Algebraic Geometry of Matrices II

Lek-Heng Lim

University of Chicago

July 3, 2013

today

- Zariski topology
- irreducibility
- maps between varieties
- answer our last question from yesterday
- again, relate to linear algebra/matrix theory

Zariski Topology

basic properties of affine varieties

 recall: affine variety = common zeros of a collection of complex polynomials

 $\mathbb{V}(\{F_j\}_{j\in J}) = \{(x_1,\ldots,x_n)\in\mathbb{C}^n: F_j(x_1,\ldots,x_n) = 0 \text{ for all } j\in J\}$

- recall: $\emptyset = \mathbb{V}(1)$ and $\mathbb{C}^n = \mathbb{V}(0)$
- intersection of two affine varieties is affine variety

 $\mathbb{V}(\{F_i\}_{i\in I})\cap\mathbb{V}(\{F_j\}_{j\in J})=\mathbb{V}(\{F_i\}_{i\in I\cup J})$

union of two affine varieties is affine variety

 $\mathbb{V}(\{F_i\}_{i\in I})\cup\mathbb{V}(\{F_j\}_{j\in J})=\mathbb{V}(\{F_iF_j\}_{(i,j)\in I\times J})$

• easiest to see for hypersurfaces

 $\mathbb{V}(F_1) \cup \mathbb{V}(F_2) = \mathbb{V}(F_1F_2)$

since $F_1(x)F_2(x) = 0$ iff $F_1(x) = 0$ or $F_2(x) = 0$

Zariski topology

- let $\mathcal{V} = \{ all affine varieties in \mathbb{C}^n \}, then$
 - 1 $\emptyset \in \mathcal{V}$ 2 $\mathbb{C}^n \in \mathcal{V}$
 - **3** if $V_1, \ldots, V_n \in \mathcal{V}$, then $\bigcup_{i=1}^n V_i \in \mathcal{V}$
 - 4 if $V_{\alpha} \in \mathcal{V}$ for all $\alpha \in A$, then $\bigcap_{\alpha \in A} V_{\alpha} \in \mathcal{V}$
- let $\mathcal{Z} = \{\mathbb{C}^n \setminus V : V \in \mathcal{V}\}$
- then Z is topology on Cⁿ: Zariski topology
- write Aⁿ for topological space (Cⁿ, Z): affine *n*-space
- Zariski open sets are complements of affine varieties
- Zariski closed sets are affine varieties
- write ${\mathcal E}$ for Euclidean topology, then ${\mathcal Z} \subset {\mathcal E},$ i.e.,
 - Zariski open \Rightarrow Euclidean open
 - Zariski closed \Rightarrow Euclidean closed

Zariski topology is weird

- \mathcal{Z} is much smaller than \mathcal{E} : Zariski topology is very coarse
 - basis for \mathcal{E} : $B_{\varepsilon}(\mathbf{x})$ where $\mathbf{x} \in \mathbb{C}^{n}$, $\varepsilon > 0$
 - basis for \mathcal{Z} : { $\mathbf{x} \in \mathbb{A}^n : f(\mathbf{x}) \neq 0$ } where $f \in \mathbb{C}[\mathbf{x}]$
- $\varnothing \neq S \in \mathcal{Z}$
 - S is unbounded under \mathcal{E}
 - S is dense under both \mathcal{Z} and \mathcal{E}
- nonempty Zariski open \Rightarrow generic \Rightarrow almost everywhere \Rightarrow Euclidean dense
- \mathcal{Z} not Hausdorff, e.g. on \mathbb{A}^1 , $\mathcal{Z} = \text{cofinite topology}$
- Zariski compact \Rightarrow Zariski closed, e.g. $\mathbb{A}^n \setminus \{\mathbf{0}\}$ compact
- Zariski topology on A² not product topology on A¹ × A¹,
 e.g. {(x, x) : x ∈ A¹} closed in A², not in A¹ × A¹

two cool examples

Zariski closed:

common roots: $\{(\mathbf{a}, \mathbf{b}) \in \mathbb{A}^4 \times \mathbb{A}^3 : a_0 + a_1x + a_2x^2 + a_3x^3 \text{ and } b_0 + b_1x + b_2x^2 \text{ have common roots}\}$

$$\left\{(\bm{a},\bm{b})\in\mathbb{A}^{7}:\det\left(\left[\begin{smallmatrix} a_{3}&a_{2}&a_{1}&a_{0}&0\\ 0&a_{3}&a_{2}&a_{1}&a_{0}\\ b_{2}&b_{1}&b_{0}&0&0\\ 0&b_{2}&b_{1}&b_{0}&0\\ 0&0&b_{2}&b_{1}&b_{0}\end{smallmatrix}\right]\right)=0\right\}$$

repeat roots: $\{\mathbf{a} \in \mathbb{A}^4 : a_0 + a_1x + a_2x^2 + a_3x^3 \text{ repeat roots}\}$

$$\left\{ \bm{a} \in \mathbb{A}^4 : \mathsf{det} \left(\begin{bmatrix} a_3 & a_2 & a_1 & a_0 & 0 \\ 0 & a_3 & a_2 & a_1 & a_0 \\ 2a_2 & a_1 & 0 & 0 & 0 \\ 0 & 2a_2 & a_1 & 0 & 0 \\ 0 & 0 & 2a_2 & a_1 & 0 \end{bmatrix} \right) = 0 \right\}$$

generally: first determinant is resultant, res(f, g), defined likewise for *f* and *g* of aribtrary degrees; second determinant is discriminant, disc(f) := res(f, f')

more examples

Zariski closed:

nilpotent matrices: $\{A \in \mathbb{A}^{n \times n} : A^k = 0\}$ for any fixed $k \in \mathbb{N}$ eigenvectors: $\{(A, \mathbf{x}) \in \mathbb{A}^{n \times (n+1)} : A\mathbf{x} = \lambda \mathbf{x} \text{ for some } \lambda \in \mathbb{C}\}$ repeat eigenvalues: $\{A \in \mathbb{A}^{n \times n} : A \text{ has repeat eigenvalues}\}$ Zariski open:

full rank: $\{A \in \mathbb{A}^{m \times n} : A \text{ has full rank}\}$

distinct eigenvalues: $\{A \in \mathbb{A}^{n \times n} : A \text{ has } n \text{ distinct eigenvalues}\}$

• write
$$p_A(x) = \det(xI - A)$$

 $\{A \in \mathbb{A}^{n \times \overline{n}} : \text{repeat eigenvalues}\} = \{A \in \mathbb{A}^{n \times n} : \text{disc}(p_A) = 0\}$ $\{A \in \mathbb{A}^{n \times n} : \text{distinct eigenvalues}\} = \{A \in \mathbb{A}^{n \times n} : \text{disc}(p_A) \neq 0\}$

- note $disc(p_A)$ is a polynomial in the entries of A
- will use this to prove Cayley-Hamilton theorem later

Irreducibility

reducibility

- affine variety V is reducible if $V = V_1 \cup V_2$, $\emptyset \neq V_i \subsetneq V$
- affine variety V is irreducible if it is not reducible
- every subset of Aⁿ can be broken up into nontrivial union of irreducible components

$$S = V_1 \cup \cdots \cup V_k$$

where $V_i \nsubseteq V_j$ for all $i \neq j$, V_i irreducible and closed in subspace topology of *S*

- decomposition above unique up to order
- $\mathbb{V}(F)$ irreducible variety if F irreducible polynomial
- non-empty Zariski open subsets of irreducible affine variety are Euclidean dense

example

 a bit like connectedness but not quite: the variety in A³ below is connected but reducible

 V(xy, xz) = V(y, z) ∪ V(x) with irreducible components yz-plane and x-axis

commuting matrix varieties

• define *k*-tuples of *n* × *n* commuting matrices

 $\mathcal{C}(k,n) := \{ (A_1,\ldots,A_k) \in (\mathbb{A}^{n \times n})^k : A_i A_j = A_j A_i \}$

- as usual, identify $(\mathbb{A}^{n \times n})^k \equiv \mathbb{A}^{kn^2}$
- clearly C(k, n) is affine variety

question: if $(A_1, \ldots, A_k) \in C(k, n)$, then are A_1, \ldots, A_k simultaneously diagaonalizable?

answer: no, only simultaneously triangularizable question: can we approximate A_1, \ldots, A_k by B_1, \ldots, B_k ,

$$\|A_i-B_i\|<\varepsilon,\quad i=1,\ldots,k,$$

where B_1, \ldots, B_k simultaneously diagonalizable ? anwer: yes, if and only if C(k, n) is irreducible question: for what values of k and n is C(k, n) irreducible?

what is known

- k = 2: C(2, n) irreducible for all $n \ge 1$ [Motzkin–Taussky, 1955]
- $k \ge 4$: C(4, n) reducible for all $n \ge 4$ [Gerstenhaber, 1961]
- $n \leq 3$: C(k, n) irreducible for all $k \geq 1$ [Gerstenhaber, 1961]
- k = 3: C(3, n) irreducible for all $n \le 10$, reducible for all $n \ge 29$ [Guralnick, 1992], [Holbrook–Omladič, 2001], [Šivic, 2012]

open: reducibility of C(3, n) for $11 \le n \le 28$

Maps Between Varieties

morphisms

- morphism of affine varieties: polynomial maps
- F morphism if

$$\mathbb{A}^n \xrightarrow{F} \mathbb{A}^m$$
$$(x_1, \ldots, x_n) \longmapsto (F_1(x_1, \ldots, x_n), \ldots, F_m(x_1, \ldots, x_n))$$

where $F_1, \ldots, F_m \in \mathbb{C}[x_1, \ldots, x_n]$

- V ⊆ Aⁿ, W ⊆ A^m affine algebraic varieties, say F : V → W morphism if it is restriction of some morphism Aⁿ → A^m
- say F isomorphism if (i) bijective; (ii) inverse G is morphism
- $V \simeq W$ isomorphic if there exists $F : V \rightarrow W$ isomorphism
- straightforward: morphism of affine varieties continuous in Zariski topology
- caution: morphism need not send affine varieties to affine varieties, i.e., not closed map

examples

affine map: $F : \mathbb{A}^n \to \mathbb{A}^n$, $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ morphism for $A \in \mathbb{C}^{n \times n}$, $\mathbf{b} \in \mathbb{C}^n$; isomorphism if $A \in \operatorname{GL}_n(\mathbb{C})$ projection: $F : \mathbb{A}^2 \to \mathbb{A}^1$, $(x, y) \mapsto x$ morphism parabola: $C = \mathbb{V}(y - x^2) = \{(t, t^2) \in \mathbb{A}^2 : t \in \mathbb{A}\} \simeq \mathbb{A}^1$

$$\mathbb{A}^1 \xrightarrow{F} C \qquad C \xrightarrow{G} \mathbb{A}^1 \ t \longmapsto (t, t^2) \qquad (x, y) \longmapsto x$$

twisted cubic: $\{(t, t^2, t^3) \in \mathbb{A}^3 : t \in \mathbb{A}\} \simeq \mathbb{A}^1$

Cayley-Hamilton

- recall: if $A \in \mathbb{C}^{n \times n}$ and $p_A(x) = \det(xI A)$, then $p_A(A) = 0$
- $\mathbb{A}^{n \times n} \to \mathbb{A}^{n \times n}$, $A \mapsto p_A(A)$ morphism
- · claim that this morphism is identically zero
- if A diagaonlizable then

 $p_A(A) = X p_A(\overline{\Lambda}) X^{-1} = X \operatorname{diag}(p_A(\lambda_1), \dots, p_A(\lambda_n)) X^{-1} = 0$

since $p_A(x) = \prod_{i=1}^n (x - \lambda_i)$

- earlier: $X = \{A \in \mathbb{A}^{n \times n} : A \text{ has } n \text{ distinct eigenvalues} \}$ Zariski dense in $\mathbb{A}^{n \times n}$
- pitfall: most proofs you find will just declare that we're done since two continuous maps A → p_A(A) and A → 0 agreeing on a dense set implies they are the same map
- problem: codomain A^{n×n} is not Hausdorff!

need irreducibility

let

 $X = \{A \in \mathbb{A}^{n \times n} : A \text{ has } n \text{ distinct eigenvalues} \}$ $Y = \{A \in \mathbb{A}^{n \times n} : p_A(A) = 0\}$ $Z = \{A \in \mathbb{A}^{n \times n} : \text{disc}(p_A) = 0\}$

- now $X \subseteq Y$ by previous slide
- but $X = \{A \in \mathbb{A}^{n \times n} : \operatorname{disc}(p_A) \neq 0\}$ by earlier slide
- so we must have $Y \cup Z = \mathbb{A}^{n \times n}$
- since $\mathbb{A}^{n \times n}$ irreducible, either $Y = \emptyset$ or $Z = \emptyset$
- $Y \supseteq X \neq \emptyset$, so $Z = \emptyset$ and $Y = \mathbb{A}^{n \times n}$

Questions From Yesterday

unresolved questions

- 1 how to define affine variety intrinsically?
- 2 what is the 'actual definition' of an affine variety that we kept alluding to?
- (3) why is $\mathbb{A}^1 \setminus \{0\}$ an affine variety?
- 4 why is $\operatorname{GL}_n(\mathbb{C})$ an affine variety?

same answer to all four questions

new defintion

- redefine affine variety to be any object that is isomorphic to a Zariski closed subset of Aⁿ
- advantage: does not depend on embedding, i.e., intrinsic
- what we called 'affine variety' should instead have been called Zariski closed sets
- $\mathbb{A}^1 \setminus \{0\} \simeq \mathbb{V}(xy 1)$ and $\mathbb{V}(xy 1)$ Zariski closed in \mathbb{A}^2 , so $\mathbb{A}^1 \setminus \{0\}$ affine variety

(there's a slight problem again)

general linear group

• likewise $\operatorname{GL}_n(\mathbb{C}) \simeq \mathbb{V}(\operatorname{det}(X)y - 1)$

$$\operatorname{GL}_n(\mathbb{C}) \stackrel{F}{\longrightarrow} \{(X, y) \in \mathbb{A}^{n^2+1} : \operatorname{det}(X)y = 1\}$$

 $X \longmapsto (X, \operatorname{det}(X)^{-1})$

has inverse

$$\{(X, y) \in \mathbb{A}^{n^2+1} : \det(X)y = 1\} \stackrel{G}{\longrightarrow} \operatorname{GL}_n(\mathbb{C})$$

 $(X, y) \longmapsto X$

GL_n(ℂ) affine variety since V(det(X)y - 1) closed in A^{n²+1}

(there's a slight problem yet again)

resolution of slight problems

• problems:

- 1 $t \mapsto (t, t^{-1})$ and $X \mapsto (X, \det(X)^{-1})$ are not morphisms of affine varieties as t^{-1} and $\det(X)^{-1}$ are not polynomials
- 2 we didn't specify what we meant by 'any object'
- resolution:

object = quasi-projective variety morphism = morphism of quasi-projective varieties

• from now on:

affine variety: Zariski closed subset of \mathbb{A}^n , e.g. $\mathbb{V}(xy - 1)$ quasi-affine variety: quasi-projective variety isomorphic to an affine variety, e.g. $\mathbb{A}^1 \setminus \{0\}$