Algebraic Geometry of Matrices IV

Lek-Heng Lim

University of Chicago

July 5, 2013

today

- coordinate ring and pullback
- dimension of affine variety
- relate to linear algebra/matrix analysis/operator theory
- Noether's normalization lemma¹

$Rings \leftrightarrow Varieties$

algebra-geometry revisited

 $\text{geometry} \longleftrightarrow \text{algebra}$

yesterday:

{affine varieties in \mathbb{A}^n } \longleftrightarrow {radical ideals in $\mathbb{C}[x_1, \ldots, x_n]$ }

today:

{affine varieties in \mathbb{A}^n } \longleftrightarrow {fin. gen. reduced rings over \mathbb{C} } also:

{morphisms $X \to Y$ } \longleftrightarrow {homomorphisms $\mathbb{C}[Y] \to \mathbb{C}[X]$ } new terminology later: rings over $\mathbb{C} = \mathbb{C}$ -algebra

supplemental glossary

• $\mathfrak{a} \subseteq R$ ideal, then quotient ring is

$$R/\mathfrak{a} := \{[r] = r + \mathfrak{a} : r \in R\}$$

- [r+s] := [r] + [s], [r][s] := [rs]
- quotient projection $\pi_{\mathfrak{a}}: R \to R/\mathfrak{a}, r \mapsto [r]$ is homomorphism
- π_a yields one-to-one correspondence:

{ideals in *R* containing \mathfrak{a} } \longleftrightarrow {ideals in *R*/ \mathfrak{a} }

 carries maximal/prime/radical ideals to maximal/prime/ radical ideals

C-algebra

- \mathbb{C} -algebra \mathcal{A} is both
 - 1 ring (associative, commutative, unital)
 - 2 vector space over $\mathbb C$
- \mathbb{C} -subalgebras $J \subseteq \mathcal{A}$ subset that are \mathbb{C} -algebras:
 - \mathbb{C} -subalgebras generated by set $S \subseteq \mathcal{A}$ is

 $[S] = \bigcap \{: S \subseteq J, J \subseteq A \text{ a } \mathbb{C}\text{-subalgebra} \}$ = smallest \mathbb{C} -subalgebra containing S= $\{f(s_1, \dots, s_n) \in A : f \in \mathbb{C}[x_1, \dots, x_n], s_i \in S\}$

• *J* finitely generated if for some $s_1, \ldots, s_m \in A$,

$$J = [s_1, \ldots, s_m]$$

- caution: unlike ideals, may not define quotient \mathcal{A}/J
- \mathbb{C} -algebra homomorphism $\varphi : \mathcal{A} \to \mathcal{B}$ is both
 - 1 ring homomorphism
 - 2 \mathbb{C} -linear transformation

examples

- $\mathbb{C}[x, y]$ is \mathbb{C} -algebra finitely generated by x, y
- quotient ring $\mathbb{C}[x,y]/\langle x^2+y^3\rangle$ also \mathbb{C} -algebra
- C-algebra homomorphism φ : C[x, y]/⟨x² + y³⟩ → C[z] completely determined by where it sends generators, e.g.

$$arphi(x)=z^3, \quad arphi(y)=-z^2, \ arphi(xy-3y^2)=arphi(x)arphi(y)-3arphi(y)^2=-z^5-3z^4$$

complex conjugation

$$\mathbb{C}[x] \to \mathbb{C}[x]$$
$$a_0 + a_1 x + \dots + a_n x^n \mapsto \overline{a}_0 + \overline{a}_1 x + \dots + \overline{a}_n x^n$$

is ring homomorphism but not $\mathbb{C}\text{-algebra}$ homomorphism

 most important source of examples for us: coordinate rings of affine varieties

\mathbb{C} -valued functions

- we studied morphisms $X \rightarrow Y$ between affine varieties
- now we consider special case when $Y = \mathbb{C}$
- why: to understand a mathematical object, it helps to understand C-valued functions on that object
- cf. C^* -algebra and von Neumann algebra from yesterday
- want the 'right level' of regularity:

*C**-algebra: continuous functions on locally compact Haudorff space

von Neumann algebra: L^{∞} -functions on σ -finite measure space

finitely generated reduced C-algebra: polynomial functions on affine variety

- polynomial function means $f \in \mathbb{C}[x_1, \ldots, x_n]$
 - defines \mathbb{C} -valued function $f : \mathbb{A}^n \to \mathbb{C}$
 - restricts to \mathbb{C} -valued function $f: V \to \mathbb{C}$ for affine variety $V \subseteq \mathbb{A}^n$

coordinate ring

• coordinate rings of affine variety $V \subseteq \mathbb{A}^n$ is

$$\mathbb{C}[V] := \{f : V \to \mathbb{C} : f \in \mathbb{C}[x_1, \dots, x_n]\}$$

- clearly a C-algebra
- $\varphi : \mathbb{C}[x_1, \dots, x_n] \to \mathbb{C}[V], f \mapsto f|_V$ is homomorphism and since $\ker(\varphi) = \mathbb{I}(V)$

$$\mathbb{C}[V] \simeq \mathbb{C}[x_1, \ldots, x_n]/\mathbb{I}(V)$$

for any V ⊆ Aⁿ, C[V] is always a finitely generated reduced
 C-algebra by what we saw yesterday:

{affine varieties in \mathbb{A}^n } \longleftrightarrow {radical ideals in $\mathbb{C}[x_1, \ldots, x_n]$ }

• i.e., $\mathbb{I}(V)$ always a radical ideal

converse also true

- can show: any finitely generated reduced C-algebra is the coordinate ring of some affine variety V ⊆ Aⁿ
- get correspondence

{affine varieties in \mathbb{A}^n } \longleftrightarrow {fin. gen. reduced \mathbb{C} -algebra}

- conditions too restrictive: e.g. may have nilpotent elements, infinitely generated, ℤ-module instead of ℂ-vector space
- e.g. Fermat's last theorem

$$R = \mathbb{Z}[x, y, z]/\langle x^n + y^n - z^n \rangle$$

Grothendieck's answer: use affine schemes

 $\{affine \ schemes\} \longleftrightarrow \{unital \ commutative \ rings\}$

examples

Hilbert nullstellensatz: $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$ 2 $V = \mathbb{V}(x^2 + y^2 + z^2) \subset \mathbb{A}^3$, $\mathbb{C}[V] \simeq \mathbb{C}[x, y, z]/\langle x^2 + y^2 + z^2 \rangle$ $x^2 + v^2 + z^2 = 0$ in $\mathbb{C}[V]$ 3 $V = \mathbb{V}(xy-1) \subset \mathbb{A}^2, \mathbb{C}[V] \simeq \mathbb{C}[x, y]/\langle xy-1 \rangle$ 1/x = v in $\mathbb{C}[V]$ $V = \mathbb{V}(x^2 + y^2 - z^2) \subset \mathbb{A}^3, \mathbb{C}[V] \simeq \mathbb{C}[x, y, z]/\langle x^2 + y^2 - z^2 \rangle$ $x^{3}+2xv^{2}-2xz^{2}+x=2x(x^{2}+v^{2}-z^{2})+x-x^{3}=x-x^{3}$ in $\mathbb{C}[V]$

moral: arithmetic on $\mathbb{C}[V]$ is done modulo $\mathbb{I}(V)$

pullback

• morphism $F: V \rightarrow W$ of affine varieties induces unique \mathbb{C} -algebra homomorphism, called pullback,

 $F^*: \mathbb{C}[W] \to \mathbb{C}[V], \quad g \mapsto g \circ F$

- converse also true: any C-algebra homomorphism
 φ : C[W] → C[V] induces unique morphism φ^{*} : V → W
- get correspondence

{morphisms $X \to Y$ } \longleftrightarrow {homomorphisms $\mathbb{C}[Y] \to \mathbb{C}[X]$ } $F \longmapsto F^*$ $\varphi^* \longleftrightarrow \varphi$

 cf. smooth maps *f* : *M* → *N* of differential manifolds induces pullback *f*^{*} from 1-forms on *N* to 1-forms on *M*

pullbacks are useful

- pullback F^{*}: C[W] → C[V] injective iff F is dominant, i.e., image F(V) is dense in W
- pullback F^{*}: C[W] → C[V] surjective iff F defines isomorphism between V and some affine subvariety of W
- how these may be applied: Ke Ye's talk next week

examples

morphism

$$F: \mathbb{A}^3 \to \mathbb{A}^2, \quad (x, y, z) \mapsto (x^2y, x - z)$$

induces pullback

$$F^*: \mathbb{C}[u, v] \to \mathbb{C}[x, y, z], \quad u \mapsto x^2 y, \ v \mapsto x - z$$

completely determined by where it sends generators, e.g.

$$\varphi(u^2 + 5v^3) = (x^2y)^2 + 5(x-z)^3$$

2 linear morphism

$$F: \mathbb{A}^n \to \mathbb{A}^m, \quad \mathbf{x} \mapsto A\mathbf{x}$$

for some $A \in \mathbb{C}^{m \times n}$ has pullback

 $F^*: \mathbb{A}^m \to \mathbb{A}^n, \quad \mathbf{y} \mapsto A^\mathsf{T} \mathbf{y}$

an earlier example

• parabola $C = \mathbb{V}(y - x^2) = \{(t, t^2) \in \mathbb{A}^2 : t \in \mathbb{A}\} \simeq \mathbb{A}^1$

morphism is isomorphism of affine varieties

$$F: \mathbb{A}^1 \to C, \quad t \mapsto (t, t^2)$$

• pullback $F^* : \mathbb{C}[C] \to \mathbb{C}[\mathbb{A}^1]$ surjective with zero kernel

$$\mathbb{C}[x,y]/\langle y-x^2
angle o \mathbb{C}[t], \quad x\mapsto t, \ y\mapsto t^2$$

i.e., isomorphism of \mathbb{C} -algebras

exercises for the audience

■ if $F = (F_1, ..., F_n) : \mathbb{A}^n \to \mathbb{A}^n$ is an isomorphism of affine varieties, then the Jacobian determinant,

$$\det \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{bmatrix} \in \mathbb{C}^{\times}$$

2 show that the converse is also true²

² just kidding: this is the Jacobian conjecture

Dimension

dimension

- important notion for graphs, commutative rings, vector spaces, manifolds, metric spaces, topological spaces
- many ways to define dim(V) of affine variety V ⊆ Aⁿ
 largest d so that there exists

$$V_d \supseteq V_{d-1} \supseteq \cdots \supseteq V_1 \supseteq V_0$$

where V_i irreducible subvarieties of V for all i = 1, ..., d2) largest d so that there exists

 $\mathfrak{p}_d \supsetneq \mathfrak{p}_{d-1} \supsetneq \cdots \supsetneq \mathfrak{p}_1 \supsetneq \mathfrak{p}_0$

where \mathfrak{p}_i prime ideals of $\mathbb{C}[V]$ for all $i = 1, \dots, d$

- second way: Krull dimension of a commutative ring
- several other ways:
 - transcendental degree of $\mathbb{C}[V]$
 - maximal dimensions of tangent space at smooth points
 - number of general hyperplanes needed to intersect V

examples

- dim(\mathbb{A}^1) = 1 since {line} \supseteq {point}
- dim(\mathbb{A}^n) = n
- dim($\mathbb{V}(xy, xz)$) = 2

irreducible components $\mathbb{V}(y, z), \mathbb{V}(x)$ different dimensions

• dimension near a point $\dim_{\rho}(V)$ is largest d so that

$$V_d \supseteq V_{d-1} \supseteq \cdots \supseteq V_1 \supseteq V_0 = \{p\}$$

subvariety and dimension

- · dimension of irreducible variety is same at all points
- every variety contains dense Zariski-open subset of smooth points
- dimension of variety same as dimension of complex manifold of smooth points
- if $V \subseteq W$, then dim $(V) \leq \dim(W)$
- if $V \subseteq W$ where W irreducible, then

 $\dim(V) = \dim(W) \quad \Rightarrow \quad V = W$

more examples

Grassmann variety: dimension same as Grassmann manifold

 $\dim(\operatorname{Gr}(n,k)) = k(n-k)$

commuting matrix varieties: if C(k, n) irreducible, then

$$\dim(\mathcal{C}(k,n)) = n^2 + (k-1)n$$

nilpotent matrices: $\mathcal{N}(n) := \{X \in \mathbb{A}^{n \times n} : A^k = 0 \text{ for some} \ k \in \mathbb{N}\}$ is irreducible and

 $\dim(\mathcal{N}(n)) = n^2 - n$

morphism and dimension

- V and W vector spaces
 - $F: V \rightarrow W$ surjective linear map, then dim $(V) \ge \dim(W)$
 - $F: V \to W$ surjective linear map, then for all $w \in W$

 $\dim(F^{-1}(w)) = \dim(V) - \dim(W)$

rank-nullity theorem: $\operatorname{nullity}(F) = \operatorname{dim}(V) - \operatorname{rank}(F)$

- $V \subseteq \mathbb{A}^n$ and $W \subseteq \mathbb{A}^m$ affine varieties
 - $F: V \rightarrow W$ surjective morphism, then dim(V) \geq dim(W)
 - $F: V \rightarrow W$ surjective morphism, then for all $w \in W$,

 $\dim(F^{-1}(w)) \ge \dim(V) - \dim(W)$

and for generic $w \in W$,

 $\dim(F^{-1}(w)) = \dim(V) - \dim(W)$

'rank-nullity theorem for morphisms'

why: linear transformations on vector spaces
 = linear morphisms on linear affine varieties

Acknowledgment

sources

- books:
- J. Harris, Algebraic Geometry: A First Course, Springer, 1995
 - M. Khalkhali, Basic Noncommutative Geometry, EMS, 2009
 - K. O'Meara, J. Clark, C. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford, 2011
 - K. Smith, L. Kahanpää, P. Kekäläinen, W. Traves, An Invitation to Algebraic Geometry, Springer, 2004
- D. Arapura, Notes on Basic Algebraic Geometry, Spring 2008
 - B. Moonen, An Introduction to Algebraic Geometry, Spring 2013
 - L. Garcia-Puente, F. Sottile, Introduction to Applicable Algebraic Geometry, Winter 2007
- R. Bhatia, "Linear algebra to guantum cohomology: the story of Alfred Horn's inequalities," Amer. Math. Monthly, 108 (2001), no. 4, pp. 289–318
 - A. Klyachko, "Stable bundles, representation theory and Hermitian operators," Selecta Math., 4 (1998), no. 3, pp. 419-445
 - Mathematics Stack Exchange
 - MathOverflow
 - Terry Tao's Blog
 - Wikipedia

notes:

papers:

web:

thanks

people:

- uncredited creators of figures in these slides (via Google)
 - Chung-Pang Mok
 - Klemen Šivic
 - Ke Ye
- funding:
- AFOSR FA9550-13-1-0133
 - NSF DMS 1209136
 - NSF DMS 1057064