that \mathcal{A} has no best rank-r approximation for some $r<s$. The result is independent of the choice of norms.

- For matrices, the quantity $\min \left\{d_{1}, d_{2}\right\}$ will be the maximal possible rank in $\mathbb{R}^{d_{1} \times d_{2}}$. In general, a hypermatrix in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ can have rank exceeding $\min \left\{d_{1}, \ldots, d_{k}\right\}$.

Outer product approximations are ill-behaved

- Tensor rank can jump over an arbitrarily large gap:

Theorem

Let $k \geq 3$. Given any $s \in \mathbb{N}$, there exists a sequence of order- k hypermatrix \mathcal{A}_{n} such that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq r$ and $\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}$ with $\operatorname{rank}_{\otimes}(\mathcal{A})=r+s$.

- Hypermatrices that fail to have best low-rank approximations are not rare. May occur with non-zero probability; sometimes with certainty.

Theorem

Let μ be a measure that is positive or infinite on Euclidean open sets in $\mathbb{R}^{I \times m \times n}$. There exists some $r \in \mathbb{N}$ such that
$\mu(\{\mathcal{A} \mid \mathcal{A}$ does not have a best rank-r approximation $\})>0$.
In $\mathbb{R}^{2 \times 2 \times 2}$, all rank-3 hypermatrices fail to have best rank- 2 approximation.

Happens to symmetric tensors ...

- Approximation of a homogeneous polynomial by a sum of powers of linear forms (e.g. Independent Components Analysis).
- Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$ be linearly independent. Define for $n \in \mathbb{N}$,

$$
A_{n}:=n\left[\mathbf{x}+\frac{1}{n} \mathbf{y}\right]^{\otimes p}-n \mathbf{x}^{\otimes p}
$$

- Define

$$
\mathcal{A}:=\mathbf{x} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{y}+\cdots+\mathbf{y} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{x}
$$

- Then $\operatorname{rank}_{s}\left(\mathcal{A}_{n}\right) \leq 2$, $\operatorname{rank}_{s}(\mathcal{A}) \geq p$, and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

- See [Comon, Golub, L, Mourrain; 08] for details.

... and to operators ...

- Approximation of an operator by a sum of Kronecker product of lower-dimensional operators (e.g. Numerical Operator Calculus).
- For linearly independent operators $P_{i}, Q_{i}: V_{i} \rightarrow W_{i}, i=1,2,3$, let $\mathcal{D}: V_{1} \otimes V_{2} \otimes V_{3} \rightarrow W_{1} \otimes W_{2} \otimes W_{3}$ be

$$
\mathcal{D}:=P_{1} \otimes Q_{2} \otimes Q_{3}+Q_{1} \otimes Q_{2} \otimes P_{3}+Q_{1} \otimes Q_{2} \otimes P_{3}
$$

- If finite-dimensional, then ' \otimes ' may be taken to be Kronecker product of matrices.
- For $n \in \mathbb{N}$,

$$
\mathcal{D}_{n}:=n\left[P_{1}+\frac{1}{n} Q_{1}\right] \otimes\left[P_{2}+\frac{1}{n} Q_{2}\right] \otimes\left[P_{3}+\frac{1}{n} Q_{3}\right]-n P_{1} \otimes P_{2} \otimes P_{3}
$$

- Then

$$
\lim _{n \rightarrow \infty} \mathcal{D}_{n}=\mathcal{D}
$$

... and functions too

- Approximation of a multivariate function by a sum of separable functions (e.g. Approximation Theory).
- For linearly independent $\varphi_{1}, \psi_{1}: X \rightarrow \mathbb{R}, \varphi_{2}, \psi_{2}: Y \rightarrow \mathbb{R}$, $\varphi_{3}, \psi_{3}: Z \rightarrow \mathbb{R}$, let $f: X \times Y \times Z \rightarrow \mathbb{R}$ be $f(x, y, z):=\varphi_{1}(x) \psi_{2}(y) \psi_{3}(z)+\psi_{1}(x) \psi_{2}(y) \varphi_{3}(z)+\psi_{1}(x) \psi_{2}(y) \varphi_{3}(z)$.
- For $n \in \mathbb{N}$,

$$
\begin{aligned}
& f_{n}(x, y, z):= \\
& n\left[\varphi_{1}(x)+\frac{1}{n} \psi_{1}(x)\right]\left[\varphi_{2}(y)+\frac{1}{n} \psi_{2}(y)\right] {\left[\varphi_{3}(z)+\frac{1}{n} \psi_{3}(z)\right] } \\
&-n \varphi_{1}(x) \varphi_{2}(y) \varphi_{3}(z)
\end{aligned}
$$

- Then

$$
\lim _{n \rightarrow \infty} f_{n}=f
$$

Message

- That the best rank- r approximation problem for hypermatrices has no solution poses serious difficulties.
- It is incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? i.e. what is the 'approximate solution' an approximate of?

Weak solutions

- For a hypermatrix \mathcal{A} that has no best rank- r approximation, we will call a $\mathcal{C} \in \overline{\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}}$ attaining

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(\mathcal{C})>r$.

- It is perhaps surprising that one may completely parameterize all limit points of order-3 rank-2 hypermatrices.

Weak solutions

Theorem

Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $\mathcal{A}_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ be a sequence of hypermatrices with $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

where the limit is taken in any norm topology. If the limiting hypermatrix \mathcal{A} has rank higher than 2 , then rank $_{\otimes}(\mathcal{A})$ must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}$, $\mathbf{x}_{3}, \mathbf{y}_{3} \in \mathbb{R}^{d_{3}}$ such that

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- In particular, a sequence of order-3 rank-2 hypermatrices cannot 'jump rank' by more than 1 .

Conditioning of linear systems

- Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Suppose we want to solve system of linear equations $A \mathbf{x}=\mathbf{b}$.
- $\mathscr{M}=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=0\right\}$ is the manifold of ill-posed problems.
- $A \in \mathscr{M}$ iff $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
- Note that $\operatorname{det}(A)$ is a poor measure of conditioning.
- Conditioning is the inverse distance to ill-posedness [Demmel; 1987] (also Dedieu, Shub, Smale), ie.

$$
\frac{1}{\left\|A^{-1}\right\|_{2}}
$$

- Normalizing by $\|A\|_{2}$ yields condition number

$$
\frac{1}{\|A\|_{2}\left\|A^{-1}\right\|_{2}}=\frac{1}{\kappa_{2}(A)}
$$

- Note that

$$
\left\|A^{-1}\right\|_{2}^{-1}=\sigma_{n}=\min _{\mathbf{x}_{i}, \mathbf{y}_{i}}\left\|A-\mathbf{x}_{1} \otimes \mathbf{y}_{1}-\cdots-\mathbf{x}_{n-1} \otimes \mathbf{y}_{n-1}\right\|_{2}
$$

Conditioning of linear systems

- Important for error analysis [Wilkinson, 1961].
- Let $A=U \Sigma V^{\top}$ and define

$$
\begin{aligned}
S_{\text {forward }}(\varepsilon)= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{b}, \quad\left\|\mathbf{x}^{\prime}-\mathbf{x}\right\|_{2} \leq \varepsilon\right\} \\
= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i}^{\prime}-\left.x_{i}\right|^{2} \leq \varepsilon^{2}\right\}, \\
S_{\text {backward }}(\varepsilon)= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid A \mathbf{x}^{\prime}=\mathbf{b}^{\prime}, \quad\left\|\mathbf{b}^{\prime}-\mathbf{b}\right\|_{2} \leq \varepsilon\right\} \\
= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid \mathbf{x}^{\prime}-\mathbf{x}=V\left(\mathbf{y}^{\prime}-\mathbf{y}\right),\right. \\
& \left.\quad \sum_{i=1}^{n} \sigma_{i}^{2}\left|y_{i}^{\prime}-y_{i}\right|^{2} \leq \varepsilon^{2}\right\} .
\end{aligned}
$$

Then

$$
S_{\text {backward }}(\varepsilon) \subseteq S_{\text {forward }}\left(\sigma_{n}^{-1} \varepsilon\right), \quad S_{\text {forward }}(\varepsilon) \subseteq S_{\text {backward }}\left(\sigma_{1} \varepsilon\right)
$$

- Determined by $\sigma_{1}=\|A\|_{2}$ and $\sigma_{n}^{-1}=\left\|A^{-1}\right\|_{2}$.
- Rule of thumb: $\log _{10} \kappa_{2}(A) \approx$ loss in number of digits of precision.

What about multilinear systems?

Look at the simplest case. Take $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ and $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{R}^{2}$.

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=b_{00}, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=b_{01}, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=b_{10}, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=b_{11}, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=b_{20}, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=b_{21} .
\end{aligned}
$$

- When does this have a solution?
- What is the corresponding manifold of ill-posed problems?
- When does the homogeneous system, ie. $\mathbf{b}_{0}=\mathbf{b}_{1}=\mathbf{b}_{2}=\mathbf{0}$, have a non-trivial solution, ie. $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}, \mathbf{z} \neq \mathbf{0}$?

Hyperdeterminant

- Work in $\mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$ for the time being $\left(d_{i} \geq 1\right)$. Consider

$$
\begin{aligned}
\mathscr{M}:=\{\mathcal{A} & \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \nabla \mathcal{A}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=\mathbf{0} \\
& \text { for non-zero } \left.\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} .
\end{aligned}
$$

Theorem (Gelfand, Kapranov, Zelevinsky)
\mathscr{M} is a hypersurface iff for all $j=1, \ldots, k$,

$$
d_{j} \leq \sum_{i \neq j} d_{i}
$$

- The hyperdeterminant $\operatorname{Det}(\mathcal{A})$ is the equation of the hypersurface, i.e. a multivariate polynomial in the entries of \mathcal{A} such that

$$
\mathscr{M}=\left\{\mathcal{A} \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \operatorname{Det}(\mathcal{A})=0\right\}
$$

- $\operatorname{Det}(\mathcal{A})$ may be chosen to have integer coefficients.
- For $\mathbb{C}^{m \times n}$, condition becomes $m \leq n$ and $n \leq m$, i.e. square matrices.

$2 \times 2 \times 2$ hyperdeterminant

 Hyperdeterminant of $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ [Cayley; 1845] is$$
\begin{aligned}
\operatorname{Det}_{2,2,2}(\mathcal{A})=\frac{1}{4}[\operatorname{det} & \left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]+\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right) \\
& \left.-\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]-\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right]^{2} \\
& -4 \operatorname{det}\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right] .
\end{aligned}
$$

A result that parallels the matrix case is the following: the system of bilinear equations

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=0, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=0, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=0, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

$2 \times 2 \times 3$ hyperdeterminant

Hyperdeterminant of $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 3}$ is

$$
\begin{aligned}
& \operatorname{Det}_{2,2,3}(\mathcal{A})=\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \\
&-\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right]
\end{aligned}
$$

Again, the following is true:

$$
\begin{aligned}
a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
a_{002} x_{0} y_{0}+a_{012} x_{0} y_{1}+a_{102} x_{1} y_{0}+a_{112} x_{1} y_{1}=0, \\
a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{002} x_{0} z_{2}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}+a_{102} x_{1} z_{2}=0, \\
a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{012} x_{0} z_{2}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}+a_{112} x_{1} z_{2}=0, \\
a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{002} y_{0} z_{2}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}+a_{012} y_{1} z_{2}=0, \\
a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{102} y_{0} z_{2}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}+a_{112} y_{1} z_{2}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}_{2,2,3}(\mathcal{A})=0$.

Cayley hyperdeterminant and tensor rank

- The Cayley hyperdeterminant Det $_{2,2,2}$ may be extended to any $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ with $\operatorname{rank}_{\otimes}(\mathcal{A}) \leq 2$.

Theorem
Let $d_{1}, d_{2}, d_{3} \geq 2$. $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is a weak solution, i.e.

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

iff $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

Theorem (Kruskal)
Let $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$. Then $\operatorname{rank}_{\otimes}(\mathcal{A})=2$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})>0$ and $\operatorname{rank}_{\otimes}(\mathcal{A})=3$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})<0$.

Condition number of a multilinear system

- Like the matrix determinant, the value of the hyperdeterminant is a poor measure of conditioning. Need to compute distance to \mathscr{M}.

Theorem
Let $A \in \mathbb{R}^{2 \times 2 \times 2}$. $\operatorname{Det}_{2,2,2}(A)=0$ iff

$$
A=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}
$$

for some $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{2}, i=1,2,3$.

- Conditioning of the problem can be obtained from

$$
\min _{\mathbf{x}, \mathbf{y}}\|A-\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}-\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}\| .
$$

- $\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}$ has outer product rank 3 generically (in fact, iff \mathbf{x}, \mathbf{y} are linearly independent).
- Surprising: the manifold of ill-posed problem has full rank almost everywhere!

Nonnegative matrix factorization

- D.D. Lee and H.S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, 401 (1999), pp. 788-791.
- Main idea behind NMF (everything else is fluff): the way dictionary functions combine to build 'target objects' is an exclusively additive process and should not involve any cancellations between the dictionary functions.
- NMF in a nutshell: given nonnegative matrix A, decompose it into a sum of outer-products of nonnegative vectors:

$$
A=X Y^{\top}=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i}
$$

- Noisy situation: approximate A by a sum of outer-products of nonnegative vectors

$$
\min _{X \geq 0, Y \geq 0}\left\|A-X Y^{\top}\right\|_{F}=\min _{\mathbf{x}_{i} \geq 0, \mathbf{y}_{i} \geq 0}\left\|A-\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i}\right\|_{F} .
$$

Generalizing to hypermatrices

- Nonnegative outer-product decomposition for hypermatrix $\mathcal{A} \geq 0$ is

$$
\mathcal{A}=\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}
$$

where $\mathbf{x}_{p} \in \mathbb{R}_{+}^{l}, \mathbf{y}_{p} \in \mathbb{R}_{+}^{m}, \mathbf{z}_{p} \in \mathbb{R}_{+}^{n}$.

- Clear that such a decomposition exists for any $\mathcal{A} \geq 0$.
- Nonnegative outer-product rank: minimal r for which such a decomposition is possible.
- Best nonnegative outer-product rank- r approximation:

$$
\operatorname{argmin}\left\{\left\|\mathcal{A}-\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}\right\|_{F} \mid \mathbf{x}_{p}, \mathbf{y}_{p}, \mathbf{z}_{p} \geq 0\right\}
$$

Nonnegativity helps

Approximation of joint probability distributions by conditional probability distributions under the Naïve Bayes Hypothesis:

$$
\operatorname{Pr}(x, y, z)=\sum_{h} \operatorname{Pr}(h) \operatorname{Pr}(x \mid h) \operatorname{Pr}(y \mid h) \operatorname{Pr}(z \mid h)
$$

Theorem (L-Comon)

The set $\left\{\mathcal{A} \in \mathbb{R}_{+}^{1 \times m \times n} \mid \operatorname{rank}_{+}(\mathcal{A}) \leq r\right\}$ is closed.

- Extends to arbitrary order.
- Independent of norms and even Brègman divergences.
- Holds more generally over $C_{1} \otimes \cdots \otimes C_{p}$ where C_{1}, \ldots, C_{p} are line-free cones.

Recap: outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by [Bro; 1997].
- Specimens with a number of pure substances in different concentration
- $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{e m}$ of i th sample excited with light at wavelength $\lambda_{k}^{\mathrm{ex}}$.
- Get 3 -way data $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get outer product decomposition of \mathcal{A}

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

- Get the true chemical factors responsible for the data.
- r : number of pure substances in the mixtures,
- $\mathbf{x}_{p}=\left(x_{1 p}, \ldots, x_{l p}\right)$: relative concentrations of p th substance in specimens $1, \ldots, l$,
- $\mathbf{y}_{p}=\left(y_{1 p}, \ldots, y_{m p}\right)$: excitation spectrum of p th substance,
- $\mathbf{z}_{p}=\left(z_{1 p}, \ldots, z_{n p}\right)$: emission spectrum of p th substance.
- Noisy case: find best rank- r approximation (CANDECOMP/PARAFAC).

Symmetric hypermatrices for blind source separation

Problem

Given $\mathbf{y}=M \mathbf{x}+\mathbf{n}$. Unknown: source vector $\mathbf{x} \in \mathbb{C}^{n}$, mixing matrix $M \in \mathbb{C}^{m \times n}$, noise $\mathbf{n} \in \mathbb{C}^{m}$. Known: observation vector $\mathbf{y} \in \mathbb{C}^{m}$. Goal: recover \mathbf{x} from \mathbf{y}.

- Assumptions:
(1) components of \mathbf{x} statistically independent,
(2) M full column-rank,
(3) n Gaussian.
- Method: use cumulants

$$
\kappa_{k}(\mathbf{y})=(M, M, \ldots, M) \cdot \kappa_{k}(\mathbf{x})+\kappa_{k}(\mathbf{n}) .
$$

- By assumptions, $\kappa_{k}(\mathbf{n})=0$ and $\kappa_{k}(\mathbf{x})$ is diagonal. So need to diagonalize the symmetric hypermatrix $\kappa_{k}(\mathbf{y})$.

Diagonalizing a symmetric hypermatrix

- A best symmetric rank approximation may not exist either:

Example

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ be linearly independent. Define for $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right)^{\otimes k}-n \mathbf{x}^{\otimes k}
$$

and

$$
\mathcal{A}:=\mathbf{x} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{y}+\cdots+\mathbf{y} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{x}
$$

Then $\operatorname{rank}_{\mathrm{s}}\left(\mathcal{A}_{n}\right) \leq 2, \operatorname{rank}_{\mathrm{s}}(\mathcal{A})=k$, and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

Variational approach to eigenvalues/vectors

- $A \in \mathbb{R}^{m \times n}$ symmetric.
- Eigenvalues and eigenvectors are critical values and critical points of

$$
\mathbf{x}^{\top} A \mathbf{x} /\|\mathbf{x}\|_{2}^{2}
$$

- Equivalently, critical values/points of $\mathbf{x}^{\top} A \mathbf{x}$ constrained to unit sphere.
- Lagrangian:

$$
L(\mathbf{x}, \lambda)=\mathbf{x}^{\top} A \mathbf{x}-\lambda\left(\|\mathbf{x}\|_{2}^{2}-1\right)
$$

- Vanishing of ∇L at critical $\left(\mathbf{x}_{c}, \lambda_{c}\right) \in \mathbb{R}^{n} \times \mathbb{R}$ yields familiar

$$
A \mathbf{x}_{c}=\lambda_{c} \mathbf{x}_{c}
$$

Variational approach to singular values/vectors

- $A \in \mathbb{R}^{m \times n}$.
- Singular values and singular vectors are critical values and critical points of

$$
\mathbf{x}^{\top} A \mathbf{y} /\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

- Lagrangian:

$$
L(\mathbf{x}, \mathbf{y}, \sigma)=\mathbf{x}^{\top} A \mathbf{y}-\sigma\left(\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}-1\right)
$$

- At critical $\left(\mathbf{x}_{c}, \mathbf{y}_{c}, \sigma_{c}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}$,

$$
A \mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}=\sigma_{c} \mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}, \quad A^{\top} \mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}=\sigma_{c} \mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}
$$

- Writing $\mathbf{u}_{c}=\mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}$ and $\mathbf{v}_{c}=\mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}$ yields familiar

$$
A \mathbf{v}_{c}=\sigma_{c} \mathbf{u}_{c}, \quad A^{\top} \mathbf{u}_{c}=\sigma_{c} \mathbf{v}_{c}
$$

Eigenvalues/vectors of a tensor

- Extends to hypermatrices.
- For $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n}$, write $\mathbf{x}^{p}:=\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]^{\top}$.
- Define the ' ℓ^{k}-norm' $\|\mathbf{x}\|_{k}=\left(x_{1}^{k}+\cdots+x_{n}^{k}\right)^{1 / k}$.
- Define eigenvalues/vectors of $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{R}^{n}\right)$ as critical values/points of the multilinear Rayleigh quotient

$$
\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x}) /\|\mathbf{x}\|_{k}^{k}
$$

- Lagrangian

$$
L(\mathbf{x}, \lambda):=\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x})-\lambda\left(\|\mathbf{x}\|_{k}^{k}-1\right)
$$

- At a critical point

$$
\mathcal{A}\left(I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=\lambda \mathbf{x}^{k-1}
$$

Eigenvalues/vectors of a tensor

- If \mathcal{A} is symmetric,

$$
\mathcal{A}\left(I_{n}, \mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}\right)=\mathcal{A}\left(\mathbf{x}, I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=\cdots=\mathcal{A}\left(\mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}, I_{n}\right)
$$

- Also obtained by Liqun Qi independently:
- L. Qi, "Eigenvalues of a real supersymmetric tensor," J. Symbolic Comput., 40 (2005), no. 6.
- L, "Singular values and eigenvalues of tensors: a variational approach," Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 1 (2005).
- For unsymmetric hypermatrices - get different eigenpairs for different modes (unsymmetric matrix have different left/right eigenvectors).
- Falls outside Classical Invariant Theory - not invariant under $Q \in \mathrm{O}(n)$, ie. $\|Q \mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}$.
- Invariant under $Q \in \operatorname{GL}(n)$ with $\|Q \mathbf{x}\|_{k}=\|\mathbf{x}\|_{k}$.

Singular values/vectors of a tensor

- Likewise for singular values/vectors of $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$.
- Lagrangian is

$$
L(\mathbf{x}, \mathbf{y}, \mathbf{z}, \sigma)=\mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})-\sigma(\|\mathbf{x}\|\|\mathbf{y}\|\|\mathbf{z}\|-1)
$$

where $\sigma \in \mathbb{R}$ is the Lagrange multiplier.

- At a critical point,

$$
\begin{aligned}
\mathcal{A}\left(I_{l}, \mathbf{y} /\|\mathbf{y}\|, \mathbf{z} /\|\mathbf{z}\|\right) & =\sigma \mathbf{x} /\|\mathbf{x}\| \\
\mathcal{A}\left(\mathbf{x} /\|\mathbf{x}\|, I_{m}, \mathbf{z} /\|\mathbf{z}\|\right) & =\sigma \mathbf{y} /\|\mathbf{y}\|, \\
\mathcal{A}\left(\mathbf{x} /\|\mathbf{x}\|, \mathbf{y} /\|\mathbf{y}\|, I_{n}\right) & =\sigma \mathbf{z} /\|\mathbf{z}\|
\end{aligned}
$$

- Normalize to get

$$
\mathcal{A}\left(I_{I}, \mathbf{v}, \mathbf{w}\right)=\sigma \mathbf{u}, \quad \mathcal{A}\left(\mathbf{u}, I_{m}, \mathbf{w}\right)=\sigma \mathbf{v}, \quad \mathcal{A}\left(\mathbf{u}, \mathbf{v}, I_{n}\right)=\sigma \mathbf{w}
$$

Immediate properties

- Largest singular value is the norm of the multilinear functional associated with A induced by the p-norm, i.e.

$$
\sigma_{\max }(A)=\|A\|_{p, \ldots, p}
$$

- For d_{1}, \ldots, d_{k} such that

$$
d_{i}-1 \leq \sum_{j \neq i}\left(d_{j}-1\right) \quad \text { for all } i=1, \ldots, k
$$

and $\operatorname{Det}_{d_{1}, \ldots, d_{k}}$ the hyperdeterminant in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}} .0$ is a singular value of $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ if and only if

$$
\operatorname{Det}_{d_{1}, \ldots, d_{k}}(A)=0
$$

- Pseudospectrum of square matrix $A \in \mathbb{C}^{n \times n}$,

$$
\sigma_{\varepsilon}(A)=\left\{\lambda \in \mathbb{C} \mid\left\|(A-\lambda I)^{-1}\right\|_{2}>\varepsilon^{-1}\right\}=\left\{\lambda \in \mathbb{C} \mid \sigma_{\min }(A-\lambda I)<\varepsilon\right\}
$$

- Plausible generalizations to cubical hypermatrix $\mathcal{A} \in \mathbb{C}^{n \times \cdots \times n}$,

$$
\begin{aligned}
& \sigma_{\varepsilon}^{\Sigma}(\mathcal{A})=\left\{\lambda \in \mathbb{C} \mid \sigma_{\min }(\mathcal{A}-\lambda \mathcal{I})<\varepsilon\right\} \\
& \sigma_{\varepsilon}^{\Delta}(\mathcal{A})=\left\{\lambda \in \mathbb{C} \mid \inf _{\operatorname{Det}_{n, \ldots, n}(\mathcal{B})=0}\|\mathcal{A}-\lambda \mathcal{I}-\mathcal{B}\|_{F}<\varepsilon_{\equiv}^{-1}\right\}
\end{aligned}
$$

Perron-Frobenius theorem for hypermatrices

- An order- k cubical hypermatrix $\mathcal{A} \in \mathrm{T}^{k}\left(\mathbb{R}^{n}\right)$ is reducible if there exist a permutation $\sigma \in \mathfrak{S}_{n}$ such that the permuted hypermatrix

$$
\llbracket b_{i_{1} \cdots i_{k}} \rrbracket=\llbracket a_{\sigma\left(j_{1}\right) \cdots \sigma\left(j_{k}\right)} \rrbracket
$$

has the property that for some $m \in\{1, \ldots, n-1\}, b_{i_{1} \ldots i_{k}}=0$ for all $i_{1} \in\{1, \ldots, n-m\}$ and all $i_{2}, \ldots, i_{k} \in\{1, \ldots, m\}$.

- We say that \mathcal{A} is irreducible if it is not reducible. In particular, if $\mathcal{A}>0$, then it is irreducible.

Theorem (L)

Let $0 \leq \mathcal{A}=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathrm{~T}^{k}\left(\mathbb{R}^{n}\right)$ be irreducible. Then \mathcal{A} has
(1) a positive real eigenvalue λ with an eigenvector \mathbf{x};
(2) x may be chosen to have all entries non-negative;
(3) if μ is an eigenvalue of \mathcal{A}, then $|\mu| \leq \lambda$.

Result extended by K.-C. Chang, K. Pearson, and T. Zhang.

Hypergraphs

- $G=(V, E)$ is 3-hypergraph.
- V is the finite set of vertices.
- E is the subset of hyperedges, ie. 3-element subsets of V.
- Write elements of E as $[x, y, z](x, y, z \in V)$.
- G is undirected, so $[x, y, z]=[y, z, x]=\cdots=[z, y, x]$.
- Hyperedge is said to degenerate if of the form $[x, x, y]$ or $[x, x, x]$ (hyperloop at x). We do not exclude degenerate hyperedges.
- G is m-regular if every $v \in V$ is adjacent to exactly m hyperedges.
- G is r-uniform if every edge contains exactly r vertices.
- Good reference: D. Knuth, The art of computer programming, 4, pre-fascicle 0a, 2008.

Spectral hypergraph theory

- Define the order-3 adjacency hypermatrix $\mathcal{A}=\llbracket a_{i j k} \rrbracket$ by

$$
a_{x y z}= \begin{cases}1 & \text { if }[x, y, z] \in E \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathcal{A} \in \mathbb{R}^{|V| \times|V| \times|V|}$ nonnegative symmetric hypermatrix.
- Consider cubic form

$$
\mathcal{A}(f, f, f)=\sum_{x, y, z} a_{x y z} f(x) f(y) f(z)
$$

where $f \in \mathbb{R}^{V}$.

- Eigenvalues (resp. eigenvectors) of A are the critical values (resp. critical points) of $\mathcal{A}(f, f, f)$ constrained to the $f \in \ell^{3}(V)$, ie.

$$
\sum_{x \in V} f(x)^{3}=1
$$

Spectral hypergraph theory

We have the following.

Lemma (L)

Let G be an m-regular 3-hypergraph. \mathcal{A} its adjacency hypermatrix. Then
(1) m is an eigenvalue of \mathcal{A};
(2) if λ is an eigenvalue of \mathcal{A}, then $|\lambda| \leq m$;
(3) λ has multiplicity 1 if and only if G is connected.

Related work: J. Friedman, A. Wigderson, "On the second eigenvalue of hypergraphs," Combinatorica, 15 (1995), no. 1.

Spectral hypergraph theory

- A hypergraph $G=(V, E)$ is said to be k-partite or k-colorable if there exists a partition of the vertices $V=V_{1} \cup \cdots \cup V_{k}$ such that for any k vertices u, v, \ldots, z with $a_{u v \cdots z} \neq 0, u, v, \ldots, z$ must each lie in a distinct $V_{i}(i=1, \ldots, k)$.

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices. Then
(1) If $k \equiv 1 \bmod 4$, then every eigenvalue of G occurs with multiplicity a multiple of k.
(2) If $k \equiv 3 \bmod 4$, then the spectrum of G is symmetric, ie. if λ is an eigenvalue, then so is $-\lambda$.
(3) Furthermore, every eigenvalue of G occurs with multiplicity a multiple of $k / 2$, ie. if λ is an eigenvalue of G, then λ and $-\lambda$ occurs with the same multiplicity.

To do

- Cases $k \equiv 0,2 \bmod 4$
- Cheeger type isoperimetric inequalities
- Expander hypergraphs
- Algorithms for eigenvalues/vectors of a hypermatrix

