Algebraic Geometry of Matrices IV

Lek-Heng Lim

University of Chicago

July 5, 2013

today

- coordinate ring and pullback
- dimension of affine variety
- relate to linear algebra/matrix analysis/operator theory
- Noether's normalization lemma ${ }^{1}$
${ }^{1} \mathrm{cf}$. . Ke Ye's tutorial at 3:30pm

Rings \longleftrightarrow Varieties

algebra-geometry revisited

geometry \longleftrightarrow algebra

yesterday:
$\left\{\right.$ affine varieties in $\left.\mathbb{A}^{n}\right\} \longleftrightarrow\left\{\right.$ radical ideals in $\left.\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}$
today:
$\left\{\right.$ affine varieties in $\left.\mathbb{A}^{n}\right\} \longleftrightarrow\{$ fin. gen. reduced rings over $\mathbb{C}\}$
also:
$\{$ morphisms $X \rightarrow Y\} \longleftrightarrow\{$ homomorphisms $\mathbb{C}[Y] \rightarrow \mathbb{C}[X]\}$
new terminology later: rings over $\mathbb{C}=\mathbb{C}$-algebra

supplemental glossary

- $\mathfrak{a} \subseteq R$ ideal, then quotient ring is

$$
R / \mathfrak{a}:=\{[r]=r+\mathfrak{a}: r \in R\}
$$

- $[r+s]:=[r]+[s],[r][s]:=[r s]$
- quotient projection $\pi_{\mathfrak{a}}: R \rightarrow R / \mathfrak{a}, r \mapsto[r]$ is homomorphism
- $\pi_{\mathfrak{a}}$ yields one-to-one correspondence:
$\{$ ideals in R containing $\mathfrak{a}\} \longleftrightarrow\{$ ideals in $R / \mathfrak{a}\}$
- carries maximal/prime/radical ideals to maximal/prime/ radical ideals

\mathbb{C}-algebra

- \mathbb{C}-algebra \mathcal{A} is both
(1) ring (associative, commutative, unital)
(2) vector space over \mathbb{C}
- \mathbb{C}-subalgebras $J \subseteq \mathcal{A}$ subset that are \mathbb{C}-algebras:
- \mathbb{C}-subalgebras generated by set $S \subseteq \mathcal{A}$ is

$$
\begin{aligned}
{[S] } & =\bigcap\{: S \subseteq J, J \subseteq \mathcal{A} \text { a } \mathbb{C} \text {-subalgebra }\} \\
& =\text { smallest } \mathbb{C} \text {-subalgebra containing } S \\
& =\left\{f\left(s_{1}, \ldots, s_{n}\right) \in \mathcal{A}: f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], s_{i} \in S\right\}
\end{aligned}
$$

- J finitely generated if for some $s_{1}, \ldots, s_{m} \in \mathcal{A}$,

$$
J=\left[s_{1}, \ldots, s_{m}\right]
$$

- caution: unlike ideals, may not define quotient \mathcal{A} / J
- \mathbb{C}-algebra homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is both
(1) ring homomorphism
(2) \mathbb{C}-linear transformation

examples

- $\mathbb{C}[x, y]$ is \mathbb{C}-algebra finitely generated by x, y
- quotient ring $\mathbb{C}[x, y] /\left\langle x^{2}+y^{3}\right\rangle$ also \mathbb{C}-algebra
- \mathbb{C}-algebra homomorphism $\varphi: \mathbb{C}[x, y] /\left\langle x^{2}+y^{3}\right\rangle \rightarrow \mathbb{C}[z]$ completely determined by where it sends generators, e.g.

$$
\begin{gathered}
\varphi(x)=z^{3}, \quad \varphi(y)=-z^{2}, \\
\varphi\left(x y-3 y^{2}\right)=\varphi(x) \varphi(y)-3 \varphi(y)^{2}=-z^{5}-3 z^{4}
\end{gathered}
$$

- complex conjugation

$$
\begin{aligned}
\mathbb{C}[x] & \rightarrow \mathbb{C}[x] \\
a_{0}+a_{1} x+\cdots+a_{n} x^{n} & \mapsto \bar{a}_{0}+\bar{a}_{1} x+\cdots+\bar{a}_{n} x^{n}
\end{aligned}
$$

is ring homomorphism but not \mathbb{C}-algebra homomorphism

- most important source of examples for us: coordinate rings of affine varieties

\mathbb{C}-valued functions

- we studied morphisms $X \rightarrow Y$ between affine varieties
- now we consider special case when $Y=\mathbb{C}$
- why: to understand a mathematical object, it helps to understand \mathbb{C}-valued functions on that object
- cf. C^{*}-algebra and von Neumann algebra from yesterday
- want the 'right level' of regularity:
C^{*}-algebra: continuous functions on locally compact Haudorff space
von Neumann algebra: L^{∞}-functions on σ-finite measure space
finitely generated reduced \mathbb{C}-algebra: polynomial functions on affine variety
- polynomial function means $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- defines \mathbb{C}-valued function $f: \mathbb{A}^{n} \rightarrow \mathbb{C}$
- restricts to \mathbb{C}-valued function $f: V \rightarrow \mathbb{C}$ for affine variety $V \subseteq \mathbb{A}^{n}$

coordinate ring

- coordinate rings of affine variety $V \subseteq \mathbb{A}^{n}$ is

$$
\mathbb{C}[V]:=\left\{f: V \rightarrow \mathbb{C}: f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

- clearly a \mathbb{C}-algebra
- $\varphi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}[V],\left.f \mapsto f\right|_{V}$ is homomorphism and since $\operatorname{ker}(\varphi)=\mathbb{I}(V)$

$$
\mathbb{C}[V] \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathbb{I}(V)
$$

- for any $V \subseteq \mathbb{A}^{n}, \mathbb{C}[V]$ is always a finitely generated reduced \mathbb{C}-algebra by what we saw yesterday:
$\left\{\right.$ affine varieties in $\left.\mathbb{A}^{n}\right\} \longleftrightarrow\left\{\right.$ radical ideals in $\left.\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}$
- i.e., $\mathbb{I}(V)$ always a radical ideal

converse also true

- can show: any finitely generated reduced \mathbb{C}-algebra is the coordinate ring of some affine variety $V \subseteq \mathbb{A}^{n}$
- get correspondence $\left\{\right.$ affine varieties in $\left.\mathbb{A}^{n}\right\} \longleftrightarrow\{$ fin. gen. reduced \mathbb{C}-algebra $\}$
- conditions too restrictive: e.g. may have nilpotent elements, infinitely generated, \mathbb{Z}-module instead of \mathbb{C}-vector space
- e.g. Fermat's last theorem

$$
R=\mathbb{Z}[x, y, z] /\left\langle x^{n}+y^{n}-z^{n}\right\rangle
$$

- Grothendieck's answer: use affine schemes
$\{$ affine schemes $\} \longleftrightarrow$ \{unital commutative rings \}

examples

Hilbert nullstellensatz: $\mathbb{I}(\mathbb{V}(I))=\sqrt{I}$
(1) $\mathbb{C}\left[\mathbb{A}^{n}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
(2) $V=\mathbb{V}\left(x^{2}+y^{2}+z^{2}\right) \subseteq \mathbb{A}^{3}, \mathbb{C}[V] \simeq \mathbb{C}[x, y, z] /\left\langle x^{2}+y^{2}+z^{2}\right\rangle$

$$
x^{2}+y^{2}+z^{2}=0 \quad \text { in } \mathbb{C}[V]
$$

(3) $V=\mathbb{V}(x y-1) \subseteq \mathbb{A}^{2}, \mathbb{C}[V] \simeq \mathbb{C}[x, y] /\langle x y-1\rangle$

$$
1 / x=y \quad \text { in } \mathbb{C}[V]
$$

(4. $V=\mathbb{V}\left(x^{2}+y^{2}-z^{2}\right) \subseteq \mathbb{A}^{3}, \mathbb{C}[V] \simeq \mathbb{C}[x, y, z] /\left\langle x^{2}+y^{2}-z^{2}\right\rangle$

$$
x^{3}+2 x y^{2}-2 x z^{2}+x=2 x\left(x^{2}+y^{2}-z^{2}\right)+x-x^{3}=x-x^{3} \quad \text { in } \mathbb{C}[V]
$$

moral: arithmetic on $\mathbb{C}[V]$ is done modulo $\mathbb{I}(V)$

pullback

- morphism $F: V \rightarrow W$ of affine varieties induces unique \mathbb{C}-algebra homomorphism, called pullback,

$$
F^{*}: \mathbb{C}[W] \rightarrow \mathbb{C}[V], \quad g \mapsto g \circ F
$$

- converse also true: any \mathbb{C}-algebra homomorphism $\varphi: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ induces unique morphism $\varphi^{*}: V \rightarrow W$
- get correspondence
$\{$ morphisms $X \rightarrow Y\} \longleftrightarrow\{$ homomorphisms $\mathbb{C}[Y] \rightarrow \mathbb{C}[X]\}$

$$
\begin{gathered}
F \longmapsto F^{*} \\
\varphi^{*} \longleftrightarrow \varphi
\end{gathered}
$$

- cf. smooth maps $f: M \rightarrow N$ of differential manifolds induces pullback f^{*} from 1-forms on N to 1-forms on M

pullbacks are useful

- pullback $F^{*}: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ injective iff F is dominant, i.e., image $F(V)$ is dense in W
- pullback $F^{*}: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ surjective iff F defines isomorphism between V and some affine subvariety of W
- how these may be applied: Ke Ye's talk next week

examples

(1) morphism

$$
F: \mathbb{A}^{3} \rightarrow \mathbb{A}^{2}, \quad(x, y, z) \mapsto\left(x^{2} y, x-z\right)
$$

induces pullback

$$
F^{*}: \mathbb{C}[u, v] \rightarrow \mathbb{C}[x, y, z], \quad u \mapsto x^{2} y, v \mapsto x-z
$$

completely determined by where it sends generators, e.g.

$$
\varphi\left(u^{2}+5 v^{3}\right)=\left(x^{2} y\right)^{2}+5(x-z)^{3}
$$

(2) linear morphism

$$
F: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}, \quad \mathbf{x} \mapsto \mathbf{A} \mathbf{x}
$$

for some $A \in \mathbb{C}^{m \times n}$ has pullback

$$
F^{*}: \mathbb{A}^{m} \rightarrow \mathbb{A}^{n}, \quad \mathbf{y} \mapsto A^{\top} \mathbf{y}
$$

an earlier example

- parabola $C=\mathbb{V}\left(y-x^{2}\right)=\left\{\left(t, t^{2}\right) \in \mathbb{A}^{2}: t \in \mathbb{A}\right\} \simeq \mathbb{A}^{1}$

- morphism is isomorphism of affine varieties

$$
F: \mathbb{A}^{1} \rightarrow C, \quad t \mapsto\left(t, t^{2}\right)
$$

- pullback $F^{*}: \mathbb{C}[C] \rightarrow \mathbb{C}\left[\mathbb{A}^{1}\right]$ surjective with zero kernel

$$
\mathbb{C}[x, y] /\left\langle y-x^{2}\right\rangle \rightarrow \mathbb{C}[t], \quad x \mapsto t, y \mapsto t^{2}
$$

i.e., isomorphism of \mathbb{C}-algebras

exercises for the audience

(1) if $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is an isomorphism of affine varieties, then the Jacobian determinant,

$$
\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}} & \ldots & \frac{\partial F_{n}}{\partial x_{n}}
\end{array}\right] \in \mathbb{C}^{\times}
$$

(2) show that the converse is also true ${ }^{2}$
${ }^{2}$ just kidding: this is the Jacobian conjecture

Dimension

dimension

- important notion for graphs, commutative rings, vector spaces, manifolds, metric spaces, topological spaces
- many ways to define $\operatorname{dim}(V)$ of affine variety $V \subseteq \mathbb{A}^{n}$
(1) largest d so that there exists

$$
V_{d} \supsetneq V_{d-1} \supsetneq \cdots \supsetneq V_{1} \supsetneq V_{0}
$$

where V_{i} irreducible subvarieties of V for all $i=1, \ldots, d$
(2) largest d so that there exists

$$
\mathfrak{p}_{d} \supsetneq \mathfrak{p}_{d-1} \supsetneq \cdots \supsetneq \mathfrak{p}_{1} \supsetneq \mathfrak{p}_{0}
$$

where \mathfrak{p}_{i} prime ideals of $\mathbb{C}[V]$ for all $i=1, \ldots, d$

- second way: Krull dimension of a commutative ring
- several other ways:
- transcendental degree of $\mathbb{C}[\mathrm{V}]$
- maximal dimensions of tangent space at smooth points
- number of general hyperplanes needed to intersect V

examples

- $\operatorname{dim}\left(\mathbb{A}^{1}\right)=1$ since $\{$ line $\} \supsetneq\{$ point $\}$
- $\operatorname{dim}\left(\mathbb{A}^{n}\right)=n$
- $\operatorname{dim}(\mathbb{V}(x y, x z))=2$

irreducible components $\mathbb{V}(y, z), \mathbb{V}(x)$ different dimensions
- dimension near a point $\operatorname{dim}_{p}(V)$ is largest d so that

$$
V_{d} \supsetneq V_{d-1} \supsetneq \cdots \supsetneq V_{1} \supsetneq V_{0}=\{p\}
$$

subvariety and dimension

- dimension of irreducible variety is same at all points
- every variety contains dense Zariski-open subset of smooth points
- dimension of variety same as dimension of complex manifold of smooth points
- if $V \subseteq W$, then $\operatorname{dim}(V) \leq \operatorname{dim}(W)$
- if $V \subseteq W$ where W irreducible, then

$$
\operatorname{dim}(V)=\operatorname{dim}(W) \quad \Rightarrow \quad V=W
$$

more examples

Grassmann variety: dimension same as Grassmann manifold

$$
\operatorname{dim}(\operatorname{Gr}(n, k))=k(n-k)
$$

commuting matrix varieties: if $\mathcal{C}(k, n)$ irreducible, then

$$
\operatorname{dim}(\mathcal{C}(k, n))=n^{2}+(k-1) n
$$

nilpotent matrices: $\mathcal{N}(n):=\left\{X \in \mathbb{A}^{n \times n}: A^{k}=0\right.$ for some $k \in \mathbb{N}\}$ is irreducible and

$$
\operatorname{dim}(\mathcal{N}(n))=n^{2}-n
$$

morphism and dimension

- V and W vector spaces
- $F: V \rightarrow W$ surjective linear map, then $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
- $F: V \rightarrow W$ surjective linear map, then for all $w \in W$

$$
\operatorname{dim}\left(F^{-1}(w)\right)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

rank-nullity theorem: $\operatorname{nullity}(F)=\operatorname{dim}(V)-\operatorname{rank}(F)$

- $V \subseteq \mathbb{A}^{n}$ and $W \subseteq \mathbb{A}^{m}$ affine varieties
- $F: V \rightarrow W$ surjective morphism, then $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
- $F: V \rightarrow W$ surjective morphism, then for all $w \in W$,

$$
\operatorname{dim}\left(F^{-1}(w)\right) \geq \operatorname{dim}(V)-\operatorname{dim}(W)
$$

and for generic $w \in W$,

$$
\operatorname{dim}\left(F^{-1}(w)\right)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

'rank-nullity theorem for morphisms'

- why: linear transformations on vector spaces
= linear morphisms on linear affine varieties

Acknowledgment

sources

books:

- J. Harris, Algebraic Geometry: A First Course, Springer, 1995
- M. Khalkhali, Basic Noncommutative Geometry, EMS, 2009
- K. O'Meara, J. Clark, C. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford, 2011
- K. Smith, L. Kahanpää, P. Kekäläinen, W. Traves, An Invitation to Algebraic Geometry, Springer, 2004
notes: - D. Arapura, Notes on Basic Algebraic Geometry, Spring 2008
- B. Moonen, An Introduction to Algebraic Geometry, Spring 2013
- L. Garcia-Puente, F. Sottile, Introduction to Applicable Algebraic Geometry, Winter 2007
papers: - R. Bhatia, "Linear algebra to quantum cohomology: the story of Alfred Horn's inequalities," Amer. Math. Monthly, 108 (2001), no. 4, pp. 289-318
- A. Klyachko, "Stable bundles, representation theory and Hermitian operators," Selecta Math., 4 (1998), no. 3, pp. 419-445
web: - Mathematics Stack Exchange
- MathOverflow
- Terry Tao's Blog
- Wikipedia

thanks

people: - uncredited creators of figures in these slides (via Google)

- Chung-Pang Mok
- Klemen Šivic
- Ke Ye
funding: • AFOSR FA9550-13-1-0133
- NSF DMS 1209136
- NSF DMS 1057064

