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Current affairs

Question

What lesson in multilinear algebra did we learn from the current global
economic/financial crisis?

One answer: it’s important to look beyond the quadratic term.

Taylor approximation: multivariate f (x1, . . . , xn) approximated as

f (x) ≈ a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad (x, . . . , x) + · · · .

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . .

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Risk Mismanagement

By JOE NOCERA

‘The story that I have to tell is marked all the way through by a persistent tension between those who assert

that the best decisions are based on quantification and numbers, determined by the patterns of the past,

and those who base their decisions on more subjective degrees of belief about the uncertain future. This is a

controversy that has never been resolved.’

— FROM THE INTRODUCTION TO ‘‘AGAINST THE GODS: THE REMARKABLE STORY OF RISK,’’ BY

PETER L. BERNSTEIN

THERE AREN’T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s

one that made the rounds in 2007, back when the big investment banks were first starting to write down

billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before

Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,

before Lehman fell and Merrill Lynch was sold and A.I.G. saved, before the $700 billion bailout bill was

rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment

firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy

that they threatened to bring down the financial system itself. On the contrary: this was back when the

major investment firms were still assuring investors that all was well, these little speed bumps

notwithstanding — assurances based, in part, on their fantastically complex mathematical models for

measuring the risk in their various portfolios.

There are many such models, but by far the most widely used is called VaR — Value at Risk. Built around

statistical ideas and probability theories that have been around for centuries, VaR was developed and

popularized in the early 1990s by a handful of scientists and mathematicians — “quants,” they’re called in

the business — who went to work for JPMorgan. VaR’s great appeal, and its great selling point to people

who do not happen to be quants, is that it expresses risk as a single number, a dollar figure, no less.

VaR isn’t one model but rather a group of related models that share a mathematical framework. In its most

common form, it measures the boundaries of risk in a portfolio over short durations, assuming a “normal”

market. For instance, if you have $50 million of weekly VaR, that means that over the course of the next

week, there is a 99 percent chance that your portfolio won’t lose more than $50 million. That portfolio could

consist of equities, bonds, derivatives or all of the above; one reason VaR became so popular is that it is the

only commonly used risk measure that can be applied to just about any asset class. And it takes into account

a head-spinning variety of variables, including diversification, leverage and volatility, that make up the kind

of market risk that traders and firms face every day.

Another reason VaR is so appealing is that it can measure both individual risks — the amount of risk

contained in a single trader’s portfolio, for instance — and firmwide risk, which it does by combining the

VaRs of a given firm’s trading desks and coming up with a net number. Top executives usually know their

firm’s daily VaR within minutes of the market’s close.
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Risk managers use VaR to quantify their firm’s risk positions to their board. In the late 1990s, as the use of

derivatives was exploding, the Securities and Exchange Commission ruled that firms had to include a

quantitative disclosure of market risks in their financial statements for the convenience of investors, and

VaR became the main tool for doing so. Around the same time, an important international rule-making

body, the Basel Committee on Banking Supervision, went even further to validate VaR by saying that firms

and banks could rely on their own internal VaR calculations to set their capital requirements. So long as

their VaR was reasonably low, the amount of money they had to set aside to cover risks that might go bad

could also be low.

Given the calamity that has since occurred, there has been a great deal of talk, even in quant circles, that

this widespread institutional reliance on VaR was a terrible mistake. At the very least, the risks that VaR

measured did not include the biggest risk of all: the possibility of a financial meltdown. “Risk modeling

didn’t help as much as it should have,” says Aaron Brown, a former risk manager at Morgan Stanley who

now works at AQR, a big quant-oriented hedge fund. A risk consultant named Marc Groz says, “VaR is a

very limited tool.” David Einhorn, who founded Greenlight Capital, a prominent hedge fund, wrote not long

ago that VaR was “relatively useless as a risk-management tool and potentially catastrophic when its use

creates a false sense of security among senior managers and watchdogs. This is like an air bag that works all

the time, except when you have a car accident.” Nassim Nicholas Taleb, the best-selling author of “The

Black Swan,” has crusaded against VaR for more than a decade. He calls it, flatly, “a fraud.”

How then do we account for that story that made the rounds in the summer of 2007? It concerns Goldman

Sachs, the one Wall Street firm that was not, at that time, taking a hit for billions of dollars of suddenly

devalued mortgage-backed securities. Reporters wanted to understand how Goldman had somehow

sidestepped the disaster that had befallen everyone else. What they discovered was that in December 2006,

Goldman’s various indicators, including VaR and other risk models, began suggesting that something was

wrong. Not hugely wrong, mind you, but wrong enough to warrant a closer look.

“We look at the P.& L. of our businesses every day,” said Goldman Sachs’ chief financial officer, David

Viniar, when I went to see him recently to hear the story for myself. (P.& L. stands for profit and loss.) “We

have lots of models here that are important, but none are more important than the P.& L., and we check

every day to make sure our P.& L. is consistent with where our risk models say it should be. In December

our mortgage business lost money for 10 days in a row. It wasn’t a lot of money, but by the 10th day we

thought that we should sit down and talk about it.”

So Goldman called a meeting of about 15 people, including several risk managers and the senior people on

the various trading desks. They examined a thick report that included every trading position the firm held.

For the next three hours, they pored over everything. They examined their VaR numbers and their other

risk models. They talked about how the mortgage-backed securities market “felt.” “Our guys said that it felt

like it was going to get worse before it got better,” Viniar recalled. “So we made a decision: let’s get closer to

home.”

In trading parlance, “getting closer to home” means reining in the risk, which in this case meant either

getting rid of the mortgage-backed securities or hedging the positions so that if they declined in value, the

hedges would counteract the loss with an equivalent gain. Goldman did both. And that’s why, back in the

summer of 2007, Goldman Sachs avoided the pain that was being suffered by Bear Stearns, Merrill Lynch,

Lehman Brothers and the rest of Wall Street.

The story was told and retold in the business pages. But what did it mean, exactly? The question was always

left hanging. Was it an example of the futility of risk modeling or its utility? Did it show that risk models,
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properly understood, were not a fraud after all but a potentially important signal that trouble was brewing?

Or did it suggest instead that a handful of human beings at Goldman Sachs acted wisely by putting their

models aside and making “decisions on more subjective degrees of belief about an uncertain future,” as

Peter L. Bernstein put it in “Against the Gods?”

To put it in blunter terms, could VaR and the other risk models Wall Street relies on have helped prevent

the financial crisis if only Wall Street paid better attention to them? Or did Wall Street’s reliance on them

help lead us into the abyss?

One Saturday a few months ago, Taleb, a trim, impeccably dressed, middle-aged man — inexplicably, he

won’t give his age — walked into a lobby in the Columbia Business School and headed for a classroom to

give a guest lecture. Until that moment, the lobby was filled with students chatting and eating a quick lunch

before the afternoon session began, but as soon as they saw Taleb, they streamed toward him, surrounding

him and moving with him as he slowly inched his way up the stairs toward an already-crowded classroom.

Those who couldn’t get in had to make do with the next classroom over, which had been set up as an

overflow room. It was jammed, too.

It’s not every day that an options trader becomes famous by writing a book, but that’s what Taleb did, first

with “Fooled by Randomness,” which was published in 2001 and became an immediate cult classic on Wall

Street, and more recently with “The Black Swan: The Impact of the Highly Improbable,” which came out in

2007 and landed on a number of best-seller lists. He also went from being primarily an options trader to

what he always really wanted to be: a public intellectual. When I made the mistake of asking him one day

whether he was an adjunct professor, he quickly corrected me. “I’m the Distinguished Professor of Risk

Engineering at N.Y.U.,” he responded. “It’s the highest title they give in that department.” Humility is not

among his virtues. On his Web site he has a link that reads, “Quotes from ‘The Black Swan’ that the

imbeciles did not want to hear.”

“How many of you took statistics at Columbia?” he asked as he began his lecture. Most of the hands in the

room shot up. “You wasted your money,” he sniffed. Behind him was a slide of Mickey Mouse that he had

put up on the screen, he said, because it represented “Mickey Mouse probabilities.” That pretty much sums

up his view of business-school statistics and probability courses.

Taleb’s ideas can be difficult to follow, in part because he uses the language of academic statisticians; words

like “Gaussian,” “kurtosis” and “variance” roll off his tongue. But it’s also because he speaks in a kind of

brusque shorthand, acting as if any fool should be able to follow his train of thought, which he can’t be

bothered to fully explain.

“This is a Stan O’Neal trade,” he said, referring to the former chief executive of Merrill Lynch. He clicked to

a slide that showed a trade that made slow, steady profits — and then quickly spiraled downward for a giant,

brutal loss.

“Why do people measure risks against events that took place in 1987?” he asked, referring to Black Monday,

the October day when the U.S. market lost more than 20 percent of its value and has been used ever since as

the worst-case scenario in many risk models. “Why is that a benchmark? I call it future-blindness.

“If you have a pilot flying a plane who doesn’t understand there can be storms, what is going to happen?” he

asked. “He is not going to have a magnificent flight. Any small error is going to crash a plane. This is why

the crisis that happened was predictable.”

Eventually, though, you do start to get the point. Taleb says that Wall Street risk models, no matter howL.-H. Lim (ICM Lecture) Numerical Multilinear Algebra III January 5–7, 2009 6 / 46



Univariate cumulants

Mean, variance, skewness and kurtosis describe the shape of a univariate
distribution.

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra III January 5–7, 2009 7 / 46



Covariance matrices

The covariance matrix partly describes the dependence structure of a
multivariate distribution.

PCA

Gaussian graphical models

Optimization—bilinear form computes variance

But if the variables are not multivariate Gaussian, not the whole story.
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Even if marginals normal, dependence might not be
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Covariance matrix analogs: multivariate cumulants

The cumulant tensors are the multivariate analog of skewness and
kurtosis.

They describe higher order dependence among random variables.
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Recap: tensors as hypermatrices

Up to choice of bases on U,V ,W , a tensor A ∈ U ⊗ V ⊗W may be
represented as a hypermatrix

A = JaijkKl ,m,n
i ,j ,k=1 ∈ Rl×m×n

where dim(U) = l , dim(V ) = m, dim(W ) = n if

1 we give it coordinates;

2 we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Recap: multilinear matrix multiplication

Matrices can be multiplied on left and right: A ∈ Rm×n, X ∈ Rp×m,
Y ∈ Rq×n,

C = (X ,Y ) · A = XAY> ∈ Rp×q,

cαβ =
∑m,n

i ,j=1
xαi yβj aij .

3-tensors can be multiplied on three sides: A ∈ Rl×m×n, X ∈ Rp×l ,
Y ∈ Rq×m, Z ∈ Rr×n,

C = (X ,Y ,Z ) · A ∈ Rp×q×r ,

cαβγ =
∑l ,m,n

i ,j ,k=1
xαi yβj zγk aijk .

Correspond to change-of-bases transformations for tensors.

Define ‘right’ (covariant) multiplication by
(X ,Y ,Z ) · A = A · (X>,Y>,Z>).
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Recap: symmetric tensors

Cubical tensor JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

For order p, invariant under all permutations σ ∈ Sp on indices.

Sp(Rn) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X ,X ,X ) · A where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαi xβj xγk aijk .
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Examples of symmetric tensors

Higher order derivatives of real-valued multivariate functions.

Moments of a vector-valued random variable x = (x1, . . . , xn):

Sp(x) =
q

E (xj1xj2 · · · xjp )
yn

j1,...,jp=1
.

Cumulants of a random vector x = (x1, . . . , xn):

Kp(x) =

u

v
X

A1t···tAq ={j1,...,jp}

(−1)q−1(q − 1)!E

„ Q
j∈A1

xj

«
· · ·E

„ Q
j∈Aq

xj

«}

~
n

j1,...,jp =1

.
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Cumulants

In terms of log characteristic and cumulant generating functions,

κj1···jp (x) =
∂p

∂tj1 · · · ∂tjp

log E(exp(〈t, x〉)
∣∣∣∣
t=0

= (−1)p ∂p

∂tj1 · · · ∂tjp

log E(exp(i〈t, x〉)
∣∣∣∣
t=0

.

In terms of Edgeworth expansion,

log E(exp(i〈t, x〉) =
∞X
α=0

i |α|κα(x)
tα

α!
, log E(exp(〈t, x〉) =

∞X
α=0

κα(x)
tα

α!
,

α = (α1, . . . , αn) is a multi-index, tα = tα1
1 · · · tαn

n , α! = α1! · · ·αn!.

For each x, Kp(x) = Jκj1···jp (x)K ∈ Sp(Rn) is a symmetric tensor.

[Fisher, Wishart; 1932]
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Measures useful properties

For univariate x , the cumulants Kd (x) for d = 1, 2, 3, 4 are
I expectation κi = E(x),
I variance κii = σ2,
I skewness κiii/κ

3/2
ii , and

I kurtosis κiiii/κ
2
ii .

The tensor versions are the multivariate generalizations of κijk .

They provide a natural measure of non-Gaussianity.
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Properties of cumulants

Multilinearity: If x is a Rn-valued random variable and A ∈ Rm×n

Kp(Ax) = (A, . . . ,A) · Kp(x).

Additivity: If x1, . . . , xk are mutually independent of y1, . . . , yk , then

Kp(x1 + y1, . . . , xk + yk ) = Kp(x1, . . . , xk ) +Kp(y1, . . . , yk ).

Independence: If I and J partition {j1, . . . , jp} so that xI and xJ are
independent, then

κj1···jp (x) = 0.

Support: There are no distributions where

Kp(x)

{
6= 0 3 ≤ p ≤ n,

= 0 p > n.
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Examples of cumulants

Univariate: Kp(x) for p = 1, 2, 3, 4 are mean, variance, skewness,
kurtosis (unnormalized)

Discrete: x ∼ Poi(λ), Kp(x) = λ for all p.

Continuous: x ∼ U([0, 1]), Kp(x) = Bp/p where Bp = pth Bernoulli
number.

Nonexistent: x ∼ t(3), Kp(x) does not exist for all p ≥ 3.

Multivariate: K1(x) = E(x) and K2(x) = Cov(x).

Discrete: x ∼ Mult(n,q),

κj1···jp (x) = n ∂p

∂tj1
···∂tjp

log(q1et1x1 + · · ·+ qk etk xk )
∣∣∣
t1,...,tk =0

.

Continuous: x ∼ N(µ,Σ), Kp(x) = 0 for all p ≥ 3.
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Estimation of cumulants

How do we estimate Kp(x) given multiple observations of x?

Central and non-central moments are

m̂n =
1

n

∑
t
(xt − x̄)n, ŝn =

1

n

∑
t

xn
t , etc.

Cumulant estimator K̂p(x) for p = 1, 2, 3, 4 given by

κ̂i = m̂i = 1
n
ŝi

κ̂ij = n
n−1

m̂ij = 1
n−1

(ŝij − 1
n
ŝi ŝj)

κ̂ijk = n2

(n−1)(n−2)
m̂ijk = n

(n−1)(n−2)
[ŝijk − 1

n
(ŝi ŝjk + ŝj ŝik + ŝk ŝij) + 2

n2 ŝi ŝj ŝk ]

κ̂ijk` = n2

(n−1)(n−2)(n−3)
[(n + 1)m̂ijk` − (n − 1)(m̂ijm̂k` + m̂ikm̂j` + m̂i`m̂jk)]

= n
(n−1)(n−2)(n−3)

[(n + 1)ŝijk` − n+1
n

(ŝi ŝjk` + ŝj ŝik` + ŝk ŝij` + ŝ`ŝijk)

− n−1
n

(ŝij ŝk` + ŝik ŝj` + ŝi`ŝjk) + ŝ2
i (ŝjk + ŝj` + ŝk`)

+ ŝ2
j (ŝik + ŝi` + ŝk`) + ŝ2

k (ŝij + ŝi` + ŝj`) + ŝ2
` (ŝij + ŝik + ŝjk)

− 6
n2 ŝi ŝj ŝk ŝ`].
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In terms of matrix multiplication

Data often presented as Y ∈ Rm×n, e.g. gene × microarray, text ×
document, person × image, user × movie, webpage × webpage etc.

“And so we now have eigengenes, eigenarrays and eigenexpression in the world of
transcriptomics, eigenproteins and eigenprofiles in proteomics, eigenpathways in
metabolomics, and eigenSNPs in genetics. There are also eigenimages and
eigenfaces in image analysis, and eigenpatterns in seismology. In fact, if you put any
word you like after eigen- into a Google query box and hit return, I guarantee a
result. Yes, even eigenresult and eigenGoogle!”

— Terry Speed, IMS Bulletin, April 2008

Mean centered, otherwise y = x− E(x).

K̂1(y) = 0.

K̂2(y) = 1
n−1 YY> = 1

n−1 (Y ,Y ) · In×n.

K̂3(y) = n
(n−1)(n−2) (Y ,Y ,Y ) · In×n×n.

In×n×n = JδijkK ∈ S3(Rn) is the ‘Kronecker delta tensor’, i.e. δijk = 1
if i = j = k and δijk = 0 otherwise.

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra III January 5–7, 2009 20 / 46



Factor analysis

Linear generative model
y = As + ε

noise ε ∈ Rm, factor loadings A ∈ Rm×r , hidden factors s ∈ Rr ,
observed data y ∈ Rm.

Do not know A, s, ε, but need to recover s and sometimes A from
multiple observations of y.

Time series of observations, get matrices Y = [y1, . . . , yn],
S = [s1, . . . , sn], E = [ε1, . . . , εn], and

Y = AS + E .

Factor analysis: Recover A and S from Y by a low-rank matrix
approximation Y ≈ AS
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Principal and independent components analysis

Principal components analysis: s Gaussian,

K̂2(y) = QΛ2Q> = (Q,Q) · Λ2,

Λ2 ≈ K̂2(s) diagonal matrix, Q ∈ O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries, ε
Gaussian

K̂p(y) = (Q, . . . ,Q) · Λp, p = 2, 3, . . . ,

Λp ≈ K̂p(s) diagonal tensor, Q ∈ O(n, r), [Comon; 1994].

What if

s not Gaussian, e.g. power-law distributed data in social networks.

s not independent, e.g. functional components in neuroimaging.

ε not white noise, e.g. idiosyncratic factors in financial modelling.
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Principal cumulant components analysis

Note that if ε = 0, then

Kp(y) = Kp(Qs) = (Q, . . . ,Q) · Kp(s).

In general, want principal components that account for variation in all
cumulants simultaneously

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2

F ,

Cp ≈ K̂p(s) not necessarily diagonal.

Appears intractable: optimization over infinite-dimensional manifold

O(n, r)×
∏∞

p=1
Sp(Rr ).

Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n − r),

maxQ∈Gr(n,r)

∑∞

p=1
αp‖K̂p(y) · (Q, . . . ,Q)‖2

F .

In practice ∞ = 3 or 4.
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Recap: tensor ranks

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = Jui vj wkKl ,m,n
i ,j ,k=1.
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Recap: matrix EVD and SVD

Rank revealing decompositions.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑r

i=1
λivi ⊗ vi ,

where rank(A) = r , V ∈ O(n) eigenvectors, Λ eigenvalues.

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑r

i=1
σiui ⊗ vi

where rank(A) = r , U ∈ O(m) left singular vectors, V ∈ O(n) right
singular vectors, Σ singular values.

Ditto for nonnegative matrix decomposition.
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Recap: one plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the outer product
rank.

Symmetric outer product decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi

where rankS(A) = r , vi unit vector, λi ∈ R.

Outer product decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi

where rank⊗(A) = r , ui ∈ Rl , vi ∈ Rm,wi ∈ Rn unit vectors, σi ∈ R.

Ditto for nonnegative outer product decomposition.
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Recap: another plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the multilinear rank.

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A = (U,U,U) · C

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

Ditto for nonnegative multilinear decomposition.
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Outer product approximation is ill-behaved

Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

Let x, y ∈ Rm be linearly independent. Define for n ∈ N,

An := n

[
x +

1

n
y

]⊗p

− nx⊗p

Define

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) ≥ p, and

lim
n→∞

An = A.

See [Comon, Golub, L, Mourrain; 08] for details.
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Happens to operators too

Approximation of an operator by a sum of Kronecker product of
lower-dimensional operators (e.g. Numerical Operator Calculus).

For linearly independent operators Pi ,Qi : Vi →Wi , i = 1, 2, 3, let
D : V1 ⊗ V2 ⊗ V3 →W1 ⊗W2 ⊗W3 be

D := P1 ⊗ Q2 ⊗ Q3 + Q1 ⊗ Q2 ⊗ P3 + Q1 ⊗ Q2 ⊗ P3.

If finite-dimensional, then ‘⊗’ may be taken to be Kronecker product
of matrices.

For n ∈ N,

Dn := n

[
P1 +

1

n
Q1

]
⊗
[

P2 +
1

n
Q2

]
⊗
[

P3 +
1

n
Q3

]
− nP1 ⊗ P2 ⊗ P3.

Then
lim

n→∞
Dn = D.
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Some geometric notions

Secants of Veronese in Sp(Rn) — not closed, not irreducible, difficult
to study.

Symmetric subspace variety in Sp(Rn) — closed, irreducible, easy to
study.

Stiefel manifold O(n, r): set of n × r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

Grassman manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

Parameterization of Sp(Rn) via

Gr(n, r)× Sp(Rr )→ Sp(Rn).

More generally

Gr(n, r)×
∏∞

p=1
Sp(Rr )→

∏∞

p=1
Sp(Rn).
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From Stieffel to Grassmann

Given A ∈ Sp(Rn), some r � n, want

minX∈O(n,r), C∈Sp(Rr ) ‖A − (X , . . . ,X ) · C‖F ,

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.

Equivalent to

maxX∈O(n,r) ‖(X>, . . . ,X>) · A‖F = maxX∈O(n,r) ‖A · (X , . . . ,X )‖F .

Problem defined on a Grassmannian since

‖A · (X , . . . ,X )‖F = ‖A · (XQ, . . . ,XQ)‖F ,

for any Q ∈ O(r). Only the subspaces spanned by X matters.

Equivalent to
maxX∈Gr(n,r) ‖A · (X , . . . ,X )‖F .

Once we have optimal X∗ ∈ Gr(n, r), may obtain C∗ ∈ Sp(Rr ) up to
O(n)-equivalence,

C∗ = (X>∗ , . . . ,X
>
∗ ) · A.
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Coordinate-cycling heuristics

Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for
minimizing

Ψ(X ,Y ,Z ) = ‖A · (X ,Y ,Z )‖2
F

for A ∈ Rl×m×n cycling between X ,Y ,Z and solving a least squares
problem at each iteration.

What if A ∈ S3(Rn) and

Φ(X ) = ‖A · (X ,X ,X )‖2
F ?

Present approach: disregard symmetry of A, solve Ψ(X ,Y ,Z ), set

X∗ = Y∗ = Z∗ = (X∗ + Y∗ + Z∗)/3

upon final iteration.

Better: L-BFGS on Grassmannian.
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Newton/quasi-Newton on a Grassmannian

Objective Φ : Gr(n, r)→ R, Φ(X ) = ‖A · (X ,X ,X )‖2
F .

TX tangent space at X ∈ Gr(n, r)

Rn×r 3 ∆ ∈ TX ⇐⇒ ∆>X = 0

1 Compute Grassmann gradient ∇Φ ∈ TX .
2 Compute Hessian or update Hessian approximation

H : ∆ ∈ TX → H∆ ∈ TX .

3 At X ∈ Gr(n, r), solve
H∆ = −∇Φ

for search direction ∆.
4 Update iterate X : Move along geodesic from X in the direction given

by ∆.

[Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.;
2008].
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Picture
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BFGS on Grassmannian

The BFGS update

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+

yky
>
k

y>k yk

where

sk = xk+1 − xk = tkpk ,

yk = ∇fk+1 −∇fk .

On Grassmannian the vectors are defined on different points belonging to
different tangent spaces.
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Different ways of parallel transporting vectors

X ∈ Gr(n, r), ∆1,∆2 ∈ TX and X (t) geodesic path along ∆1

Parallel transport using global coordinates

∆2(t) = T∆1(t)∆2

we have also
∆1 = X⊥D1 and ∆2 = X⊥D2

where X⊥ basis for TX . Let X (t)⊥ be basis for TX (t).

Parallel transport using local coordinates

∆2(t) = X (t)⊥D2.
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Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in
the basis X (t)⊥ at all points on the path X (t).

Plus: No need to transport the gradient or the Hessian.

Minus: Need to compute X (t)⊥.

In global coordinate we compute

Tk+1 3 sk = tk T∆k
(tk )pk

Tk+1 3 yk = ∇fk+1 − T∆k
(tk )∇fk

T∆k
(tk )Hk T−1

∆k
(tk ) : Tk+1 −→ Tk+1

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+

yky
>
k

y>k yk
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BFGS

Compact representation of BFGS in Euclidean space:

Hk = H0 +
[
Sk H0Yk

] [R−>k (Dk + Y>k H0Yk )R−1
k −R−>k

−R−1
k 0

] [
S>k

Y>k H0

]
where

Sk = [s0, . . . , sk−1] ,

Yk = [y0, . . . , yk−1] ,

Dk = diag
[
s>0 y0, . . . , s

>
k−1yk−1

]
,

Rk =


s>0 y0 s>0 y1 · · · s>0 yk−1

0 s>1 y1 · · · s>1 yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
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L-BFGS
Limited memory BFGS [Byrd et al; 1994]. Replace H0 by γk I and keep the
m most resent sj and yj ,

Hk = γk I +
[
Sk γk Yk

] [R−>k (Dk + γk Y>k Yk )R−1
k −R−>k

−R−1
k 0

] [
S>k
γk Y>k

]
where

Sk = [sk−m, . . . , sk−1] ,

Yk = [yk−m, . . . , yk−1] ,

Dk = diag
[
s>k−myk−m, . . . , s

>
k−1yk−1

]
,

Rk =


s>k−myk−m s>k−myk−m+1 · · · s>k−myk−1

0 s>k−m+1yk−m+1 · · · s>k−m+1yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
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L-BFGS on the Grassmannian

In each iteration, parallel transport vectors in Sk and Yk to Tk , ie.
perform

S̄k = TSk , Ȳk = TYk

where T is the transport matrix.

No need to modify Rk or Dk

〈u, v〉 = 〈Tu,Tv〉

where u, v ∈ Tk and Tu,Tv ∈ Tk+1.

Hk nonsingular, Hessian is singular. No problem Tk at xk is invariant
subspace of Hk , ie. if v ∈ Tk then Hkv ∈ Tk .

[Savas, L.; 2008]
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Convergence

Compares favorably with Alternating Least Squares.
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Higher order eigenfaces
Principal cumulant subspaces supplement varimax subspace from PCA.
Take face recognition for example, eigenfaces (p = 2) becomes
skewfaces (p = 3) and kurtofaces (p = 4).

Eigenfaces: given image × pixel matrix A ∈ Rm×n with centered
columns where m� n.

Eigenvectors of pixel × pixel covariance matrix Kpixel
2 ∈ S2(Rn) are

the eigenfaces.

For efficiency, compute image × image covariance matrix
Kimage

2 ∈ S2(Rm) instead.

SVD A = UΣV> gives both implicitly,

Kimage
2 = 1

n (A>,A>) · Im×m = 1
n A>A = 1

n V ΛV>,

Kpixel
2 = 1

n (A,A) · In×n = 1
m AA> = 1

m UΛU>.

Orthonormal columns of U, eigenvectors of nKpixel
2 , are the eigenfaces.
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Computing image and pixel skewness

Want to implicitly compute Kpixel
3 ∈ S3(Rn), third cumulant tensor of

the pixels (huge).

Just need projector Π onto the subspace of skewfaces that best
explain Kpixel

3 .

Let A = UΣV>, U ∈ O(n,m), Σ ∈ Rm×m, V ∈ O(m).

Kpixel
3 = 1

m (A,A,A) · Im×m×m

= 1
m (U,U,U) · (Σ,Σ,Σ) · (V>,V>,V>) · Im×m×m

Kimage
3 = 1

n (A>,A>,A>) · In×n×n

= 1
n (V ,V ,V ) · (Σ,Σ,Σ) · (U>,U>,U>) · In×n×n

In×n×n = JδijkK ∈ S3(Rn) is the ‘Kronecker delta tensor’, i.e. δijk = 1
iff i = j = k and δijk = 0 otherwise.
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Computing skewmax projection

Define A ∈ S3(Rm) by

A = (Σ,Σ,Σ) · (V>,V>,V>) · Im×m×m

Want Q ∈ O(m, s) and core tensor C ∈ S3(Rs) not necessarily
diagonal, so that A ≈ (Q,Q,Q) · C and thus

Kpixel
3 ≈ 1

m (U,U,U) · (Q,Q,Q) · C = 1
m (UQ,UQ,UQ) · C.

Solve
minQ∈O(m,s), C∈S3(Rs )‖A − (Q,Q,Q) · C‖F

Π = UQ ∈ O(n, s) is our orthonormal-column projection matrix onto
the ’skewmax’ subspace.

Caveat: Q only determined up to O(s)-equivalence. Not a problem if
we are just interested in the associated subspace or its projector.
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Combining eigen-, skew-, and kurtofaces

Combine information from multiple cumulants:

Same procedure for the kurtosis tensor (a little more complicated).

Say we keep the first r eigenfaces (columns of U), s skewfaces, and t
kurtofaces. Their span is our optimal subspace.

These three subspaces may overlap; orthogonalize the resulting
r + s + t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

first r vectors best explain the pixel covariance Kpixel
2 ∈ S2(Rn),

next s vectors, with W1:r , best explain the pixel skewness
Kpixel

3 ∈ S3(Rn),

last t vectors, with W1:r+s , best explain pixel kurtosis Kpixel
4 ∈ S4(Rn).
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