Algebraic Geometry of Matrices II

Lek-Heng Lim

University of Chicago
July 3, 2013

today

- Zariski topology
- irreducibility
- maps between varieties
- answer our last question from yesterday
- again, relate to linear algebra/matrix theory

Zariski Topology

basic properties of affine varieties

- recall: affine variety = common zeros of a collection of complex polynomials

$$
\mathbb{V}\left(\left\{F_{j}\right\}_{j \in J}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: F_{j}\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } j \in J\right\}
$$

- recall: $\varnothing=\mathbb{V}(1)$ and $\mathbb{C}^{n}=\mathbb{V}(0)$
- intersection of two affine varieties is affine variety

$$
\mathbb{V}\left(\left\{F_{i}\right\}_{i \in I}\right) \cap \mathbb{V}\left(\left\{F_{j}\right\}_{j \in J}\right)=\mathbb{V}\left(\left\{F_{i}\right\}_{i \in \Lambda J J}\right)
$$

- union of two affine varieties is affine variety

$$
\mathbb{V}\left(\left\{F_{i}\right\}_{i \in I}\right) \cup \mathbb{V}\left(\left\{F_{j}\right\}_{j \in J}\right)=\mathbb{V}\left(\left\{F_{i} F_{j}\right\}_{(i, j) \in I \times J}\right)
$$

- easiest to see for hypersurfaces

$$
\mathbb{V}\left(F_{1}\right) \cup \mathbb{V}\left(F_{2}\right)=\mathbb{V}\left(F_{1} F_{2}\right)
$$

since $F_{1}(\mathbf{x}) F_{2}(\mathbf{x})=0$ iff $F_{1}(\mathbf{x})=0$ or $F_{2}(\mathbf{x})=0$

Zariski topology

- let $\mathcal{V}=\left\{\right.$ all affine varieties in $\left.\mathbb{C}^{n}\right\}$, then
(1) $\varnothing \in \mathcal{V}$
(2) $\mathbb{C}^{n} \in \mathcal{V}$
(3) if $V_{1}, \ldots, V_{n} \in \mathcal{V}$, then $\bigcup_{i=1}^{n} V_{i} \in \mathcal{V}$
(4) if $V_{\alpha} \in \mathcal{V}$ for all $\alpha \in A$, then $\bigcap_{\alpha \in A} V_{\alpha} \in \mathcal{V}$
- let $\mathcal{Z}=\left\{\mathbb{C}^{n} \backslash V: V \in \mathcal{V}\right\}$
- then \mathcal{Z} is topology on \mathbb{C}^{n} : Zariski topology
- write \mathbb{A}^{n} for topological space $\left(\mathbb{C}^{n}, \mathcal{Z}\right)$: affine n-space
- Zariski open sets are complements of affine varieties
- Zariski closed sets are affine varieties
- write \mathcal{E} for Euclidean topology, then $\mathcal{Z} \subset \mathcal{E}$, i.e.,
- Zariski open \Rightarrow Euclidean open
- Zariski closed \Rightarrow Euclidean closed

Zariski topology is weird

- \mathcal{Z} is much smaller than \mathcal{E} : Zariski topology is very coarse
- basis for \mathcal{E} : $B_{\varepsilon}(\mathbf{x})$ where $\mathbf{x} \in \mathbb{C}^{n}, \varepsilon>0$
- basis for $\mathcal{Z}:\left\{\mathbf{x} \in \mathbb{A}^{n}: f(\mathbf{x}) \neq 0\right\}$ where $f \in \mathbb{C}[\mathbf{x}]$
- $\varnothing \neq S \in \mathcal{Z}$
- S is unbounded under \mathcal{E}
- S is dense under both \mathcal{Z} and \mathcal{E}
- nonempty Zariski open \Rightarrow generic \Rightarrow almost everywhere \Rightarrow Euclidean dense
- \mathcal{Z} not Hausdorff, e.g. on $\mathbb{A}^{1}, \mathcal{Z}=$ cofinite topology
- Zariski compact \nRightarrow Zariski closed, e.g. $\mathbb{A}^{n} \backslash\{0\}$ compact
- Zariski topology on \mathbb{A}^{2} not product topology on $\mathbb{A}^{1} \times \mathbb{A}^{1}$, e.g. $\left\{(x, x): x \in \mathbb{A}^{1}\right\}$ closed in \mathbb{A}^{2}, not in $\mathbb{A}^{1} \times \mathbb{A}^{1}$

two cool examples

Zariski closed:
common roots: $\left\{(\mathbf{a}, \mathbf{b}) \in \mathbb{A}^{4} \times \mathbb{A}^{3}: a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right.$ and $b_{0}+b_{1} x+b_{2} x^{2}$ have common roots $\}$

$$
\left\{(\mathbf{a}, \mathbf{b}) \in \mathbb{A}^{7}: \operatorname{det}\left(\left[\begin{array}{ccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} \\
b_{2} & b_{1} & b_{0} & 0 & 0 \\
0 & b_{2} & b_{1} & b_{0} & 0 \\
0 & 0 & b_{2} & b_{1} & b_{0}
\end{array}\right]\right)=0\right\}
$$

repeat roots: $\left\{\mathbf{a} \in \mathbb{A}^{4}: a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right.$ repeat roots $\}$

$$
\left\{\mathbf{a} \in \mathbb{A}^{4}: \operatorname{det}\left(\left[\begin{array}{ccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} \\
2 a_{2} & a_{1} & 0 & 0 & 0 \\
0 & 2 a_{2} & a_{1} & 0 & 0 \\
0 & 0 & 2 a_{2} & a_{1} & 0
\end{array}\right]\right)=0\right\}
$$

generally: first determinant is resultant, res (f, g), defined likewise for f and g of aribtrary degrees; second determinant is discriminant, $\operatorname{disc}(f):=\operatorname{res}\left(f, f^{\prime}\right)$

more examples

Zariski closed:
nilpotent matrices: $\left\{A \in \mathbb{A}^{n \times n}: A^{k}=0\right\}$ for any fixed $k \in \mathbb{N}$
eigenvectors: $\left\{(A, \mathbf{x}) \in \mathbb{A}^{n \times(n+1)}: A \mathbf{x}=\lambda \mathbf{x}\right.$ for some $\left.\lambda \in \mathbb{C}\right\}$ repeat eigenvalues: $\left\{A \in \mathbb{A}^{n \times n}: A\right.$ has repeat eigenvalues $\}$
Zariski open:
full rank: $\left\{A \in \mathbb{A}^{m \times n}: A\right.$ has full rank $\}$ distinct eigenvalues: $\left\{A \in \mathbb{A}^{n \times n}: A\right.$ has n distinct eigenvalues $\}$

- write $p_{A}(x)=\operatorname{det}(x I-A)$

$$
\begin{aligned}
\left\{A \in \mathbb{A}^{n \times n}: \text { repeat eigenvalues }\right\} & =\left\{A \in \mathbb{A}^{n \times n}: \operatorname{disc}\left(p_{A}\right)=0\right\} \\
\left\{A \in \mathbb{A}^{n \times n}: \text { distinct eigenvalues }\right\} & =\left\{\boldsymbol{A} \in \mathbb{A}^{n \times n}: \operatorname{disc}\left(p_{A}\right) \neq 0\right\}
\end{aligned}
$$

- note $\operatorname{disc}\left(p_{A}\right)$ is a polynomial in the entries of A
- will use this to prove Cayley-Hamilton theorem later

Irreducibility

reducibility

- affine variety V is reducible if $V=V_{1} \cup V_{2}, \varnothing \neq V_{i} \subsetneq V$
- affine variety V is irreducible if it is not reducible
- every subset of \mathbb{A}^{n} can be broken up into nontrivial union of irreducible components

$$
S=V_{1} \cup \cdots \cup V_{k}
$$

where $V_{i} \nsubseteq V_{j}$ for all $i \neq j, V_{i}$ irreducible and closed in subspace topology of S

- decomposition above unique up to order
- $\mathbb{V}(F)$ irreducible variety if F irreducible polynomial
- non-empty Zariski open subsets of irreducible affine variety are Euclidean dense

example

- a bit like connectedness but not quite: the variety in \mathbb{A}^{3} below is connected but reducible

- $\mathbb{V}(x y, x z)=\mathbb{V}(y, z) \cup \mathbb{V}(x)$ with irreducible components $y z$-plane and x-axis

commuting matrix varieties

- define k-tuples of $n \times n$ commuting matrices

$$
\mathcal{C}(k, n):=\left\{\left(A_{1}, \ldots, A_{k}\right) \in\left(\mathbb{A}^{n \times n}\right)^{k}: A_{i} A_{j}=A_{j} A_{i}\right\}
$$

- as usual, identify $\left(\mathbb{A}^{n \times n}\right)^{k} \equiv \mathbb{A}^{k n^{2}}$
- clearly $\mathcal{C}(k, n)$ is affine variety
question: if $\left(A_{1}, \ldots, A_{k}\right) \in \mathcal{C}(k, n)$, then are A_{1}, \ldots, A_{k} simultaneously diagaonalizable?
answer: no, only simultaneously triangularizable
question: can we approximate A_{1}, \ldots, A_{k} by B_{1}, \ldots, B_{k},

$$
\left\|A_{i}-B_{i}\right\|<\varepsilon, \quad i=1, \ldots, k
$$

where B_{1}, \ldots, B_{k} simultaneously diagonalizable ?
anwer: yes, if and only if $\mathcal{C}(k, n)$ is irreducible
question: for what values of k and n is $\mathcal{C}(k, n)$ irreducible?

what is known

$k=2: \mathcal{C}(2, n)$ irreducible for all $n \geq 1$ [Motzkin-Taussky, 1955]
$k \geq 4: \mathcal{C}(4, n)$ reducible for all $n \geq 4$ [Gerstenhaber, 1961]
$n \leq 3: \mathcal{C}(k, n)$ irreducible for all $k \geq 1$ [Gerstenhaber, 1961]
$k=3: \mathcal{C}(3, n)$ irreducible for all $n \leq 10$, reducible for all $n \geq 29$ [Guralnick, 1992], [Holbrook-Omladič, 2001], [Šivic, 2012]
open: reducibility of $\mathcal{C}(3, n)$ for $11 \leq n \leq 28$

Maps Between Varieties

morphisms

- morphism of affine varieties: polynomial maps
- F morphism if

$$
\begin{aligned}
\mathbb{A}^{n} & \stackrel{F}{\longrightarrow} \mathbb{A}^{m} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

- $V \subseteq \mathbb{A}^{n}, W \subseteq \mathbb{A}^{m}$ affine algebraic varieties, say $F: V \rightarrow W$ morphism if it is restriction of some morphism $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$
- say F isomorphism if (i) bijective; (ii) inverse G is morphism
- $V \simeq W$ isomorphic if there exists $F: V \rightarrow W$ isomorphism
- straightforward: morphism of affine varieties continuous in Zariski topology
- caution: morphism need not send affine varieties to affine varieties, i.e., not closed map

examples

affine map: $F: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}, \mathbf{x} \mapsto A \mathbf{x}+\mathbf{b}$ morphism for $A \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^{n}$; isomorphism if $A \in \mathrm{GL}_{n}(\mathbb{C})$
projection: $F: \mathbb{A}^{2} \rightarrow \mathbb{A}^{1},(x, y) \mapsto x$ morphism parabola: $C=\mathbb{V}\left(y-x^{2}\right)=\left\{\left(t, t^{2}\right) \in \mathbb{A}^{2}: t \in \mathbb{A}\right\} \simeq \mathbb{A}^{1}$

$$
\begin{array}{cr}
\mathbb{A}^{1} \xrightarrow{F} C & C \xrightarrow{G} \mathbb{A}^{1} \\
t \longmapsto\left(t, t^{2}\right) & (x, y) \longmapsto x
\end{array}
$$

twisted cubic: $\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3}: t \in \mathbb{A}\right\} \simeq \mathbb{A}^{1}$

Cayley-Hamilton

- recall: if $A \in \mathbb{C}^{n \times n}$ and $p_{A}(x)=\operatorname{det}(x I-A)$, then $p_{A}(A)=0$
- $\mathbb{A}^{n \times n} \rightarrow \mathbb{A}^{n \times n}, A \mapsto p_{A}(A)$ morphism
- claim that this morphism is identically zero
- if A diagaonlizable then
$p_{A}(A)=X p_{A}(\Lambda) X^{-1}=X \operatorname{diag}\left(p_{A}\left(\lambda_{1}\right), \ldots, p_{A}\left(\lambda_{n}\right)\right) X^{-1}=0$
since $p_{A}(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$
- earlier: $X=\left\{A \in \mathbb{A}^{n \times n}: A\right.$ has n distinct eigenvalues $\}$ Zariski dense in $\mathbb{A}^{n \times n}$
- pitfall: most proofs you find will just declare that we're done since two continuous maps $A \mapsto p_{A}(A)$ and $A \mapsto 0$ agreeing on a dense set implies they are the same map
- problem: codomain $\mathbb{A}^{n \times n}$ is not Hausdorff!

need irreducibility

- let

$$
\begin{aligned}
& X=\left\{A \in \mathbb{A}^{n \times n}: A \text { has } n \text { distinct eigenvalues }\right\} \\
& Y=\left\{A \in \mathbb{A}^{n \times n}: p_{A}(A)=0\right\} \\
& Z=\left\{A \in \mathbb{A}^{n \times n}: \operatorname{disc}\left(p_{A}\right)=0\right\}
\end{aligned}
$$

- now $X \subseteq Y$ by previous slide
- but $X=\left\{A \in \mathbb{A}^{n \times n}: \operatorname{disc}\left(p_{A}\right) \neq 0\right\}$ by earlier slide
- so we must have $Y \cup Z=\mathbb{A}^{n \times n}$
- since $\mathbb{A}^{n \times n}$ irreducible, either $Y=\varnothing$ or $Z=\varnothing$
- $Y \supseteq X \neq \varnothing$, so $Z=\varnothing$ and $Y=\mathbb{A}^{n \times n}$

Questions From Yesterday

unresolved questions

(1) how to define affine variety intrinsically?

2 what is the 'actual definition' of an affine variety that we kept alluding to?
(3) why is $\mathbb{A}^{1} \backslash\{0\}$ an affine variety?
(4) why is $G L_{n}(\mathbb{C})$ an affine variety?
same answer to all four questions

special example

hyperbola: $C=\mathbb{V}(x y-1)=\left\{\left(t, t^{-1}\right): t \neq 0\right\} \simeq \mathbb{A}^{1} \backslash\{0\}$

$$
\begin{array}{rlrl}
\mathbb{A}^{1} \backslash\{0\} & \xrightarrow{F} C & C & \stackrel{G}{\longrightarrow} \\
t & \mathbb{A}^{1} \backslash\{0\} \\
& \left(t, t^{-1}\right) & (x, y) & \longmapsto x
\end{array}
$$

(there's a slight problem)

new defintion

- redefine affine variety to be any object that is isomorphic to a Zariski closed subset of \mathbb{A}^{n}
- advantage: does not depend on embedding, i.e., intrinsic
- what we called 'affine variety' should instead have been called Zariski closed sets
- $\mathbb{A}^{1} \backslash\{0\} \simeq \mathbb{V}(x y-1)$ and $\mathbb{V}(x y-1)$ Zariski closed in \mathbb{A}^{2}, so $\mathbb{A}^{1} \backslash\{0\}$ affine variety
(there's a slight problem again)

general linear group

- likewise $\mathrm{GL}_{n}(\mathbb{C}) \simeq \mathbb{V}(\operatorname{det}(X) y-1)$

$$
\begin{aligned}
\mathrm{GL}(\mathbb{C}) & \xrightarrow{F}\left\{(X, y) \in \mathbb{A}^{n^{2}+1}: \operatorname{det}(X) y=1\right\} \\
X & \longmapsto\left(X, \operatorname{det}(X)^{-1}\right)
\end{aligned}
$$

has inverse

$$
\begin{aligned}
\left\{(X, y) \in \mathbb{A}^{n^{2}+1}: \operatorname{det}(X) y=1\right\} & \xrightarrow{G} \mathrm{GL}_{n}(\mathbb{C}) \\
(X, y) & \longmapsto X
\end{aligned}
$$

- $G L_{n}(\mathbb{C})$ affine variety since $\mathbb{V}(\operatorname{det}(X) y-1)$ closed in $\mathbb{A}^{n^{2}+1}$
(there's a slight problem yet again)

resolution of slight problems

- problems:
(1) $t \mapsto\left(t, t^{-1}\right)$ and $X \mapsto\left(X, \operatorname{det}(X)^{-1}\right)$ are not morphisms of affine varieties as t^{-1} and $\operatorname{det}(X)^{-1}$ are not polynomials

2) we didn't specify what we meant by 'any object'

- resolution:
object = quasi-projective variety
morphism = morphism of quasi-projective varieties
- from now on:
affine variety: Zariski closed subset of \mathbb{A}^{n}, e.g. $\mathbb{V}(x y-1)$ quasi-affine variety: quasi-projective variety isomorphic to an affine variety, e.g. $\mathbb{A}^{1} \backslash\{0\}$

