Algebraic Geometry of Matrices I

Lek-Heng Lim

University of Chicago
July 2, 2013

objectives

- give a taste of algebraic geometry
- with minimum prerequisites
- provide pointers for a more serious study
- not intended to be a formal introduction
- tailored specially for this audience:
- assumes familiarity with linear algebra, matrix analysis
- maybe even some operator theory, differential geometry
- but less comfortable with (abstract) algebra
promise: we shall see lots of matrices and linear algebra

Overview

why algebraic geometry

- possibly the most potent tool in modern mathematics
- applications to other areas of mathematics
number theory: Fermat's last theorem
partial differential equations: soliton solutions of KdV
many more . . . , but not so surprising
- applications to other areas outside of mathematics
biology: phylogenetic invariants
chemistry: chemical reaction networks
physics: mirror symmetry
statistics: Markov bases
optimization: sum-of-squares polynomial optimization computer science: geometric complexity theory communication: Goppa code cryptography: elliptic curve cryptosystem
control theory: pole placement
machine learning: learning Gaussian mixtures
- why should folks in linear algebra/matrix theory care?

solves long standing conjectures

Horn: $A, B \in \mathbb{C}^{n \times n}$ Hermitian, $I, J, K \subsetneq\{1, \ldots, n\}$,

$$
\sum_{k \in K} \lambda_{k}(A+B) \leq \sum_{i \in I} \lambda_{i}(A)+\sum_{j \in J} \lambda_{j}(B)
$$

holds iff Schubert cycle s_{K} is component of $s_{I} \cdot s_{J}$ [Klyachko, 1998], [Knutson-Tao, 1999]
Strassen: no approximate algorithm for 2×2 matrix product in fewer than 7 multiplications [Landsberg, 2006]

- involve Schubert varieties and secant varieties respectively
- for now, variety = affine variety = zero loci of polynomials

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: F_{j}\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } j \in J\right\}
$$

$F_{j} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], J$ arbitrary index set

view familiar objects in new light

linear affine variety: solutions to linear equation

$$
\left\{\mathbf{x} \in \mathbb{C}^{n}: A \mathbf{x}=\mathbf{b}\right\}
$$

where $A \in \mathbb{C}^{m \times n}, \mathbf{b} \in \mathbb{C}^{m}$
determinantal variety: rank-r matrices

$$
\left\{X \in \mathbb{C}^{m \times n}: \operatorname{rank}(X) \leq r\right\}
$$

Segre variety: rank-1 matrices

$$
\left\{X \in \mathbb{C}^{m \times n}: X=\mathbf{u} \mathbf{v}^{\top}\right\}
$$

Veronese variety: rank-1 symmetric matrices

$$
\left\{X \in \mathbb{C}^{n \times n}: X=\mathbf{v v}^{\top}\right\}
$$

Grassmann variety: n-dimensional subspaces in \mathbb{C}^{m}

$$
\left\{X \in \mathbb{C}^{m \times n}: \operatorname{rank}(X)=n\right\} / \mathrm{GL}_{n}(\mathbb{C})
$$

gain new insights

secant variety: rank-r matrices
lines through r points on $\left\{X \in \mathbb{P}^{m \times n}: \operatorname{rank}(X)=1\right\}$
dual variety: singular matrices

$$
\left\{X \in \mathbb{P}^{n \times n}: \operatorname{rank}(X)=1\right\}^{\vee}=\left\{X \in \mathbb{P}^{n \times n}: \operatorname{det}(X)=0\right\}
$$

Fano variety: vector spaces of matrices of low rank

$$
\text { set of } k \text {-planes in }\left\{X \in \mathbb{P}^{m \times n}: \operatorname{rank}(X) \leq r\right\}
$$

projective n-space: $\mathbb{P}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim$ with equivalence relation $\left(x_{0}, \ldots, x_{n}\right) \sim\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)$ for $\lambda \in \mathbb{C}^{\times}$

encouraging observation

last two slides: if you know linear algebra/matrix theory, you have seen many examples in algebraic geometry
next three slides: more such examples
moral: you have already encountered quite a bit of algebraic geometry

zero loci of matrices

twisted cubic: 2×3 rank-1 Wankel matrices

$$
\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbb{P}^{3}: \operatorname{rank}\left(\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3}
\end{array}\right]\right)=1\right\}
$$

rational normal curve: $2 \times d$ rank-1 Hankel matrices

$$
\left\{\left[x_{0}: x_{1}: \cdots: x_{d}\right] \in \mathbb{P}^{d}: \operatorname{rank}\left(\left[\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \cdots & x_{d-1} \\
x_{1} & x_{2} & \cdots & x_{d-1} & x_{d}
\end{array}\right]\right)=1\right\}
$$

rational normal scroll: $(d-k+1) \times(k+1)$ rank -1 Hankel matrices

$$
\left\{\left[x_{0}: x_{1}: \cdots: x_{d}\right] \in \mathbb{P}^{d}: \operatorname{rank}\left(\left[\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \cdots & x_{k} \\
x_{1} & x_{2} & \cdots & \cdots & x_{k+1} \\
x_{2} & \cdots & \cdots & \cdots & x_{k+2} \\
\cdots & \cdots & \cdots & \cdots & x_{d-1} \\
x_{d-k} & \cdots & \cdots & x_{d-1} & x_{d}
\end{array}\right]\right)=1\right\}
$$

discriminant hypersurface of singular quadrics in \mathbb{P}^{n} :

$$
\left\{\left[x_{00}: x_{01}: \cdots: x_{n n}\right] \in \mathbb{P}^{n(n+3) / 2}: \operatorname{det}\left(\left[\begin{array}{cccc}
x_{00} & x_{01} & \cdots & x_{0 n} \\
x_{01} & x_{11} & . & x_{1 n} \\
x_{0 n} & x_{1 n} & \cdots & \cdots \\
x_{n n}
\end{array}\right]\right)=0\right\}
$$

algebraic groups

- elliptic curve: $y^{2}=(x-a)(x-b)(x-c)$,

$$
E=\left\{(x, y) \in \mathbb{C}^{2}: \operatorname{det}\left(\left[\begin{array}{ccc}
x-a & 0 & y \\
0 & 1 & \frac{1}{2}(b+c)+x \\
y & \frac{1}{2}(b+c)-x & -\frac{1}{4}(b-c)^{2}
\end{array}\right]\right)=0\right\}
$$

- E is abelian variety, i.e., variety that is abelian group
- generalization: algebraic groups
- multiplication/inversion defined locally by rational functions
- two most important classes:
projective: abelian varieties
affine: linear algebraic groups
- examples:
general linear group: $\mathrm{GL}_{n}(\mathbb{F})=\left\{X \in \mathbb{F}^{n \times n}: \operatorname{det}(X) \neq 0\right\}$
special linear group: $\operatorname{SL}_{n}(\mathbb{F})=\left\{X \in \mathbb{F}^{n \times n}: \operatorname{det}(X)=1\right\}$ projective linear group: $\mathrm{PGL}_{n}(\mathbb{F})=\mathrm{GL}_{n}(\mathbb{F}) /\left\{\lambda /: \lambda \in \mathbb{F}^{\times}\right\}$

linear algebraic groups

$\operatorname{char}(\mathbb{F}) \neq 2$
orthogonal goup: q symmetric nondegenerate bilinear

$$
\mathrm{O}_{n}(\mathbb{F}, q)=\{X \in \mathrm{GL}(\mathbb{F}): q(X \mathbf{v}, X \mathbf{w})=q(\mathbf{v}, \mathbf{w})\}
$$

special orthogonal goup: q symmetric nondegenerate bilinear

$$
\operatorname{SO}_{n}(\mathbb{F}, q)=\left\{X \in \operatorname{SL}_{n}(\mathbb{F}): q(X \mathbf{v}, X \mathbf{w})=q(\mathbf{v}, \mathbf{w})\right\}
$$

symplectic goup: q skew-symmetric nondegenerate bilinear

$$
\operatorname{Sp}_{2 n}(\mathbb{F}, q)=\left\{X \in \operatorname{SL}_{n}(\mathbb{F}): q(X \mathbf{v}, X \mathbf{w})=q(\mathbf{v}, \mathbf{w})\right\}
$$

special case: $q(\mathbf{v}, \mathbf{w})=\mathbf{v}^{\top} \mathbf{w}$, get $\mathrm{O}_{n}(\mathbb{F}), \mathrm{SO}_{n}(\mathbb{F}), \mathrm{Sp}_{2 n}(\mathbb{F})$,

$$
\mathrm{PO}_{n}(\mathbb{F})=\mathrm{O}_{n}(\mathbb{F}) /\{ \pm /\}, \quad \mathrm{PSO}_{2 n}(\mathbb{F})=\mathrm{SO}_{2 n}(\mathbb{F}) /\{ \pm /\}
$$

comes in different flavors

complex algebraic geometry: varieties over \mathbb{C}
real algebraic geometry: semialgebraic sets \& varieties over \mathbb{R}, e.g. hyperbolic cone, $A \succ 0, \mathrm{~b} \in \mathbb{R}^{n}$,

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{\top} A \mathbf{x} \leq\left(\mathbf{b}^{\top} \mathbf{x}\right)^{2}, \mathbf{b}^{\top} \mathbf{x} \geq 0\right\}
$$

convex algebraic geometry: convex sets with algebraic structure, e.g. spectrahedron, $A_{0}, \ldots, A_{n} \in \mathbb{S}^{m \times m}$,

$$
\left\{A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0: \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

tropical algebraic geometry: varieties over $(\mathbb{R} \cup\{\infty\}$, min,+$)$, e.g. tropical linear space, tropical polytope, tropical eigenspace, tropical Grassmannian
many others: diophantine geometry (over $\mathbb{Q}, \mathbb{Q}_{p}, \mathbb{F}_{q}, \mathbb{F}_{q}((t)), \mathbb{Z}$, etc), noncommutative algebraic geometry, etc

going beyond matrices

provides groundwork to go beyond linear algebra and matrices linear to multilinear: $f: V_{1} \times \cdots \times V_{d} \rightarrow W$,

$$
\begin{aligned}
f\left(\mathbf{v}_{1}, \ldots, \alpha \mathbf{u}_{k}+\beta \mathbf{w}_{k}, \ldots, \mathbf{v}_{d}\right)= & \alpha f\left(\mathbf{v}_{1}, \ldots, \mathbf{u}_{k}, \ldots, \mathbf{v}_{d}\right) \\
& +\beta f\left(\mathbf{v}_{1}, \ldots, \mathbf{w}_{k}, \ldots, \mathbf{v}_{d}\right)
\end{aligned}
$$

matrices to hypermatrices:

$$
\left(a_{i j}\right) \in \mathbb{C}^{m \times n}, \quad\left(a_{i j k}\right) \in \mathbb{C}^{1 \times m \times n}, \quad\left(a_{i j k l}\right) \in \mathbb{C}^{1 \times m \times n \times p}, \ldots
$$

linear/quadratic to polynomial: $\mathbf{a}^{\top} \mathbf{x}, \mathbf{A x}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x}, \mathbf{x}^{\top} \mathbf{A} \mathbf{y}$, to

$$
f(\mathbf{x})=a+\sum_{i=1}^{n} b_{i} x_{i}+\sum_{i, j=1}^{n} c_{i j} x_{i} x_{j}+\sum_{i, j, k=1}^{n} d_{i j k} x_{i} x_{j} x_{k}+\sum_{i, j, k, l=1}^{n} e_{i j k l} x_{i} x_{j} x_{k} x_{l}+\cdots
$$

vector spaces to vector bundles: family of vector spaces (later)

advertisement

L.-H. Lim, Lectures on Tensors and Hypermatrices

basic notions: tensor, multilinear functions, hypermatrices, tensor fields, covariance \& contravariance, symmetric hypermatrices \& homogeneous polynomials, skew-symmetric hypermatrices \& exterior forms, hypermatrices with partial skew-symmetry/ symmetry \& Schur functors, Dirac \& Einstein notations
ranks \& decompositions: tensor rank, multilinear rank \& multilinear nullity, rank-retaining decompositions, border rank, generic \& typical rank, maximal rank, nonexistence of canonical forms, symmetric rank, nonnegative rank, Waring rank, Segre, Veronese, \& Segre-Veronese varieties, secant varieties
eigenvalues \& singular values: symmetric eigenvalues \& eigenvectors, eigenvalues \& eigenvectors, singular values \& singular vectors, nonnegative hypermatrices, Perron-Frobenius theorem, positive seimidefinite \& Gram hypermatrices
norms, hyperdeterminants, \& other loose ends spectral norm, nuclear norm, Holder p-norms, geometric hyperdeterminant, combinatorial hyperdeterminant, tensor products of other objects: modules, Hilbert space, Banach space, matrices, operators, representations, operator spaces, computational complexity

advertisement

biology: phylogenetic invariants
chemistry: fluorescence spectroscopy, matrix product state DMRG
computer science: computational complexity, quantum information theory
optimization: self-concordance, higher-order optimality conditions, polynomial optimization
applied physics: elasticity, piezoelectricity, X-ray crystallography
theoretical physics: quantum mechanics (state space of multiple quantum systems), statistical mechanics (Yang-Baxter equations), particle physics (quark states), relativity (Einstein equation)
signal processing: antenna array processing, blind source separation, CDMA communication
statistics: multivariate moments and cumulants, sparse recovery and matrix completion
venue: Room B3-01, Instituto para a Investigação Interdisciplinar da Universidade de Lisboa
dates: July 23-24, 2013

Affine Varieties

for further information

easy • S. Abhyankar, Algebraic Geometry for Scientists and Engineers, 1990

- B. Hassett, Introduction to Algebraic Geometry, 2007
- K. Hulek, Elementary Algebraic Geometry, 2003
- M. Reid, Undergraduate Algebraic Geometry, 1989
- K. Smith et al., An Invitation to Algebraic Geometry, 2004 (our main text)
medium • J. Harris, Algebraic Geometry: A First Course, 1992
- I. Shafarevich, Basic Algebraic Geometry, Vols. I \& II, 2nd Ed., 1994
standard
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, 1978
- R. Hartshorne, Algebraic Geometry, 1979
recent - D. Arapura, Algebraic Geometry over the Complex Numbers, 2012
- S. Bosch, Algebraic Geometry and Commutative Algebra, 2013
- T. Garrity et al., Algebraic Geometry: A Problem Solving Approach, 2013
- A. Holme, A Royal Road to Algebraic Geometry, 2012

basic and not-so-basic objects

affine varieties: subsets of \mathbb{C}^{n} cut out by polynomials
projective varieties: subsets of \mathbb{P}^{n} cut out by homogeneous polynomials
quasi-projective varieties: open subsets of projective varieties algebraic varieties: affine varieties glued together
affine schemes: affine varieties with 'non-closed points' added schemes: affine schemes glued together
furthermore: schemes \subseteq algebraic spaces \subseteq Deligne-Mumford stacks \subseteq algebraic stacks \subseteq stacks
but to a first-order approximation,
algebraic geometry is the study of algebraic varieties
just like differential geometry is, to a first-order approximation, the study of differential manifolds

what is an algebraic variety

manifold: objects locally resembling Euclidean spaces algebraic variety: objects locally resembling affine varieties or:
manifold: open subsets glued together algebraic variety: affine varieties glued together differences:
(1) machinery for gluing things
manifold: usually charts/atlases/transition maps algebraic varieties: usually sheaves
(2) dimension
manifold: glue together subsets of same dimension algebraic varieties: can have different dimensions sheaf: neatest tool for gluing things — works for Riemann surfaces, manifolds, algebraic varieties, schemes, etc

what is an affine variety

- zero loci of polynomials, i.e., common zeros of a collection of complex polynomials in n variables $\left\{F_{j}\right\}_{j \in J}$,

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: F_{j}\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } j \in J\right\}
$$

- J arbitrary index set, can be uncountable
- notation: $\mathbb{V}\left(\left\{F_{j}\right\}_{j \in J}\right)$ or $\mathbb{V}\left(F_{1}, \ldots, F_{n}\right)$ if finite
- caution: actually these are just Zariski closed subsets of \mathbb{C}^{n}, the actual definition of affine variety will come later
- may define manifolds as subsets of \mathbb{R}^{n} but unwise; want affine varieties to be independent of embedding in \mathbb{C}^{n} too
- simplest examples

$$
\begin{aligned}
& \text { empty set: } \varnothing=\mathbb{V}(1) \\
& \text { singleton: }\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}=\mathbb{V}\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \\
& \text { hyperplane: } \mathbb{V}\left(a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}\right) \\
& \text { hypersurface: } \mathbb{V}(F) \\
& \text { whole space: } \mathbb{C}^{n}=\mathbb{V}(0)
\end{aligned}
$$

more affine varieties

quadratic cone: $\mathbb{V}\left(x^{2}+y^{2}-z^{2}\right)=\left\{(x, y, z) \in \mathbb{C}^{3}: x^{2}+y^{2}=z^{2}\right\}$

twisted cubic: $\mathbb{V}\left(x^{2}-y, x^{3}-z\right)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{C}^{3}: t \in \mathbb{C}\right\}$

more affine varieties

conic sections: $\mathbb{V}\left(x^{2}+y^{2}-z^{2}, a x+b y+c z\right)$

elliptic curve: $\mathbb{V}\left(y^{2}-x^{3}+x-a\right)$ for $a=0,0.1,0.2,0.3,0.4,0.5$

earlier examples revisited

linear affine variety: solutions to linear equation

$$
\left\{\mathbf{x} \in \mathbb{C}^{n}: A \mathbf{x}=\mathbf{b}\right\}=\mathbb{V}\left(\left\{a_{i 1} x_{1}+\cdots+a_{i n} x_{n}-b_{i}\right\}_{i=1, \ldots, m}\right)
$$

determinantal variety: rank-r matrices

$$
\left\{X \in \mathbb{C}^{m \times n}: \operatorname{rank}(X) \leq r\right\}=\mathbb{V}(\{\text { all }(r+1) \times(r+1) \text { minors }\})
$$

special linear group: determinant-1 matrices

$$
\operatorname{SL}_{n}(\mathbb{C})=\left\{X \in \mathbb{C}^{n \times n}: \operatorname{det}(X)=1\right\}=\mathbb{V}(\operatorname{det}-1)
$$

- in algebraic geometry, we identify $\mathbb{C}^{m \times n} \equiv \mathbb{C}^{m n}$
- why did we say $\mathrm{GL}_{n}(\mathbb{C})=\left\{X \in \mathbb{C}^{n \times n}: \operatorname{det}(X) \neq 0\right\}$ is an affine variety?

non-examples

assume Euclidean/norm topology, following not affine varieties:
open ball: $B_{\varepsilon}(\mathbf{x})=\left\{\mathbf{x} \in \mathbb{C}^{n}:\|\mathbf{x}\|<\varepsilon\right\}$
closed ball: $B_{\varepsilon}[\mathbf{x}]=\left\{\mathbf{x} \in \mathbb{C}^{n}:\|\mathbf{x}\| \leq \varepsilon\right\}$
unitary group: $\mathrm{U}_{n}(\mathbb{C})=\left\{X \in \mathbb{C}^{n \times n}: X^{*} X=I\right\}$
general linear group: $\mathrm{GL}_{n}(\mathbb{C})=\left\{X \in \mathbb{C}^{n \times n}: \operatorname{det}(X) \neq 0\right\}$
punctured line/plane: $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}, \mathbb{C}^{2} \backslash\{(0,0)\}$
set with interior points: $S \supseteq B_{\varepsilon}(\mathbf{x})$ for some $\varepsilon>0$ graphs of transcendental functions: $\left\{(x, y) \in \mathbb{C}^{2}: y=e^{x}\right\}$

- $G L_{n}(\mathbb{C})$ and \mathbb{C}^{\times}affine varieties via actual definition
- complex conjugation is not an algebraic operation
- inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$ not polynomial
- every affine variety is closed in Euclidean topology
- converse almost never true
- need another topology: Zariski

