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today

coordinate ring and pullback

dimension of affine variety

relate to linear algebra/matrix analysis/operator theory
Noether’s normalization lemma

Tcf. Ke Ye's tutorial at 3:30pm



Rings «+— Varieties




algebra—geometry revisited

geometry «— algebra
yesterday:
{affine varieties in A"} «+— {radical ideals in C[xq, ..., Xn]}
today:
{affine varieties in A"} +— {fin. gen. reduced rings over C}
also:

{morphisms X — Y} «— {homomorphisms C[Y] — C[X]}

new terminology later: rings over C = C-algebra



supplemental glossary

a C Rideal, then is

R/a:={[rl=r+a:reR}

[r + s] == [r] + [s], [r][s] := [rs]
. 7o - R— R/a, r — [r] is homomorphism
74 Yields one-to-one correspondence:

{ideals in R containing a} +— {ideals in R/a}

carries maximal/prime/radical ideals to maximal/prime/
radical ideals



C-algebra

e (C-algebra A is both
@ ring (associative, commutative, unital)
@ vector space over C

e C-subalgebras J C A subset that are C-algebras:
e C-subalgebras generated by set S C A is

[S]=({: SCJ, J C AaC-subalgebra}
= smallest C-subalgebra containing S
={f(s1,.-.,8n) € A: f€C[xq,...,Xn], Si € S}
e Jfinitely generated if for some sq,...,8ym € A,
J= [S1,...,Sm]

e caution: unlike ideals, may not define quotient A/J
e C-algebra homomorphism ¢ : A — B is both

@ ring homomorphism
@ C-linear transformation



examples

C[x, y] is C-algebra finitely generated by x, y

quotient ring C[x, y]/(x? + y®) also C-algebra

C-algebra homomorphism ¢ : C[x, y]/(x? + y®) — C|[Z]
completely determined by where it sends generators, e.g.

3 2

p(x) =27 o(y)=-2°
p(xy —3y?) = p(X)p(y) — 3p(y)? = —2° — 32*

complex conjugation

C[x] — CJx]
a+aiXx+---+apx"—ag+ayx+---+ apx”

is ring homomorphism but not C-algebra homomorphism

most important source of examples for us: coordinate rings
of affine varieties



C-valued functions

we studied morphisms X — Y between affine varieties
now we consider special case when Y = C

why: to understand a mathematical object, it helps to
understand C-valued functions on that object
cf. C*-algebra and von Neumann algebra from yesterday
want the ‘right level’ of regularity:
functions on locally compact
Haudorff space
-functions on o-finite measure
space
functions
on affine variety
polynomial function means f € C[x, ..., Xp]

o defines C-valued function f: A” — C
e restricts to C-valued function f : V — C for affine variety V C A"



coordinate ring
. of affine variety V C A" is
C[V] ={f:V=>C:feC[xq,..., X}

e clearly a C-algebra

e ¢ :C[x1,...,x5] = C[V], f — f|y is homomorphism and
since ker(yp) = I(V)

C[V] ~ Clx1, ..., xn)/I(V)

e forany V C A", C[V]is always a
by what we saw yesterday:

{affine varieties in A"} <— {radical ideals in C[xq, ..., X5}

e i.e., I(V) always a radical ideal



converse also true

e can show: any finitely generated reduced C-algebra is the
coordinate ring of some affine variety V C A"

get correspondence

{affine varieties in A"} <— {fin. gen. reduced C-algebra}

conditions too restrictive: e.g. may have nilpotent elements,
infinitely generated, Z-module instead of C-vector space

e.g. Fermat’s last theorem

R=1Z[x,y,z]/(x"+y" - 2"

Grothendieck’s answer: use affine schemes

{affine schemes} <— {unital commutative rings}



examples

Hilbert nullstellensatz: 1(V(/)) = /I
®» C[A"] =C[x1,...,Xn]
® V =V(x*+y?+2%) C A3, C[V] = Clx,y, 2] /(x* + y? + 2)

X2 +y2+722=0 inC[V]
® V=V(xy —1)C A% C[V] ~C[x,y]/(xy — 1)
1/x=y inC[V]
DV =V(x2+y?—22) C A3, C[V] ~C[x,y,z]/(x?+ y? — 2°)
x342xy2—2x224-x = 2x(x2+y?—2%)+x—x% = x—x> inC[V]

moral: arithmetic on C[V] is done modulo I( V)



pullback

e morphism F : V — W of affine varieties induces unique
C-algebra homomorphism, called :

F*:CW]—-C[V], g—goF

e converse also true: any C-algebra homomorphism
¢ : C[W] — C[V] induces unique morphism ¢* : V — W
¢ get correspondence

{morphisms X — Y} «— {homomorphisms C[Y] — C[X]}
F— F*
P i
e cf. smooth maps f : M — N of differential manifolds
induces pullback f* from 1-forms on N to 1-forms on M



pullbacks are useful

e pullback F* : C[W] — C[V] injective iff F is , l.e.,
image F(V) is dense in W

e pullback F* : C[W] — C[V] surjective iff F defines
isomorphism between V and some affine subvariety of W

e how these may be applied: Ke Ye’s talk next week



examples

» morphism
F:A% = A% (x,y,2)— (XPy,x — 2)
induces pullback
F*:Clu,v] - C[x,y,z], U~ x?y, visx—2z
completely determined by where it sends generators, e.g.
o(U? +5v3) = (x2y)? + 5(x — z)°
? linear morphism
F:A" - A™ x+s AX
for some A € C"™*" has pullback

F*:A™ - A"y Aly



an earlier example

e parabola C = V(y — x?) = {(t,1?) € A% : t € A} ~ A’

(tt?)

t
e morphism is isomorphism of affine varieties

F:A'>C, tw (1)
e pullback F* : C[C] — C[A'] surjective with zero kernel
Clx,¥l/{y =x®) = Clt], x=t, ywm 2

i.e., isomorphism of C-algebras



exercises for the audience

®if F=(F,...,Fy): A" — A" is an isomorphism of affine
varieties, then the !
oF OF;
0Xq e OXn
det | : t | eC”
9Fy 9Fy
0Xq o OXn

3 show that the converse is also true?

2just kidding: this is the Jacobian conjecture



Dimension




dimension

e important notion for graphs, commutative rings, vector
spaces, manifolds, metric spaces, topological spaces
e many ways to define of affine variety V C A"
P largest d so that there exists

Va2 Vg1 2---2Vi2 W

where V; irreducible subvarieties of V foralli=1,...,d
2 largest d so that there exists

Pd 2 Pa—1 2 - 2 P1 2 Po

where p; prime ideals of C[V] foralli=1,...,d

e second way: of a commutative ring
e several other ways:

e transcendental degree of C[V]
¢ maximal dimensions of tangent space at smooth points
e number of general hyperplanes needed to intersect V



examples
e dim(A') = 1 since {line} 2 {point}
e dim(A™) =n
o dim(V(xy,xz)) =2

irreducible components V(y, z), V(x) different dimensions
. dimp( V) is largest d so that

Vg2 Vo122 V1 2 Vo ={p}

= -1 =



subvariety and dimension

e dimension of irreducible variety is same at all points

e every variety contains dense Zariski-open subset of
smooth points

e dimension of variety same as dimension of complex
manifold of smooth points

e if VC W, then dim(V) < dim(W)
e if V C W where W irreducible, then

dm(V) =dim(W) = V=W



more examples

dimension same as Grassmann manifold
dim(Gr(n, k)) = k(n — k)
if C(k, n) irreducible, then
dim(C(k,n)) = n? + (k—1)n

N(n) = {X € A™" : Ak = 0 for some
k € N} is irreducible and

dim(N(n)) =n? —n



morphism and dimension

e V and W vector spaces
e F:V — W surjective linear map, then dim(V) > dim(W)
o [ :V — W surjective linear map, then for all w ¢ W

dim(F~"(w)) = dim(V) — dim(W)
rank-nullity theorem: nullity(F) = dim(V) — rank(F)
e VCA"and W C A™ affine varieties
e F:V — W surjective morphism, then dim(V) > dim(W)
o F:V — W surjective morphism, then for all w € W,
dim(F~"(w)) > dim(V) — dim(W)
and for generic w € W,
dim(F~"(w)) = dim(V) — dim(W)

‘rank-nullity theorem for morphisms’

e why: linear transformations on vector spaces
= linear morphisms on linear affine varieties
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