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Recap: tensor ranks

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.
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Matrix EVD and SVD

Rank revealing decompositions.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑r

i=1
λivi ⊗ vi ,

where rank(A) = r , V ∈ O(n) eigenvectors, Λ eigenvalues.

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑r

i=1
σiui ⊗ vi

where rank(A) = r , U ∈ O(m) left singular vectors, V ∈ O(n) right
singular vectors, Σ singular values.

Ditto for nonnegative matrix decomposition.
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One plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the outer product
rank.

Symmetric outer product decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi

where rankS(A) = r , vi unit vector, λi ∈ R.

Outer product decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi

where rank⊗(A) = r , ui ∈ Rl , vi ∈ Rm,wi ∈ Rn unit vectors, σi ∈ R.

Ditto for nonnegative outer product decomposition.
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Another plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the multilinear rank.

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A = (U,U,U) · C

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

Ditto for nonnegative multilinear decomposition.

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra II January 5–7, 2009 5 / 61



Outer product rank is hard to compute

Eugene L. Lawler: “The Mystical Power of Twoness.”

I 2-SAT is easy, 3-SAT is hard;
I 2-dimensional matching is easy, 3-dimensional matching is hard;
I Order-2 tensor rank is easy, order-3 tensor rank is hard.

Theorem (Håstad)

Computing rank⊗(A) for A ∈ Fl×m×n is NP-hard for F = Q and
NP-complete for F = Fq.

Open question: Is tensor rank NP-hard/NP-complete over F = R,C
in the sense of BCSS?

I L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real
computation, Springer-Verlag, New York, NY, 1998.
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Outer product rank depends on base field

For A ∈ Rm×n ⊂ Cm×n, rankR(A) = rankC(A). Not true for tensors.

Theorem (Bergman)

For A ∈ Rl×m×n ⊂ Cl×m×n, rank⊗(A) is base field dependent.

x, y ∈ Rn linearly independent and let z = x + iy.

x⊗ x⊗ x− x⊗ y ⊗ y + y ⊗ x⊗ y + y ⊗ y ⊗ x

=
1

2
(z⊗ z̄⊗ z̄ + z̄⊗ z⊗ z).

May show that rank⊗,R(A) = 3 and rank⊗,C(A) = 2.

R2×2×2 has 8 distinct orbits under GL2(R)× GL2(R)× GL2(R).

C2×2×2 has 7 distinct orbits under GL2(C)× GL2(C)× GL2(C).
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Outer product decomposition: separation of variables

Approximation by sum or integral of separable functions

Continuous

f (x , y , z) =

∫
θ(x , t)ϕ(y , t)ψ(z , t) dt.

Semi-discrete

f (x , y , z) =
∑r

p=1
θp(x)ϕp(y)ψp(z)

θp(x) = θ(x , tp), ϕp(y) = ϕ(y , tp), ψp(z) = ψ(z , tp), r possibly ∞.

Discrete
aijk =

∑r

p=1
uipvjpwkp

aijk = f (xi , yj , zk), uip = θp(xi ), vjp = ϕp(yj), wkp = ψp(zk).
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Separation of variables

Useful for data analysis, machine learning, pattern recognition.

Gaussians are separable

exp(x2 + y 2 + z2) = exp(x2) exp(y 2) exp(z2).

More generally for symmetric positive-definite A ∈ Rn×n,

exp(x>Ax) = exp(z>Λz) =
∏n

i=1
exp(λiz

2
i ).

Gaussian mixture models

f (x) =
∑m

j=1
αj exp[(x− µj)

>Aj(x− µj)],

f is a sum of separable functions.
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Multilinear decomposition: integral kernels

Approximation by sum or integral kernels

Continuous

f (x , y , z) =

∫∫∫
K (x ′, y ′, z ′)θ(x , x ′)ϕ(y , y ′)ψ(z , z ′) dx ′dy ′dz ′.

Semi-discrete

f (x , y , z) =
∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′θi ′(x)ϕj ′(y)ψk ′(z)

ci ′j ′k ′ = K (x ′i ′ , y
′
j ′ , z
′
k ′), θi ′(x) = θ(x , x ′i ′), ϕj ′(y) = ϕ(y , y ′j ′),

ψk ′(z) = ψ(z , z ′k ′), p, q, r possibly ∞.

Discrete
aijk =

∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′uii ′vjj ′wkk ′

aijk = f (xi , yj , zk), uii ′ = θi ′(xi ), vjj ′ = ϕj ′(yj), wkk ′ = ψk ′(zk).
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Best r -term approximation

f ≈ α1f1 + α2f2 + · · ·+ αr fr .

Target function f ∈ H vector space, cone, etc.

f1, . . . , fr ∈ D ⊂ H dictionary.

α1, . . . , αr ∈ R or C (linear), R+ (convex), R ∪ {−∞} (tropical).

≈ with respect to ϕ : H×H → R, some measure of ‘nearness’
between pairs of points (e.g. norms, metric, volumes, expectation,
entropy, Brègman divergences, etc), want

argmin{ϕ(f , α1f1 + . . . αr fr ) | fi ∈ D}.

For concreteness, H separable Hilbert space; measure of nearness is a
norm, but not necessarily the one induced by its inner product.

Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.
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Dictionaries

Number base: D = {10n | n ∈ Z} ⊆ R,

22
7 = 3 · 100 + 1 · 10−1 + 4 · 10−2 + 2 · 10−3 + · · ·

Spanning set: D =
{[

1
0

]
,
[

1
−1

]
,
[

1
1

]
,
[

0
1

]}
⊆ R2,[

2
−3

]
= 3
[

1
−1

]
− 1
[

1
0

]
.

Taylor: D = {xn | n ∈ N ∪ {0}} ⊆ Cω(R),

exp(x) = 1 + x + 1
2 x2 + 1

6 x3 + · · ·

Fourier: D = {cos(nx), sin(nx) | n ∈ Z} ⊆ L2(−π, π),

1
2 x = sin(x)− 1

2 sin(2x) + 1
3 sin(3x)− · · ·

D orthonormal basis, Schauder basis, Hamel basis, Riesz basis,
frames, a dense spanning set.
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More dictionaries

Discrete cosine:

D =
{√

2
N cos(k + 1

2 )(n + 1
2 ) πN

∣∣∣ k ∈ [N − 1]
}
⊆ CN .

Peter-Weyl:

D = {〈π(x)ei , ej〉 | π ∈ Ĝ , i , j ∈ [dπ]} ⊆ L2(G ).

Paley-Wiener:

D = {sinc(x − n) | n ∈ Z} ⊆ H2(R).

Gabor:

D = {e iαnxe−(x−mβ)2/2 | (m, n) ∈ Z× Z} ⊆ L2(R).

Wavelet:

D = {2n/2ψ(2nx −m) | (m, n) ∈ Z× Z} ⊆ L2(R).

Friends of wavelets: D ⊆ L2(R2) beamlets, brushlets, curvelets,
ridgelets, wedgelets, multiwavelets.
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Approximants

Definition

Dictionary D ⊂ H. For r ∈ N, the set of r-term approximants is

Σr (D) :=
{∑r

i=1
αi fi ∈ H

∣∣∣ αi ∈ C, fi ∈ D
}
.

Let f ∈ H. The error of r-term approximation is

σn(f ) := infg∈Σr (D)‖f − g‖.

Linear combination of two r -term approximants may have more than
r non-zero terms.

Σr (D) not a subspace of H. Hence nonlinear approximation.

In contrast with usual (linear) approximation, ie.

infg∈span(D)‖f − g‖.
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Small is beautiful

f ≈
∑

i∈I⊆Dαi fi

Want good approximation, ie. ‖f −
∑

i∈I⊆Dαi fi‖ small.

Want sparse/concentrated representation, ie. |I | small.

Sparsity depends on choice of D .

I D10 = {10n | n ∈ Z},D3 = {3n | n ∈ Z} ⊆ R,

1
3 = [0.33333 · · · ]10 =

∑∞
n=13 · 10−n

= [0.1]3 = 1 · 3−1.

I Dfourier = {cos(nx), sin(nx) | n ∈ Z},

1
2 x = sin(x)− 1

2 sin(2x) + 1
3 sin(3x)− · · · .

I Dtaylor = {xn | n ∈ N ∪ {0}},

sin(x) = x − 1
6 x3 + 1

120 x5 − · · · .
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Bigger is better

Union of dictionaries: allows for efficient (sparse) representation of
different features

I D = Dfourier ∪Dwavelets,
I D = Dspikes ∪Dsinusoids ∪Dsplines,
I D = Dwavelets ∪Dcurvelets ∪Dbeamlets ∪Dridgelets.

D overcomplete or redundant dictionary. Trade off: computational
complexity.

Rule of thumb: the larger and more diverse the dictionary, the more
efficient/sparser the representation.

Observation: D above all zero dimensional (at most countably
infinite).

Question: What about dictionaries with a continuously varying
families of functions?

Meta question: Why should tensor folks care about this?
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Recap: hypermatrices are functions on finite sets

Totally ordered finite sets: [n] = {1 < 2 < · · · < n}, n ∈ N.

Vector or n-tuple
f : [n]→ R.

If f (i) = ai , then f is represented by a = [a1, . . . , an]> ∈ Rn.

Matrix
f : [m]× [n]→ R.

If f (i , j) = aij , then f is represented by A = [aij ]
m,n
i ,j=1 ∈ Rm×n.

Hypermatrix (order 3)

f : [l ]× [m]× [n]→ R.

If f (i , j , k) = aijk , then f is represented by A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Normally RX = {f : X → R}. Ought to be R[n],R[m]×[n],R[l ]×[m]×[n].
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Tensor approximations

General tensor approximation.

I Target function
f : [l ]× [m]× [n]→ R.

I Dictionary of separable functions,

D⊗ = {g : [l ]× [m]× [n]→ R | g(i , j , k) = ϑ(i)ϕ(j)ψ(k)},

where ϑ : [l ]→ R, ϕ : [m]→ R, ψ : [n]→ R.

Symmetric tensor approximation.

I Target function:
f : [n]× [n]× [n]→ R

with f (i , j , k) = f (j , i , k) = · · · = f (k , j , i).
I Dictionary of symmetric separable functions:

DS = {g : [n]× [n]× [n]→ R | g(i , j , k) = ϑ(i)ϑ(j)ϑ(k)},

where ϑ : [l ]→ R.
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Tensor approximations

Nonnegative tensor approximation.

I Target function
f : [l ]× [m]× [n]→ R+.

I Dictionary of nonnegative separable functions,

D+ = {g : [l ]× [m]× [n]→ R+ | g(i , j , k) = ϑ(i)ϕ(j)ψ(k)},

where ϑ : [l ]→ R+, ϕ : [m]→ R+, ψ : [n]→ R+.
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Segre variety and its secant varieties

The set of all rank-1 hypermatrices is known as the Segre variety in
algebraic geometry.

It is a closed set (in both the Euclidean and Zariski sense) as it can
be described algebraically:

Seg(Rl ,Rm,Rn) = {A ∈ Rl×m×n | A = u⊗ v ⊗w} =

{A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3al1l2l3 , {iα, jα} = {kα, lα}}

Hypermatrices that have rank > 1 are elements on the higher secant
varieties of S = Seg(Rl ,Rm,Rn).

E.g. a hypermatrix has rank 2 if it sits on a secant line through two
points in S but not on S , rank 3 if it sits on a secant plane through
three points in S but not on any secant lines, etc.

Minor technicality: should really be secant quasiprojective variety.
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Same thing different names

r th secant (quasiprojective) variety of the Segre variety is the set of r
term approximants.

If D = Seg(Rl ,Rm,Rn), then

Σr (D) = {A ∈ Rl×m×n | rank⊗(A) ≤ r}.

Rank revealing matrix decompositions (non-unique: LU, QR, SVD):

D = {xy> | (x, y) ∈ Rm × Rn} = {A ∈ Rm×n | rank(A) ≤ 1}.

Often unique for tensors [Kruskal; 1977], [Sidiroupoulos, Bro; 2000]:
I spark(x1, . . . , xr ) = size of minimal linearly dependent subset [Donoho,

Elad; 2003].
I Decomposition A =

∑r
i=1σiui ⊗ vi ⊗wi is unique up to scaling if

spark(u1, . . . ,ur ) + spark(v1, . . . , vr ) + spark(w1, . . . ,wr ) ≥ 2r + 5.
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Dictionaries of positive dimensions
Neural networks:

D = {σ(w>x + w0) | (w0,w) ∈ R× Rn}
where σ : R→ R sigmoid function, eg. σ(x) = [1 + exp(−x)]−1.
Exponential:

D = {e−tx | t ∈ R+} or D = {eτx | τ ∈ C}.
Outer product decomposition:

D = {u⊗ v ⊗w | (u, v,w) ∈ Rl × Rm × Rn}
= {A ∈ Rl×m×n | rank⊗(A) ≤ 1}.

Symmetric outer product decomposition:

D = {v ⊗ v ⊗ v | v ∈ Rn} = {A ∈ S3(Rn) | rankS(A) ≤ 1}.
Nonnegative outer product decomposition:

D = {x⊗ y ⊗ z | (x, y, z) ∈ Rl
+ × Rm

+ × Rn
+}

= {A ∈ Rl×m×n
+ | rank+(A) ≤ 1}.
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Recall: fundamental problem of multiway data analysis

A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
Want

argminrank(B)≤r‖A − B‖.
rank(B) may be outer product rank, multilinear rank, symmetric rank
(for symmetric hypermatrix), or nonnegative rank (nonnegative
hypermatrix).

Example

Given A ∈ Rd1×d2×d3 , find σi ,ui , vi ,wi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 ⊗w1 − σ2u2 ⊗ v2 ⊗w2 − · · · − σrur ⊗ vr ⊗wr‖

or C ∈ Rr1×r2×r3 and U ∈ Rd1×r1 ,V ∈ Rd2×r2 ,W ∈ Rd3×r3 , that minimizes

‖A − (U,V ,W ) · C‖.

May assume ui , vi ,wi unit vectors and U,V ,W orthonormal columns.
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Recall: fundamental problem of multiway data analysis

Example

Given A ∈ Sk(Cn), find ui , i = 1, . . . , r , that minimizes

‖A − λ1u
⊗k
1 − λ2u

⊗k
2 − · · · − λru

⊗k
r ‖

or C ∈ Rr1×r2×r3 and U ∈ Rn×ri that minimizes

‖A − (U,U,U) · C‖.

May assume ui unit vector and U orthonormal columns.
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Best low rank approximation of a matrix

Given A ∈ Rm×n. Want

argminrank(B)≤r‖A− B‖.

More precisely, find σi ,ui , vi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 − σ2u2 ⊗ v2 − · · · − σrur ⊗ vr‖.

Theorem (Eckart–Young)

Let A = UΣV> =
∑rank(A)

i=1 σiuiv
>
i be singular value decomposition. For

r ≤ rank(A), let

Ar :=
∑r

i=1
σiuiv

>
i .

Then
‖A− Ar‖F = min

rank(B)≤r
‖A− B‖F .

No such thing for hypermatrices of order 3 or higher.
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Lemma

Let r ≥ 2 and k ≥ 3. Given the norm-topology on Rd1×···×dk , the following
statements are equivalent:

1 The set Sr (d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

2 There exists a sequence An, rank⊗(An) ≤ r , n ∈ N, converging to B
with rank⊗(B) > r .

3 There exists B, rank⊗(B) > r , that may be approximated arbitrarily
closely by hypermatrices of strictly lower rank, i.e.

inf{‖B − A‖ | rank⊗(A) ≤ r} = 0.

4 There exists C, rank⊗(C) > r , that does not have a best rank-r
approximation, i.e.

inf{‖C − A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation

For xi , yi ∈ Rdi , i = 1, 2, 3,

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

For n ∈ N,

An := n

(
x1 +

1

n
y1

)
⊗
(

x2 +
1

n
y2

)
⊗
(

x3 +
1

n
y3

)
− nx1 ⊗ x2 ⊗ x3.

Lemma

rank⊗(A) = 3 iff xi , yi linearly independent, i = 1, 2, 3. Furthermore, it is
clear that rank⊗(An) ≤ 2 and

limn→∞An = A.

Original result, in a slightly different form, due to:

I D. Bini, G. Lotti, F. Romani, “Approximate solutions for the bilinear
form computational problem,” SIAM J. Comput., 9 (1980), no. 4.
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Outer product approximations are ill-behaved

Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem

Let k ≥ 3 and d1, . . . , dk ≥ 2. For any s such that

2 ≤ s ≤ min{d1, . . . , dk},

there exists A ∈ Rd1×···×dk with rank⊗(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

For matrices, the quantity min{d1, d2} will be the maximal possible
rank in Rd1×d2 . In general, a hypermatrix in Rd1×···×dk can have rank
exceeding min{d1, . . . , dk}.
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Outer product approximations are ill-behaved

Tensor rank can jump over an arbitrarily large gap:

Theorem

Let k ≥ 3. Given any s ∈ N, there exists a sequence of order-k
hypermatrix An such that rank⊗(An) ≤ r and limn→∞An = A with
rank⊗(A) = r + s.

Hypermatrices that fail to have best low-rank approximations are not
rare. May occur with non-zero probability; sometimes with certainty.

Theorem

Let µ be a measure that is positive or infinite on Euclidean open sets in
Rl×m×n. There exists some r ∈ N such that

µ({A | A does not have a best rank-r approximation}) > 0.

In R2×2×2, all rank-3 hypermatrices fail to have best rank-2 approximation.
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Happens to symmetric tensors . . .

Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

Let x, y ∈ Rm be linearly independent. Define for n ∈ N,

An := n

[
x +

1

n
y

]⊗p

− nx⊗p

Define

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) ≥ p, and

lim
n→∞

An = A.

See [Comon, Golub, L, Mourrain; 08] for details.
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. . . and to operators . . .

Approximation of an operator by a sum of Kronecker product of
lower-dimensional operators (e.g. Numerical Operator Calculus).

For linearly independent operators Pi ,Qi : Vi →Wi , i = 1, 2, 3, let
D : V1 ⊗ V2 ⊗ V3 →W1 ⊗W2 ⊗W3 be

D := P1 ⊗ Q2 ⊗ Q3 + Q1 ⊗ Q2 ⊗ P3 + Q1 ⊗ Q2 ⊗ P3.

If finite-dimensional, then ‘⊗’ may be taken to be Kronecker product
of matrices.

For n ∈ N,

Dn := n

[
P1 +

1

n
Q1

]
⊗
[

P2 +
1

n
Q2

]
⊗
[

P3 +
1

n
Q3

]
− nP1 ⊗ P2 ⊗ P3.

Then
lim

n→∞
Dn = D.
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. . . and functions too

Approximation of a multivariate function by a sum of separable
functions (e.g. Approximation Theory).

For linearly independent ϕ1, ψ1 : X → R, ϕ2, ψ2 : Y → R,
ϕ3, ψ3 : Z → R, let f : X × Y × Z → R be

f (x , y , z) := ϕ1(x)ψ2(y)ψ3(z)+ψ1(x)ψ2(y)ϕ3(z)+ψ1(x)ψ2(y)ϕ3(z).

For n ∈ N,

fn(x , y , z) :=

n

[
ϕ1(x) +

1

n
ψ1(x)

] [
ϕ2(y) +

1

n
ψ2(y)

] [
ϕ3(z) +

1

n
ψ3(z)

]
− nϕ1(x)ϕ2(y)ϕ3(z).

Then
lim

n→∞
fn = f .
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Message

That the best rank-r approximation problem for hypermatrices has no
solution poses serious difficulties.

It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn’t matter.

If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Weak solutions

For a hypermatrix A that has no best rank-r approximation, we will
call a C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C − A‖ | rank⊗(A) ≤ r}

a weak solution. In particular, we must have rank⊗(C) > r .

It is perhaps surprising that one may completely parameterize all limit
points of order-3 rank-2 hypermatrices.
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Weak solutions

Theorem

Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3 be a sequence of hypermatrices
with rank⊗(An) ≤ 2 and

limn→∞An = A,

where the limit is taken in any norm topology. If the limiting hypermatrix
A has rank higher than 2, then rank⊗(A) must be exactly 3 and there
exist pairs of linearly independent vectors x1, y1 ∈ Rd1 , x2, y2 ∈ Rd2 ,
x3, y3 ∈ Rd3 such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

In particular, a sequence of order-3 rank-2 hypermatrices cannot
‘jump rank’ by more than 1.
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Conditioning of linear systems

Let A ∈ Rn×n and b ∈ Rn. Suppose we want to solve system of linear
equations Ax = b.

M = {A ∈ Rn×n | det(A) = 0} is the manifold of ill-posed problems.

A ∈M iff Ax = 0 has nontrivial solutions.

Note that det(A) is a poor measure of conditioning.

Conditioning is the inverse distance to ill-posedness [Demmel; 1987]
(also Dedieu, Shub, Smale), ie.

1

‖A−1‖2
.

Normalizing by ‖A‖2 yields condition number

1

‖A‖2‖A−1‖2
=

1

κ2(A)
.

Note that

‖A−1‖−1
2 = σn = min

xi ,yi

‖A− x1 ⊗ y1 − · · · − xn−1 ⊗ yn−1‖2.
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Conditioning of linear systems

Important for error analysis [Wilkinson, 1961].

Let A = UΣV> and define

Sforward(ε) = {x′ ∈ Rn | Ax = b, ‖x′ − x‖2 ≤ ε}
= {x′ ∈ Rn |

∑n
i=1|x ′i − xi |2 ≤ ε2},

Sbackward(ε) = {x′ ∈ Rn | Ax′ = b′, ‖b′ − b‖2 ≤ ε}
= {x′ ∈ Rn | x′ − x = V (y′ − y),∑n

i=1σ
2
i |y ′i − yi |2 ≤ ε2}.

Then

Sbackward(ε) ⊆ Sforward(σ−1
n ε), Sforward(ε) ⊆ Sbackward(σ1ε).

Determined by σ1 = ‖A‖2 and σ−1
n = ‖A−1‖2.

Rule of thumb: log10 κ2(A) ≈ loss in number of digits of precision.
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What about multilinear systems?

Look at the simplest case. Take A = JaijkK ∈ R2×2×2 and b0,b1,b2 ∈ R2.

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = b00,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = b01,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = b10,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = b11,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = b20,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = b21.

When does this have a solution?

What is the corresponding manifold of ill-posed problems?

When does the homogeneous system, ie. b0 = b1 = b2 = 0, have a
non-trivial solution, ie. x 6= 0, y 6= 0, z 6= 0?
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Hyperdeterminant

Work in C(d1+1)×···×(dk+1) for the time being (di ≥ 1). Consider

M := {A ∈ C(d1+1)×···×(dk+1) | ∇A(x1, . . . , xk) = 0

for non-zero x1, . . . , xk}.

Theorem (Gelfand, Kapranov, Zelevinsky)

M is a hypersurface iff for all j = 1, . . . , k,

dj ≤
∑

i 6=j
di .

The hyperdeterminant Det(A) is the equation of the hypersurface,
i.e. a multivariate polynomial in the entries of A such that

M = {A ∈ C(d1+1)×···×(dk+1) | Det(A) = 0}.

Det(A) may be chosen to have integer coefficients.

For Cm×n, condition becomes m ≤ n and n ≤ m, i.e. square matrices.
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2× 2× 2 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×2 [Cayley; 1845] is

Det2,2,2(A) =
1

4

»
det

„»
a000 a010

a001 a011

–
+

»
a100 a110

a101 a111

–«
− det

„»
a000 a010

a001 a011

–
−
»
a100 a110

a101 a111

–«–2

− 4 det

»
a000 a010

a001 a011

–
det

»
a100 a110

a101 a111

–
.

A result that parallels the matrix case is the following: the system of
bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

has a non-trivial solution iff Det2,2,2(A) = 0.
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2× 2× 3 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×3 is

Det2,2,3(A) = det

24a000 a001 a002

a100 a101 a102

a010 a011 a012

35 det

24a100 a101 a102

a010 a011 a012

a110 a111 a112

35
− det

24a000 a001 a002

a100 a101 a102

a110 a111 a112

35 det

24a000 a001 a002

a010 a011 a012

a110 a111 a112

35
Again, the following is true:

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a002x0y0 + a012x0y1 + a102x1y0 + a112x1y1 = 0,

a000x0z0 + a001x0z1 + a002x0z2 + a100x1z0 + a101x1z1 + a102x1z2 = 0,

a010x0z0 + a011x0z1 + a012x0z2 + a110x1z0 + a111x1z1 + a112x1z2 = 0,

a000y0z0 + a001y0z1 + a002y0z2 + a010y1z0 + a011y1z1 + a012y1z2 = 0,

a100y0z0 + a101y0z1 + a102y0z2 + a110y1z0 + a111y1z1 + a112y1z2 = 0,

has a non-trivial solution iff Det2,2,3(A) = 0.
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Cayley hyperdeterminant and tensor rank

The Cayley hyperdeterminant Det2,2,2 may be extended to any
A ∈ Rd1×d2×d3 with rank⊗(A) ≤ 2.

Theorem

Let d1, d2, d3 ≥ 2. A ∈ Rd1×d2×d3 is a weak solution, i.e.

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3,

iff Det2,2,2(A) = 0.

Theorem (Kruskal)

Let A ∈ R2×2×2. Then rank⊗(A) = 2 if Det2,2,2(A) > 0 and
rank⊗(A) = 3 if Det2,2,2(A) < 0.
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Condition number of a multilinear system

Like the matrix determinant, the value of the hyperdeterminant is a
poor measure of conditioning. Need to compute distance to M .

Theorem

Let A ∈ R2×2×2. Det2,2,2(A) = 0 iff

A = x⊗ x⊗ y + x⊗ y ⊗ x + y ⊗ x⊗ x

for some xi , yi ∈ R2, i = 1, 2, 3.

Conditioning of the problem can be obtained from

min
x,y
‖A− x⊗ x⊗ y − x⊗ y ⊗ x− y ⊗ x⊗ x‖.

x⊗ x⊗ y + x⊗ y⊗ x + y⊗ x⊗ x has outer product rank 3 generically
(in fact, iff x, y are linearly independent).

Surprising: the manifold of ill-posed problem has full rank almost
everywhere!
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Nonnegative matrix factorization

D.D. Lee and H.S. Seung, “Learning the parts of objects by
nonnegative matrix factorization,” Nature, 401 (1999), pp. 788–791.

Main idea behind NMF (everything else is fluff): the way dictionary
functions combine to build ‘target objects’ is an exclusively additive
process and should not involve any cancellations between the
dictionary functions.

NMF in a nutshell: given nonnegative matrix A, decompose it into a
sum of outer-products of nonnegative vectors:

A = XY> =
∑r

i=1
xi ⊗ yi .

Noisy situation: approximate A by a sum of outer-products of
nonnegative vectors

min
X≥0,Y≥0

‖A− XY>‖F = min
xi≥0,yi≥0

∥∥∥A−
∑r

i=1
xi ⊗ yi

∥∥∥
F
.
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Generalizing to hypermatrices

Nonnegative outer-product decomposition for hypermatrix A ≥ 0
is

A =
∑r

p=1
xp ⊗ yp ⊗ zp

where xp ∈ Rl
+, yp ∈ Rm

+, zp ∈ Rn
+.

Clear that such a decomposition exists for any A ≥ 0.

Nonnegative outer-product rank: minimal r for which such a
decomposition is possible.

Best nonnegative outer-product rank-r approximation:

argmin
{∥∥A−∑r

p=1
xp ⊗ yp ⊗ zp

∥∥
F

∣∣ xp, yp, zp ≥ 0
}
.
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Nonnegativity helps
Approximation of joint probability distributions by conditional probability
distributions under the Näıve Bayes Hypothesis:

Pr(x , y , z) =
∑

h
Pr(h) Pr(x | h) Pr(y | h) Pr(z | h)

H◦

X
•oo

ooo
o

Y
•

Z
•O

OOO
OO

Theorem (L-Comon)

The set {A ∈ Rl×m×n
+ | rank+(A) ≤ r} is closed.

Extends to arbitrary order.

Independent of norms and even Brègman divergences.

Holds more generally over C1 ⊗ · · · ⊗ Cp where C1, . . . ,Cp are
line-free cones.
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Recap: outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by [Bro; 1997].

Specimens with a number of pure substances in different
concentration

I aijk = fluorescence emission intensity at wavelength λem
j of ith sample

excited with light at wavelength λex
k .

I Get 3-way data A = JaijkK ∈ Rl×m×n.
I Get outer product decomposition of A

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr .

Get the true chemical factors responsible for the data.

I r : number of pure substances in the mixtures,
I xp = (x1p, . . . , xlp): relative concentrations of pth substance in

specimens 1, . . . , l ,
I yp = (y1p, . . . , ymp): excitation spectrum of pth substance,
I zp = (z1p, . . . , znp): emission spectrum of pth substance.

Noisy case: find best rank-r approximation (candecomp/parafac).
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Symmetric hypermatrices for blind source separation

Problem

Given y = Mx + n. Unknown: source vector x ∈ Cn, mixing matrix
M ∈ Cm×n, noise n ∈ Cm. Known: observation vector y ∈ Cm. Goal:
recover x from y.

Assumptions:

1 components of x statistically independent,
2 M full column-rank,
3 n Gaussian.

Method: use cumulants

κk(y) = (M,M, . . . ,M) · κk(x) + κk(n).

By assumptions, κk(n) = 0 and κk(x) is diagonal. So need to
diagonalize the symmetric hypermatrix κk(y).
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Diagonalizing a symmetric hypermatrix

A best symmetric rank approximation may not exist either:

Example

Let x, y ∈ Rn be linearly independent. Define for n ∈ N,

An := n

(
x +

1

n
y

)⊗k

− nx⊗k

and

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) = k, and

limn→∞An = A.
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Variational approach to eigenvalues/vectors

A ∈ Rm×n symmetric.

Eigenvalues and eigenvectors are critical values and critical points of

x>Ax/‖x‖2
2.

Equivalently, critical values/points of x>Ax constrained to unit
sphere.

Lagrangian:
L(x, λ) = x>Ax− λ(‖x‖2

2 − 1).

Vanishing of ∇L at critical (xc , λc) ∈ Rn × R yields familiar

Axc = λcxc .

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra II January 5–7, 2009 50 / 61



Variational approach to singular values/vectors

A ∈ Rm×n.

Singular values and singular vectors are critical values and critical
points of

x>Ay/‖x‖2‖y‖2.

Lagrangian:

L(x, y, σ) = x>Ay − σ(‖x‖2‖y‖2 − 1).

At critical (xc , yc , σc) ∈ Rm × Rn × R,

Ayc/‖yc‖2 = σcxc/‖xc‖2, A>xc/‖xc‖2 = σcyc/‖yc‖2.

Writing uc = xc/‖xc‖2 and vc = yc/‖yc‖2 yields familiar

Avc = σcuc , A>uc = σcvc .
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Eigenvalues/vectors of a tensor

Extends to hypermatrices.

For x = [x1, . . . , xn]> ∈ Rn, write xp := [xp
1 , . . . , x

p
n ]>.

Define the ‘`k -norm’ ‖x‖k = (xk
1 + · · ·+ xk

n )1/k .

Define eigenvalues/vectors of A ∈ Sk(Rn) as critical values/points of
the multilinear Rayleigh quotient

A(x, . . . , x)/‖x‖kk .

Lagrangian
L(x, λ) := A(x, . . . , x)− λ(‖x‖kk − 1).

At a critical point
A(In, x, . . . , x) = λxk−1.
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Eigenvalues/vectors of a tensor

If A is symmetric,

A(In, x, x, . . . , x) = A(x, In, x, . . . , x) = · · · = A(x, x, . . . , x, In).

Also obtained by Liqun Qi independently:

I L. Qi, “Eigenvalues of a real supersymmetric tensor,” J. Symbolic
Comput., 40 (2005), no. 6.

I L, “Singular values and eigenvalues of tensors: a variational approach,”
Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 1 (2005).

For unsymmetric hypermatrices — get different eigenpairs for different
modes (unsymmetric matrix have different left/right eigenvectors).

Falls outside Classical Invariant Theory — not invariant under
Q ∈ O(n), ie. ‖Qx‖2 = ‖x‖2.

Invariant under Q ∈ GL(n) with ‖Qx‖k = ‖x‖k .
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Singular values/vectors of a tensor

Likewise for singular values/vectors of A ∈ Rl×m×n.

Lagrangian is

L(x, y, z, σ) = A(x, y, z)− σ(‖x‖‖y‖‖z‖ − 1)

where σ ∈ R is the Lagrange multiplier.

At a critical point,

A (Il , y/‖y‖, z/‖z‖) = σx/‖x‖,
A (x/‖x‖, Im, z/‖z‖) = σy/‖y‖,
A (x/‖x‖, y/‖y‖, In) = σz/‖z‖.

Normalize to get

A(Il , v,w) = σu, A(u, Im,w) = σv, A(u, v, In) = σw.
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Immediate properties
Largest singular value is the norm of the multilinear functional
associated with A induced by the p-norm, i.e.

σmax(A) = ‖A‖p,...,p.
For d1, . . . , dk such that

di − 1 ≤
∑

j 6=i
(dj − 1) for all i = 1, . . . , k ,

and Detd1,...,dk
the hyperdeterminant in Rd1×···×dk . 0 is a singular

value of A ∈ Rd1×···×dk if and only if

Detd1,...,dk
(A) = 0.

Pseudospectrum of square matrix A ∈ Cn×n,

σε(A) = {λ ∈ C | ‖(A−λI )−1‖2 > ε−1} = {λ ∈ C | σmin(A−λI ) < ε}.
Plausible generalizations to cubical hypermatrix A ∈ Cn×···×n,

σΣ
ε (A) = {λ ∈ C | σmin(A− λI) < ε}

σ∆
ε (A) = {λ ∈ C | infDetn,...,n(B)=0‖A − λI − B‖F < ε−1}.
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Perron-Frobenius theorem for hypermatrices

An order-k cubical hypermatrix A ∈ Tk(Rn) is reducible if there
exist a permutation σ ∈ Sn such that the permuted hypermatrix

Jbi1···ik K = Jaσ(j1)···σ(jk )K

has the property that for some m ∈ {1, . . . , n − 1}, bi1···ik = 0 for all
i1 ∈ {1, . . . , n −m} and all i2, . . . , ik ∈ {1, . . . ,m}.
We say that A is irreducible if it is not reducible. In particular, if
A > 0, then it is irreducible.

Theorem (L)

Let 0 ≤ A = Jaj1···jk K ∈ Tk(Rn) be irreducible. Then A has

1 a positive real eigenvalue λ with an eigenvector x;

2 x may be chosen to have all entries non-negative;

3 if µ is an eigenvalue of A, then |µ| ≤ λ.

Result extended by K.-C. Chang, K. Pearson, and T. Zhang.
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Hypergraphs

G = (V ,E ) is 3-hypergraph.

I V is the finite set of vertices.
I E is the subset of hyperedges, ie. 3-element subsets of V .

Write elements of E as [x , y , z ] (x , y , z ∈ V ).

G is undirected, so [x , y , z ] = [y , z , x ] = · · · = [z , y , x ].

Hyperedge is said to degenerate if of the form [x , x , y ] or [x , x , x ]
(hyperloop at x). We do not exclude degenerate hyperedges.

G is m-regular if every v ∈ V is adjacent to exactly m hyperedges.

G is r -uniform if every edge contains exactly r vertices.

Good reference: D. Knuth, The art of computer programming, 4,
pre-fascicle 0a, 2008.
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Spectral hypergraph theory

Define the order-3 adjacency hypermatrix A = JaijkK by

axyz =

{
1 if [x , y , z ] ∈ E ,

0 otherwise.

A ∈ R|V |×|V |×|V | nonnegative symmetric hypermatrix.

Consider cubic form

A(f , f , f ) =
∑

x ,y ,z
axyz f (x)f (y)f (z),

where f ∈ RV .

Eigenvalues (resp. eigenvectors) of A are the critical values (resp.
critical points) of A(f , f , f ) constrained to the f ∈ `3(V ), ie.∑

x∈V
f (x)3 = 1.
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Spectral hypergraph theory

We have the following.

Lemma (L)

Let G be an m-regular 3-hypergraph. A its adjacency hypermatrix. Then

1 m is an eigenvalue of A;

2 if λ is an eigenvalue of A, then |λ| ≤ m;

3 λ has multiplicity 1 if and only if G is connected.

Related work: J. Friedman, A. Wigderson, “On the second eigenvalue of
hypergraphs,” Combinatorica, 15 (1995), no. 1.
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Spectral hypergraph theory

A hypergraph G = (V ,E ) is said to be k-partite or k-colorable if
there exists a partition of the vertices V = V1 ∪ · · · ∪Vk such that for
any k vertices u, v , . . . , z with auv ···z 6= 0, u, v , . . . , z must each lie in
a distinct Vi (i = 1, . . . , k).

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices.
Then

1 If k ≡ 1 mod 4, then every eigenvalue of G occurs with multiplicity a
multiple of k.

2 If k ≡ 3 mod 4, then the spectrum of G is symmetric, ie. if λ is an
eigenvalue, then so is −λ.

3 Furthermore, every eigenvalue of G occurs with multiplicity a multiple
of k/2, ie. if λ is an eigenvalue of G , then λ and −λ occurs with the
same multiplicity.
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To do

Cases k ≡ 0, 2 mod 4

Cheeger type isoperimetric inequalities

Expander hypergraphs

Algorithms for eigenvalues/vectors of a hypermatrix
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