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Blind Multilinear Identification
Lek-Heng Lim and Pierre Comon, Fellow, IEEE

Abstract— We discuss a technique that allows blind recovery
of signals or blind identification of mixtures in instances where
such recovery or identification were previously thought to be
impossible. These instances include: 1) closely located or highly
correlated sources in antenna array processing; 2) highly corre-
lated spreading codes in code division multiple access (CDMA)
radio communication; and 3) nearly dependent spectra in
fluorescence spectroscopy. These have important implications. In
the case of antenna array processing, it allows for joint localiza-
tion and extraction of multiple sources from the measurement of
a noisy mixture recorded on multiple sensors in an entirely deter-
ministic manner. In the case of CDMA, it allows the possibility
of having a number of users larger than the spreading gain. In
the case of fluorescence spectroscopy, it allows for detection of
nearly identical chemical constituents. The proposed technique
involves the solution of a bounded coherence low-rank multilinear
approximation problem. We show that bounded coherence allows
us to establish existence and uniqueness of the recovered solution.
We will provide some statistical motivation for the approximation
problem and discuss greedy approximation bounds. To provide
the theoretical underpinnings for this technique, we develop
a corresponding theory of sparse separable decompositions of
functions, including notions of rank and nuclear norm that can
be specialized to the usual ones for matrices and operators and
also be applied to hypermatrices and tensors.

Index Terms— Source separation, array signal processing,
system identification, channel estimation, remote sensing,
fluorescence, function approximation, harmonic analysis, greedy
algorithms, inverse problems.

I. INTRODUCTION

THERE are two simple ideas for reducing the complexity
or dimension of a problem that are widely applicable

because of their simplicity and generality:

• Sparsity: resolving a complicated entity, represented by
a function f , into a sum of a small number of simple or
elemental constituents:

f =
r∑

p=1

αpgp.
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• Separability: decoupling a complicated entity, repre-
sented by a function g, that depends on multiple factors
into a product of simpler constituents, each depending
only on one factor:

g(x1, . . . , xd) =
d∏

k=1

ϕk(xk).

The two ideas underlie some of the most useful techniques
in engineering and science — Fourier, wavelets, and other
orthogonal or sparse representations of signals and images,
singular value and eigenvalue decompositions of matrices,
separation-of-variables, Fast Fourier Transform, mean field
approximation, etc. This article examines the model that
combines these two simple ideas:

f (x1, . . . , xd) =
r∑

p=1

αp

d∏

k=1

ϕkp(xk), (1)

and we are primarily interested in its inverse problem, i.e.,
identification of the factors ϕkp based on noisy measurements
of f . We shall see that this is a surprisingly effective method
for a wide range of identification problems.

Here, f is approximately encoded by r scalars,
α = (α1, . . . , αr ) ∈ Cr , and dr functions, ϕkp , k = 1, . . . , d;
p = 1, . . . , r . Since d and r are both assumed to be small,
we expect (1) to be a very compact, possibly approximate,
representation of f . We will assume that all these functions
live in a Hilbert space with inner product 〈· , ·〉, and that ϕkp

are of unit norm (clearly possible since the norm of ϕkp can
be ‘absorbed into’ the coefficient αp in (1)).

Let μk = maxp �=q |〈ϕkp, ϕkq 〉| and define the relative
incoherence ωk = (1 − μk)/μk for k = 1, . . . , d . Note that
μk ∈ [0, 1] and ωk ∈ [0,∞]. We will show that if d ≥ 3, and

d∑

k=1

ωk ≥ 2r − 1, (2)

then the decomposition in (1) is essentially unique and sparsest
possible, i.e., r is minimal. Hence we may in principle identify
ϕkp based only on measurements of the mixture f .

One of the keys in the identifiability requirement is that
d ≥ 3 or otherwise (when d = 1 or 2) the result would not
hold. We will show that the condition d ≥ 3 however leads to
a difficulty (that does not happen when d = 1 or 2). Since it is
rarely, if not never, the case that one has the exact values of f ,
the decomposition (1) is only useful in an idealized scenario.
In reality, one has f̂ = f + ε, an estimate of f corrupted
by noise ε. Solving the inverse problem to (1) would require
that we solve a best approximation problem. For example,

0018-9448 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIM AND COMON: BLIND MULTILINEAR IDENTIFICATION 1261

with the appropriate noise models (see Section V), the best
approximation problem often takes the form

argmin
α∈Cr , ‖ϕkp‖=1

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
, (3)

with ‖ · ‖ an L2-norm. Now, the trouble is that when d ≥ 3,
this best approximation problem may not have a solution —
because the infimum of the loss function is unattainable in
general, as we will discuss in Section VIII-A. In view of this,
our next result is that when

d∏

k=1

(1 + ωk) > r, (4)

the infimum in (3) is always attainable, thereby alleviating the
aforementioned difficulty. A condition that meets both (2) and
(4) follows from the arithmetic-geometric mean inequality

[
d∏

k=1

(1 + ωk)

]1/d

≤ 1 + 1

d

d∑

k=1

ωk .

II. SPARSE SEPARABLE DECOMPOSITIONS

The notion of sparsity dates back to harmonic analysis
[52], [66], [74] and approximation theory [68], and
has received a lot of recent attention in compressive
sensing [15], [26], [29]. The notion of separability is also
classical; it is the basis behind the separation-of-variables
technique in partial differential equations [6] and special
functions [55], fast Fourier transforms on arbitrary groups [53],
mean field approximations in statistical physics [45], and the
naïve Bayes model in machine learning [5], [48]. We describe
a simple model that incorporates the two notions.

The function f : X → C or R to be resolved into
simpler entities will be referred to as our target function. We
will treat the discrete (X is finite or countably infinite) and
continuous (X is a continuum) cases on an equal footing.
The discrete cases are when f is a vector (if X = [n1] :=
{1, . . . , n1}), a matrix (if X = [n1] × [n2]), a hypermatrix
(if X = [n1] × [n2] × · · · × [nd ]), while the usual con-
tinuous cases are when f is a function on some domain
X = � ⊆ Rm or Cm . In the discrete cases, the set
of target functions under consideration are identified with
Cn1 , Cn1×n2 , Cn1×n2×···×nd respectively whereas in the con-
tinuous cases, we usually impose some additional regularity
structures such integrability or differentability, so that the set
of target functions under consideration are L2(�) or C∞(�)
or H k(�) = W k,2(�), etc. We will only assume that the
space of target functions is a Hilbert space. Note that the
requirement d ≥ 3 implies that f is at least a 3-dimensional
hypermatrix in the discrete case or a function of at least three
continuous variables, i.e., m ≥ 3, in the continuous case.
The identifiability does not work for (usual 2-dimensional)
matrices or bivariate functions. With (1) in mind, we will call
f a d-partite or multipartite function if we wish to partition
its arguments into d blocks of variables.

We will briefly examine the decompositions and approxima-
tions of our target function into a sum or integral of separable

functions, adopting a tripartite notation for simplicity. There
are three cases:

• Continuous:

f (x, y, z) =
∫

T
θ(x, t)ϕ(y, t)ψ(z, t) dν(t). (5)

Here, we assume that ν is some given Borel measure and
that T is compact.

• Semidiscrete:

f (x, y, z) =
r∑

p=1

θp(x)ϕp(y)ψp(z). (6)

This may be viewed as a discretization of the continuous
case in the t variable, i.e., θp(x) = θ(x, tp), ϕp(y) =
ϕ(y, tp), ψp(z) = ψ(z, tp).

• Discrete:

ai jk =
r∑

p=1

uipv j pwkp . (7)

This may be viewed as a further discretization of the
semidiscrete case, i.e. ai jk = f (xi , y j , zk), uip = θp(xi ),
v j p = ϕp(y j ), wkp = ψp(zk).

It is clear that when i, j, k take finitely many values, the
discrete decomposition (7) is always possible with a finite
r since the space is of finite dimension. If i, j, k could
take infinitely many values, then the finiteness of r requires
that equality be replaced by approximation to any arbitrary
precision ε > 0 in some suitable norm. This follows from the
following observation about the semidiscrete decomposition:
The space of functions with a semidiscrete representation as
in (6), with r finite, is dense in C0(�), the space of continuous
functions. This is just a consequence of the Stone-Weierstrass
theorem [20]. Discussion of the most general case (5) would
require us to go into integral operators, which we will not do
as in the present framework we are interested in applications
that rely on the inverse problems corresponding to (6) and (7).
Nonetheless (5) is expected to be useful and we state it here for
completeness. Henceforth, we will simply refer to (6) or (7)
as a multilinear decomposition, by which we mean a decom-
position into a linear combination of separable functions.
We note here that the finite-dimensional discrete version has
been studied under several different names — see Section IX.
Our emphasis in this paper is the semidiscrete version (6)
that applies to multipartite functions on arbitrary domains and
are not necessarily finite-dimensional. As such, we will frame
most of our discussions in terms of the semidiscrete case,
which of course includes the discrete version (7) as a special
case (when x, y, z take only finite discrete values).

Example 1 (Mixture of Gaussians). Multilinear decom-
positions arise in many contexts. In machine learning or
nonparametric statistics, a fact of note is that Gaussians are
separable

exp(x2 + y2 + z2) = exp(x2) exp(y2) exp(z2).

More generally for symmetric positive-definite A ∈ R
n×n with

eigenvalues 
 = diag(λ1, . . . , λn),

exp(xT Ax) = exp(zT
z) =
n∏

i=1

exp(λi z
2
i ),
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under a linear change of coordinates z = QTx where
A = Q
QT . Hence Gaussian mixture models of the form

f (x) =
m∑

j=1

α j exp[(x − μ j )
T A j (x − μ j )],

where Ai A j = A j Ai for all i �= j (and therefore A1, . . . , Am

have a common eigenbasis) may likewise be transformed
with a suitable linear change of coordinates into a multilinear
decomposition as in (6).

We will later see several more examples from signal
processing, telecommunications, and spectroscopy.

A. Modeling

The multilinear decomposition — an additive decompo-
sition into multiplicatively decomposable components — is
extremely simple but models a wide range of phenomena
in signal processing and spectroscopy. The main message
of this article is that the corresponding inverse problem —
recovering the factors θp, ϕp, ψp from noisy measurements
of f — can be solved under mild assumptions and yields a
class of techniques for a range of applications (cf. Section IX)
that we shall collectively call multilinear identification. We
wish to highlight in particular that multilinear identification
gives a deterministic approach for solving the problem of joint
localization and estimation of radiating sources with short
data lengths. This is superior to previous cumulants-based
approaches [18], which require (i) longer data lengths; and
(ii) statistically independent sources.

The experienced reader would probably guess that such
a powerful technique must be fraught with difficulties and
he would be right. The inverse problem to (6), like most
other inverse problems, faces issues of existence, uniqueness,
and computability. The approximation problem involved can
be ill-posed in the worst possible way (cf. Section III).
Fortunately, in part prompted by recent work in compressed
sensing [9], [15], [26], [27], [33] and matrix completion
[7], [8], [30], [34]), we show that mild assumptions on
coherence allows one to overcome most of these difficulties
(cf. Section VIII).

III. FINITE RANK MULTIPARTITE FUNCTIONS

In this section, we will discuss the notion of rank, which
measures the sparsity of a multilinear decomposition, and the
notion of Kruskal rank, which measures the uniqueness of
a multilinear decomposition in a somewhat more restrictive
sense. Why is uniqueness important? It can be answered in
one word: Identifiability. More specifically, a unique decom-
position means that we may in principle identify the factors.
To be completely precise, we will first need to define the terms
in the previous sentence, namely, ‘unique’, ‘decomposition’,
and ‘factor’. Before we do that, we will introduce the tensor
product notation. It is not necessary to know anything about
tensor product of Hilbert spaces to follow what we present
below. We shall assume that all our Hilbert spaces are sepa-
rable and so there is no loss of generality in assuming at the
outset that they are just L2(X) for some σ -finite X .

Let X1, . . . , Xd be σ -finite measurable spaces. There is a
natural Hilbert space isomorphism

L2(X1 × · · · × Xd) ∼= L2(X1)⊗ · · · ⊗ L2(Xd). (8)

In other words, every d-partite L2-function f : X1 × · · · ×
Xd → C may be expressed as1

f (x1, . . . , xd ) =
∞∑

p=1

ϕ1p(x1) · · · ϕdp(xd), (9)

with ϕkp ∈ L2(Xk). The tensor product of functions ϕ1 ∈
L2(X1), . . . , ϕd ∈ L2(Xd ) is denoted by ϕ1 ⊗ · · · ⊗ ϕd and is
the function in L2(X1 × · · · × Xd) defined by

ϕ1 ⊗ · · · ⊗ ϕd(x1, . . . , xd) = ϕ1(x1) · · · ϕd(xd).

With this notation, we may rewrite (9) as

f =
∞∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp.

A point worth noting here is that:

“Multipartite functions are infinite-dimensional
tensors.”

Finite-dimensional tensors are simply the special case when
X1, . . . , Xd are all finite sets (see Example 6). In particular, a
multivariate function2 f ∈ L2(Rd) is a an infinite-dimensional
tensor that can expressed as an infinite sum of a tensor product
of ϕ1p, . . . , ϕdp ∈ L2(R) and L2(Rd ) ∼= L2(R)⊗· · ·⊗ L2(R).
We shall have more to say about this later in conjunction
with Kolmogorov’s superposition principle for multivariate
functions.

In this paper, functions having a finite decomposition will
play a central role; for these we define

rank( f ) := min

⎧
⎨

⎩r ∈ N : f =
r∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp

⎫
⎬

⎭ (10)

provided f �= 0. The zero function is defined to have rank 0
and we say rank( f ) = ∞ if such a decomposition is not
possible.

We will call a function f with rank( f ) ≤ r a rank-r
function. Such a function may be written as a sum of r
separable functions but possibly fewer. A decomposition of
the form

f =
r∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp (11)

1Point values of L p-functions are undefined in general. So equations like
these are taken to implicitly mean almost everywhere. Anyway all functions
that arise in our applications will at least be continuous and so this is really
not a point of great concern.

2We clarify our terminologies: A multipartite function is one for which
the arguments x1, . . . , xd can come from any X1, . . . , Xd but a multivariate
function, in the usual sense of the word, is one where X1, . . . , Xd are
(measurable) subsets of R. For example, while

g(u, v, w, x, y, z) = ϕ1(u, v)ϕ2(w)ϕ3(x, y, z)

is not separable in the multivariate sense, it is separable in the multipartite
sense: for x1 = (u, v), x2 = w, x3 = (x, y, z),

g(x1, x2, x3) = ϕ1(x1)ϕ2(x2)ϕ3(x3).
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will be called a rank-r multilinear decomposition. Note that
the qualificative ‘rank-r ’ will always mean ‘rank not more
than r ’. If we wish to refer to a function f with rank exactly r ,
we will just specify that rank( f ) = r . In this case, the rank-r
multilinear decomposition in (11) is of mininum length and
we call it a rank-retaining multilinear decomposition of f .

A rank-1 function is both non-zero and decomposable,
i.e., of the form ϕ1 ⊗ · · · ⊗ ϕd where ϕk ∈ L2(Xk). This
agrees precisely with the notion of a separable function.
Observe that the inner product (and therefore the norm) on
L2(X1 × · · · × Xd) of a rank-1 function splits into a product

〈ϕ1 ⊗· · ·⊗ϕd , ψ1 ⊗· · ·⊗ψd 〉 = 〈ϕ1, ψ1〉1 · · · 〈ϕd , ψd 〉d (12)

where 〈·, ·〉p denotes the inner product of L2(X p). This
inner product extends linearly to finite-rank elements of
L2(X1 × · · · × Xd ): for f = ∑r

p=1 ϕ1p ⊗ · · · ⊗ ϕdp and
g = ∑s

q=1 ψ1q ⊗ · · · ⊗ ψdq , we have

〈 f, g〉 =
r,s∑

p,q=1

〈ϕ1p, ψ1q〉1 · · · 〈ϕdp, ψdq 〉d .

In fact this is how a tensor product of Hilbert spaces (the right
hand side of (8)) is usually defined, namely, as the completion
of the set of finite-rank elements of L2(X1 × · · · × Xd) under
this inner product.

When X1, . . . , Xd are finite sets, then all functions in
L2(X1 × · · · × Xd ) are of finite rank (and may in fact be
viewed as hypermatrices or tensors as discussed in Section II).
Otherwise there will be functions in L2(X1 × · · · × Xd ) of
infinite rank. However, since we have assumed that
X1, . . . , Xd are σ -finite measurable spaces, the set of all finite-
rank f will always be dense in L2(X1 × · · · × Xd) by the
Stone-Weierstrass theorem.

The next statement is a straightforward observation about
multilinear decompositions of finite-rank functions but since
it is central to this article we state it as a theorem. It is
also tempting to call the decomposition a ‘singular value
decomposition’ given its similarities with the usual matrix
singular value decomposition (cf. Example 4).

Theorem 2 (‘Singular value decomposition’ for multipartite
functions). Let f ∈ L2(X1 ×· · ·× Xd ) be of finite rank. Then
there exists a rank-r multilinear decomposition

f =
r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp (13)

such that
r = rank( f ), (14)

the functions ϕkp ∈ L2(X p) are of unit norm,

‖ϕkp‖ = 1 for all k = 1, . . . , d, p = 1, . . . , r, (15)

the coefficients σ1, . . . , σr are real positive, and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (16)

Proof: This requires nothing more than rewriting the
sum in (11) as a linear combination with the positive
σp’s accounting for the norms of the summands and then
re-indexing them in descending order of magnitudes.

While the usual singular value decomposition of a matrix
would also have properties (14), (15), and (16), the one crucial
difference here is that our ‘singular vectors’ ϕk1, . . . , ϕkr in
(13) will only be of unit norm but will not in general be
orthonormal. Given this, we will not expect properties like
the Eckhart-Young theorem, or that σ 2

1 + · · · + σ 2
r = ‖ f ‖2,

etc, to hold for (13) (cf. Section VI for more details).
One may think of the multilinear decomposition (13)

as being similar in spirit, although not in substance, to
Kolmogorov’s superposition principle [40]; the main message
of which is that:

“There are no true multivariate functions.”
More precisely, the principle states that continuous functions

in multiple variables can be expressed as a composition of a
univariate function with other univariate functions. For readers
not familiar with this remarkable result, we state here a version
of it due to Kahane [39].

Theorem 3 (Kolmogorov superposition). Let f : [0, 1]d →
R be continuous. Then there exist constants λ1, . . . , λd ∈ R

and Lipschitz continuous functions ϕ1, . . . , ϕd : [0, 1] →
[0, 1] such that

f (x1, . . . , xd) =
2d+1∑

p=1

g(λ1ϕp(x1)+ · · · + λdϕp(xd)).

It is in general not easy to determine g and ϕ1, . . . , ϕ2d+1
given such a function f . A multilinear decomposition of the
form (13) alleviates this by allowing g to be the simplest
multivariate function, namely, the product function,

g(t1, . . . , td) = t1t2 · · · td , (17)

and unlike the univariate g in Theorem III, the g in (17)
works universally for any function f — only the ϕp’s need
to be constructed. Furthermore, (13) applies more generally
to functions on a product of general domains X1, . . . , Xd

whereas Theorem 2 only applies if they are compact intervals
of R.

At this stage, it would be instructive to give a few examples
for concreteness.

Example 4 (Singular value decomposition). Let A ∈ Cm×n

be a matrix of rank r . Then it can be decomposed in infinitely
many ways into a sum of rank-1 terms as

A =
r∑

p=1

σpupv∗
p (18)

where up ∈ Cm and vp ∈ Cn are unit-norm vectors and
σ1 ≥ · · · ≥ σr > 0. Note that if we regard A as a complex-
valued function on its row and column indices i and j as
described earlier in Section II, then (18) may be written as

a(i, j) =
r∑

p=1

σpu p(i)v p( j),

which clearly is the same as (9). The singular value decom-
position (SVD) of A yields one such decomposition, where
{u1, . . . ,ur } and {v1, . . . , vr } are both orthonormal. But in
general a rank-retaining decomposition of the form (13) will
not have such a property.
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Example 5 (Schmidt decomposition). The previous example
can be generalized to infinite dimensions. Let A : H1 → H2
be a compact operator (also known as a completely continuous
operator) between two separable Hilbert spaces. Then the
Schmidt decomposition theorem says that there exist ortho-
normal basis {ϕp ∈ H2 : p ∈ N} and {ψp ∈ H1 : p ∈ N} so
that

A f =
∞∑

p=1

σp〈ψp, f 〉ϕp (19)

for every f ∈ H1. In tensor product notation, (19) becomes

A =
∞∑

p=1

σpϕp ⊗ ψ∗
p .

where ψ∗
p denotes the dual form of ψp .

Examples 4 and 5 are well-known but they are bipartite
examples, i.e. d = 2 in (13). This article is primarily
concerned with the d-partite case where d ≥ 3, which has
received far less attention. As we have alluded to in the
previous section, the identification techniques in this article
will rely crucially on the fact that d ≥ 3.

Example 6. Let A ∈ Cl×m×n be a 3-dimensional hyper-
matrix. The outer product of three vectors u ∈ Cl , v ∈ Cm ,
w ∈ C

n is defined by

u ⊗ v ⊗ w = (uiv jwk)
l,m,n
i, j,k=1 ∈ C

l×m×n .

The rank of A is defined to be the minimum r ∈ N such that
A can be written in the form

A =
r∑

p=1

σpup ⊗ vp ⊗ wp, (20)

and if A = 0, then its rank is set to be 0. This agrees of course
with our use of the word rank in (10), the only difference is
notational, since (20) may be written in the form

a(i, j, k) =
r∑

p=1

σpu p(i)v p( j)wp(k).

This definition of rank is invariant under the natural action3

GLl(C) × GLm(C) × GLn(C) on Cl×m×n [21, Lemma 2.3],
i.e., for any X ∈ GLl(C),Y ∈ GLm(C), Z ∈ GLn(C),

rank((X,Y, Z) · A) = rank(A). (21)

The definition also extends easily to d-dimensional hyperma-
trices in Cn1×···×nd and when d = 2 reduces to the usual
definition in Example III for matrix rank. This definition is
due to F. L. Hitchcock [37] and is often called tensor rank.
The only difference here is that our observation in Theorem 2
allows us to impose the conditions

σ1 ≥ σ2 ≥ · · · ≥ σr

and
‖up‖ = ‖vp‖ = ‖wp‖ = 1, p = 1, . . . , r, (22)

3GLn(C) := {A ∈ Cn×n : det(A) �= 0} denotes the general linear goup of
nonsingular n × n complex matrices.

while leaving rank(A) unchanged, thus bringing (20) closer in
form to its matrix cousin (18). What is lost here is that the
sets {u1, . . . ,ur }, {v1, . . . , vr }, {w1, . . . ,wr } can no longer be
chosen to be orthonormal as in Example 4, the unit norm
condition (22) is as far as we may go. In fact for a generic
A ∈ Cl×m×n , we will always have

r > max(l,m, n),

and {u1, . . . ,ur }, {v1, . . . , vr }, {w1, . . . ,wr } will be overcom-
plete sets in Cl ,Cm ,Cn respectively.

Perhaps it is worthwhile saying a word concerning our use
of the words ‘tensor’ and ‘hypermatrix’: A d-tensor or order-
d tensor is an element of a tensor product of d vector spaces
V1 ⊗ · · · ⊗ Vd ; a d-dimensional hypermatrix is an element
of C

n1×···×nd . If we choose bases on V1, . . . ,Vd , then any
d-tensor A ∈ V1 ⊗ · · · ⊗ Vd will have a unique coordinate
representation as a d-dimensional hypermatrix A ∈ Cn1×···×nd ,
where nk = dim(Vk). A notion defined on a hypermatrix is
only defined on the tensor (that is represented in coordinates
by the hypermatrix) if that notion is independent of the choice
of bases. So the use of the word ‘tensor rank’ is in fact well
justified because of (21). For more details, we refer the reader
to [47].

IV. UNIQUENESS OF MULTILINEAR DECOMPOSITIONS

In Theorem 2, we chose the coefficients to be in descending
order of magnitude and require the factors in each separa-
ble term to be of unit norm. This is largely to ensure as
much uniqueness in the multilinear decomposition as gen-
erally possible. However there remain two obvious ways to
obtain trivially different multilinear decompositions: (i) one
may scale the factors ϕ1p, . . . , ϕdp by arbitrary unimodulus
complex numbers as long as their product is 1; (ii) when two
or more successive coefficients are equal, their orders in the
sum may be arbitrarily permuted. We will call a multilinear
decomposition of f that meets the conditions in Theorem 2
essentially unique if the only other such decompositions of f
differ in one or both of these manners.

It is perhaps astonishing that when d > 2, a sufficient con-
dition for essential uniqueness can be derived with relatively
mild conditions on the factors. This relies on the notion of
Kruskal rank, which we will now define.

Definition 7. Let  = {ϕ1, . . . , ϕr } be a finite collection
of vectors of unit norm in L2(X1 × · · · × Xd ). The Kruskal
rank of , denoted krank, is the largest k ∈ N so that every
k-element subset of  contains linearly independent elements.

This notion was originally introduced in [41]. It is related
to the notion of spark introduced in compressed sensing
[27], [33], defined as the smallest k ∈ N so that there is at
least one k-element subset of  that is linearly dependent. The
relation is simple to describe, spark = krank + 1, and it
follows immediately from the respective definitions. It is clear
that dim span ≥ krank.

We now generalize Kruskal’s famous result [41], [61] to
tensor products of arbitrary Hilbert spaces, possibly of infinite
dimensions. But first let us be more specific about essential
uniqueness.
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Definition 8. We shall say that a multilinear decomposition
of the form (13) (satisfying both (16) and (15)) is essentially
unique if given another such decomposition,

r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp = f =
r∑

p=1

λpψ1p ⊗ · · · ⊗ ψdp,

we must have (i) the coefficients σp = λp for all p = 1, . . . , r ;
and (ii) the factors ϕ1p, . . . , ϕdp and ψ1p, . . . , ψdp differ at
most via unimodulus scaling, i.e.

ϕ1p = eiθ1pψ1p, . . . , ϕdp = eiθdpψdp (23)

where θ1p + · · · + θdp ≡ 0 mod 2π , for all p = 1, . . . , r . In
the event when successive coefficients are equal, σp−1 > σp =
σp+1 = · · · = σp+q > σp+q+1, the uniqueness of the factors
in (ii) is only up to relabelling of indices, i.e. p, . . . , p + q .

Lemma 9 (Infinite-dimensional Kruskal uniqueness). Let
f ∈ L2(X1 × · · · × Xd ) be of finite rank. Then a multilinear
decomposition of the form

f =
r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp (24)

is both essentially unique and rank-retaining, i.e., r = rank f ,
if the following condition is satisfied:

2r + d − 1 ≤
d∑

k=1

krankk, (25)

where k = {ϕk1, . . . , ϕkr } for k = 1, . . . , d .
Proof: Consider the subspaces Vk = span(ϕk1, . . . , ϕkr )

in L2(Xk) for each k = 1, . . . , d . Observe that f ∈ V1 ⊗· · ·⊗
Vd . Clearly dim(Vk) ≤ r and so dim(V1 ⊗ · · · ⊗ Vd ) ≤ rd .
Now, if we could apply Kruskal’s uniqueness theorem [41]
to the finite-dimensional space V1 ⊗ · · · ⊗ Vd , then we may
immediately deduce both the uniqueness and rank-retaining
property of (24). However there is one caveat: We need to
show that Kruskal rank does not change under restriction to a
subspace, i.e. the value of krank{ϕk1, . . . , ϕkr } in (25) is the
same whether we regard ϕk1, . . . , ϕkr as elements of L2(Xk)
or as elements of the subspace Vk . But this just follows from
the simple fact that linear independence has precisely this
property, i.e., if v1, . . . , vn ∈ U ⊆ V are linearly independent
in the vector space V, then they are linearly independent in
the subspace U.

It follows immediately why we usually need d ≥ 3 for
identifiability.

Corollary 10. A necessary condition for Kruskal’s inequal-
ity (25) to hold is that d ≥ 3.

Proof: If d = 2, then 2r + d − 1 = 2r + 1 >
krank1 + krank2 since the Kruskal rank of of r vectors
cannot exceed r . Likewise for d = 1.

Lemma 9 shows that the condition in (25) is sufficient to
ensure uniqueness and it is known that the condition is not
necessary. In an appropriate sense, the condition is sharp [24].
We should note that the version of Lemma 9 that we state
here for general d ≥ 3 is due to Sidiropoulos and Bro [61].
Kruskal’s original version [41] is only for d = 3.

The main problem with Lemma 9 is that the condition (25)
is difficult to check since the right-hand side cannot be readily
computed. See Section VIII-F for a discussion.

Kruskal’s result also does not tell us how often multilin-
ear decompositions are unique. In the event when the sets
X1, . . . , Xd are finite, L2(X1 × · · ·× Xd ) ∼= Cn1×···×nd where
n1 = #X1, . . . , nd = #Xd , and there is a simple result on
uniqueness based simply on a dimension count. Note that the
dimension of L2(X1×· · ·×Xd ) is the product n1 · · · nd and the
number of parameters needed to describe a separable element
of the form λϕ1 ⊗· · ·⊗ϕd where ϕ1, . . . , ϕd are of unit norm
is n1 + · · · + nd − d + 1 (each ϕk requires nk − 1 parameters
because of the unit norm constraint, the last ‘+1’ accounts for
the coefficient λ). We call the number

⌈ ∏d
k=1 nk

1 − d +∑d
k=1 nk

⌉

the expected rank of L2(X1×· · ·×Xd ), since it is heuristically
the minimum r expected for a multilinear decomposition (13).

Proposition 11. Let the notations be as above. If f ∈
L2(X1 × · · · × Xd ) has rank smaller than the expected rank,
i.e.

rank( f ) <

⌈ ∏d
k=1 nk

1 − d +∑d
k=1 nk

⌉
,

then f admits at most a finite number of distinct rank-retaining
decompositions.

This proposition has been proved in several cases, including
symmetric tensors [14], but the proof still remains incomplete
for tensors of most general form [1], [12].

V. ESTIMATION OF MULTILINEAR DECOMPOSITIONS

In practice we would only have at our disposal f̂ , a
measurement of f corrupted by noise. Recall that our model
for f takes the form

f (x1, . . . , xd ) =
r∑

p=1

αp

d∏

k=1

ϕkp(xk). (26)

Then we would often have to solve an approximation problem
corresponding to (26) of the form

argmin
α∈Cr , ‖ϕkp‖=1

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
, (27)

which we will call a best rank-r approximation problem.
A solution to (27), if exists, will be called a best rank-r
approximation of f̂ .

We will give some motivations as to why such an approx-
imation is reasonable. Assuming that the norm in (27) is the
L2-norm and that the factors ϕkp , p = 1, . . . r and k = 1, . . .d ,
have been determined in advance and we are just trying to
estimate the parameters α1, . . . , αr from f̂ (1), . . . , f̂ (N) a
finite sample of size N of measurements of f corrupted by
noise, then the solution of the approximation problem in (27) is
in fact (i) a maximum likelihood estimator (MLE) if the noise
is zero mean Gaussian, and (ii) a best linear unbiased esti-
mator (BLUE) if the noise has zero mean and finite variance.
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Of course in our identification problems, the factors ϕkp’s are
not known and have to be estimated too. A probabilistic model
in this situation would take us too far afield. Note that even for
the case d = 2 and where the domain of f X1 × X2 is a finite
set, a case that essentially reduces to principal components
analysis (PCA), a probabilistic model along the lines of [71]
requires several strong assumptions and was only developed
as late as 1999. The lack of a formal probabilistic model has
not stopped PCA, proposed in 1901 [58], to be an invaluable
tool in the intervening century.

VI. EXISTENCE OF BEST MULTILINEAR APPROXIMATION

As we mentioned in the previous section, in realistic
situation where measurements are corrupted by additive noise,
one has to extract the factors ϕkp’s and αp through solving an
approximation problem (27), that we now write in a slightly
different (but equivalent) form,

argmin
α∈[0,∞)r , ‖ϕkp‖=1

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
. (28)

Note that by Theorem 2, we may assume that the coefficients
α = (α1, . . . , αr ) are real and nonnegative valued without any
loss of generality. Such a form is also natural in applications
given that αp usually captures the magnitude of whatever
quantity that is represented by the p summand.

We will see this problem, whether in the form (27) or (28),
has no solution in general. We will first observe a somewhat
unusual phenomenon in multilinear decomposition of d-partite
functions where d ≥ 3, namely, a sequence of rank-r functions
(each with an rank-r multilinear decomposition) can converge
to a limit that is not rank-r (has no rank-r multilinear decom-
position).

Example 12 (Multilinear approximation of functions)
For linearly independent ϕ1, ψ1 : X1 → C, ϕ2, ψ2 : X2 → C,
ϕ3, ψ3 : X3 → C, let f̂ : X1 × X2 × X3 → C be

f̂ (x1, x2, x3) : = ψ1(x1)ϕ2(x2)ϕ3(x3)

+ϕ1(x1)ψ2(x2)ϕ3(x3)+ϕ1(x1)ϕ2(x2)ψ3(x3).

For n ∈ N, define

fn(x1, x2, x3) := n

[
ϕ1(x1)+ 1

n
ψ1(x1)

] [
ϕ2(x2)+ 1

n
ψ2(x2)

]

[
ϕ3(x3)+ 1

n
ψ3(x3)

]
− nϕ1(x1)ϕ2(x2)ϕ3(x3).

Then

fn(x1, x2, x3)− f̂ (x1, x2, x3) = 1

n

[
ψ1(x1)ψ2(x2)ϕ3(x3)

+ψ1(x1)ϕ2(x2)ψ3

+ϕ1(x1)ψ2(x2)ψ3(x3)
]

+ 1

n2ψ1(x1)ψ2(x2)ψ3(x3).

Hence

‖ f̂ − fn‖ = O

(
1

n

)
. (29)

Lemma 13. In Example VI, rank( f̂ ) = 3 iff ϕi , ψi are
linearly independent, i = 1, 2, 3. Furthermore, it is clear that
rank( fn) ≤ 2 and

lim
n→∞ fn = f̂ .

Note that our fundamental approximation problem may be
regarded as the approximation problem

argmin{‖ f̂ − f ‖ : rank( f ) ≤ r}, (30)

followed by a decomposition problem

f =
r∑

p=1

αp

d∏

k=1

ϕkp,

which always exists for an f with rank( f ) ≤ r . The discussion
above shows that there are target functions f̂ for which

argmin{‖ f̂ − f ‖ : rank( f ) ≤ r} = ∅,

and thus (28) or (30) does not need to have a solution in
general. This is such a crucial point that we are obliged to
formally state it.

Theorem 14. For d ≥ 3, the best approximation of a
d-partite function by a sum of p products of d separable
functions does not exist in general.

Proof: Take the tripartite function f̂ ∈ L2(X1 × X2 × X3)
in Example VI. Suppose we seek a best rank-2 approximation,
in other words, we seek to solve the minimization problem

argmin
‖gk‖=‖hk ‖=1, γ ,η≥0

‖ f̂ − γ g1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖.

Now, the infimum,

inf‖gk‖=‖hk ‖=1, γ ,η≥0
‖ f̂ − γ g1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ = 0

since we may choose n ∈ N sufficiently large,

gk = ϕk + n−1ψk

‖ϕk + n−1ψk‖ , hk = ϕk

‖ϕk‖ ,
for k = 1, 2, 3,

γ = n‖ϕ1 + n−1ψ1‖‖ϕ2 + n−1ψ2‖‖ϕ3 + n−1ψ3‖,
η = n‖ϕ1‖‖ϕ2‖‖ϕ3‖,

so as make ‖ f̂ − γ g1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ as small
as we desired by virtue of (29). However there is no rank-2
function γ g1 ⊗ g2 ⊗ g3 + ηh1 ⊗ h2 ⊗ h3 for which

‖ f̂ − γ g1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ = 0.

In other words, the zero infimum can never be attained.
Our construction above is based on an earlier construction

in [21]. The first such example was given in [4], which also
contains the very first definition of border rank. We will define
it here for d-partite functions. When X1, . . . , Xd are finite sets,
this reduces to the original definition in [4] for hypermatrices.

Definition 15. Let f ∈ L2(X1 × · · · × Xd). The border
rank of f is defined as

rank( f ) = min{r ∈ N : inf‖ f − g‖ = 0

over all g with rank(g) = r}.
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We say rank( f ) = ∞ if such a finite r does not exist.
Clearly we would always have that

rank( f ) ≤ rank( f ).

The discussions above show that strict inequality can occur.
In fact, for the f̂ in Example VI, rank( f̂ ) = 2 while
rank( f̂ ) = 3.

We would like to mention here that this problem applies to
operators too. Optimal approximation of an operator by a sum
of tensor/Kronecker products of lower-dimensional operators,
which arises in numerical operator calculus [3], is in general
an ill-posed problem whose existence cannot be guaranteed.

Example 16. (Multilinear approximation of operators). For
linearly independent operators i ,�i : Vi → Wi , i = 1, 2, 3,
let T̂ : V1 ⊗ V2 ⊗ V3 → W1 ⊗ W2 ⊗ W3 be

T̂ := �1 ⊗2 ⊗3 +1 ⊗�2 ⊗3 +1 ⊗2 ⊗�3. (31)

If i ,�i ’s are all finite-dimensional and represented in coor-
dinates as matrices, then ‘⊗’ may be taken to be Kronecker
product of matrices. For n ∈ N,

Tn : = n

[
1 + 1

n
�1

]
⊗
[
2 + 1

n
�2

]
⊗
[
3 + 1

n
�3

]

− n1 ⊗2 ⊗3.

Then
lim

n→∞ Tn = T̂ .

An example of an operator that has the form in (31) is the
3m-dimensional Laplacian �3m , which can be expressed in
terms of the m-dimensional Laplacian �m as

�3m = �m ⊗ I ⊗ I + I ⊗�m ⊗ I + I ⊗ I ⊗�m .

There are several simple but artificial ways to alleviate
the issue of non-existent best approximant. Observe from the
proof of Theorem VI that the coefficients in the approximant
γ, η becomes unbounded in the limit. Likewise we see this
happening in Example VI. In fact this must always happen —
in the event when a function or operator is approximated by
a rank-r function, i.e.
∥∥∥∥∥∥

f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
or

∥∥∥∥∥∥
T̂ −

r∑

p=1

αp

d⊗

k=1

kp

∥∥∥∥∥∥
, (32)

and if a best approximation does not exist, then the r coef-
ficients α1, . . . , αr must all diverge in magnitude to +∞
as the approximant converges to the infimum of the norm
loss function in (32). This result was first established in
[21, Proposition 4.9].

So a simple but artificial way to prevent the nonexistence
issue is to simply limit the sizes of the coefficients α1, . . . , αr

in the approximant. One way to achieve this is regularization
[48], [57] — adding a regularization term to our objective
function in (28) to penalize large coefficients. A common
choice is Tychonoff regularization, which uses a sum-of-
squares regularization term:

argmin
α∈[0,∞)r , ‖ϕkp‖=1

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
+ λ

r∑

p=1

|αp|2. (33)

Here, λ is an arbitrarily chosen regularization parameter.
It can be seen that this is equivalent to constraining the sizes
α1, . . . , αr to

∑r
p=1|αp|2 = ρ, with ρ being determined a

posteriori from λ. The main drawback of such constraints is
that ρ and λ are arbitrary, and that they generally have no
physical meaning.

More generally, one may alleviate the nonexistence issue by
restricting the optimization problem (30) to a compact subset
of its non-compact feasible set

{ f ∈ L2(X1 × · · · × Xd) : rank( f ) ≤ r}.
Limiting the sizes of α1, . . . , αr is a special case but there
are several other simple (but also artificial) strategies. In [17],
the factors ϕk1, . . . , ϕkp are required to be orthogonal for all
k ∈ {1, . . . , d}, i.e.

〈ϕkp , ϕkq〉k = δpq, p, q = 1, . . . , r, k = 1, . . . , d. (34)

This remedy is acceptable only in very restrictive conditions.
In fact a necessary condition for this to work is that

r ≤ min
k=1,...,d

dim L2(Xk).

It is also trivial to see that imposing orthogonality between
the separable factors removes this problem

〈ϕ1p ⊗ · · · ⊗ ϕdp, ϕ1q ⊗ · · · ⊗ ϕdq〉 = δpq, p, q = 1, . . . , r.
(35)

This constraint is slightly less restrictive — by (12), it is
equivalent to requiring (34) for some k ∈ {1, . . . , d}. Both
(34) and (35) are nonetheless so restrictive as to exclude the
most useful circumstances for the model (13), which usually
involves factors that have no reason to be orthogonal, as we
will see in Section IX. In fact, Kruskal’s uniqueness condition
is such a potent tool precisely because it does not require
orthogonality.

The conditions (34), (35), and (33) all limit the feasible
sets for the original approximation (28) to a much smaller
compact subset of the original feasible set. This is not the case
for nonnegative constraints. In [48] it was shown that the fol-
lowing best rank-r approximation problem for a nonnegative-
valued f̂ and where the coefficients αp and factors ϕkp of the
approximants are also nonnegative valued, i.e.

argmin
α∈[0,∞)r , ‖ϕkp‖=1, ϕkp≥0

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
,

always has a solution. The feasible set in this case is non-
compact and has nonempty interior within the feasible set of
our original problem (28). The nonnegativity constraints are
natural in some applications, such as the fluorescence spec-
troscopy one described in Section IX-F, where ϕkp represent
intensities and concentrations, and are therefore nonnegative
valued.

There are two major problems with imposing artificial
constraints simply to force a solution: How do we know
a priori that the solution that we seek would meet those
constraints? But more importantly, perhaps the model is
ill-posed and a solution indeed should not exist? To illustrate
the case in point with a more commonplace example, suppose
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we want to find a maximum likelihood estimator X ∈ Rn×n

for the covariance � of independent samples y1, . . . , ym ∼
N(0,�). This would lead us to a semi-definite programming
problem

argmin
X�0

tr(X−1Y )− log det(X) (36)

where Y = 1
m

∑m
i=1 yi yT

i . However the problem will not have
a solution when the number of samples is smaller than the
dimension, i.e., m < n, as the infimum of the loss function
in (36) cannot be attained by any X in the feasible set. This
is an indication that we should seek more samples (so that
we could get m ≥ n, which will guarantee the attainment
of the infimum) or use a different model (e.g., determine if
X−1 might have some a priori zero entries due to statistical
independence of the variables). It is usually unwise to impose
artificial constraints on the covariance matrix X just so that
the loss function in (36) would attain an infimum on a smaller
feasible set — the thereby obtained ‘solution’ may bear no
relation to the true solution that we want.

Our goal in Section VIII-A is to define a type of physically
meaningful constraints via the notion of coherence. It ensures
the existence of a unique minimum, but not via an artificial
limitation of the optimization problem to a convenient subset
of the feasible set. In the applications we discuss in Section IX,
we will see that it is natural to expect existence of a solution
when coherence is small enough, but not otherwise. So when
our model is ill-posed or ill-conditioned, we are warned by the
size of the coherence and could seek other remedies (collect
more measurements, use a different model, etc) instead of
forcing a ‘solution’ that bears no relation to reality. But before
we get to that we will examine why, unlike in compressed
sensing and matrix completion, the approximation of rank by
a ratio of nuclear and spectral norms could not be expected to
work here.

VII. NUCLEAR AND SPECTRAL NORMS

We introduce the notion of nuclear and spectral norms
for multipartite functions. Our main purpose is to see if
they could be used to alleviate the problem discussed in
Section VI, namely, that a d-partite function may not have
a best approximation by a sum of r separable functions.

The definition of nuclear norm follows naturally from the
definition of rank in Section III.

Definition 17. We define the nuclear norm (or Schatten
1-norm) of f ∈ L2(X1 × · · · × Xd) as

‖ f ‖∗ : = inf

{[ ∞∑

p=1

λp

]
: f =

∞∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp,

‖ϕkp‖ = 1, λp ≥ λp+1 > 0

}
. (37)

Note that for rank-1 functions, we always have that

‖ϕ1 ⊗ · · · ⊗ ϕd‖∗ = ‖ϕ1‖ · · · ‖ϕd‖. (38)

A finite rank function always has finite nuclear norm but in
general a function in L2(X1 × · · · × Xd ) need not have finite
nuclear norm.

The definition of the spectral norm of a multipartite function
is motivated by the fact the usual spectral norm of a matrix A
equals the maximal absolute value of its inner product tr(AX)
with rank-1 unit-norm matrices X = uv∗, ‖u‖2 = ‖v‖2 = 1.

Definition 18. We define the spectral norm of
f ∈ L2(X1 × · · · × Xd) as

‖ f ‖σ : = sup
{|〈 f, ϕ1 ⊗ · · · ⊗ ϕd〉| :

‖ϕ1‖ = · · · = ‖ϕd‖ = 1
}
. (39)

Here we write ‖ · ‖ for the L2-norms in L2(Xk), k = 1, . . . , d .
Alternatively, we may also use Re〈 f, ϕ1 ⊗· · ·⊗ϕd〉 in place of
|〈 f, ϕ1 ⊗ · · · ⊗ ϕd〉| in (39), which does not change its value.
Note that a function in L2(X1 × · · · × Xd) always has finite
spectral norm.

The fact that (37) and (39) define norms on
L2(X1 × · · · × Xd ) follows from the standard Minkowski
gauge argument [22]. Suppose X1, . . . , Xd are finite sets of
cardinalities n1, . . . , nd ∈ N. The nuclear and spectral norms
for the unipartite case (d = 1) are the �1- and �∞-norms for
vectors in Cn1 = L2(X1). The nuclear and spectral norms
for the bipartite case (d = 2) agrees with the usual nuclear
and spectral norms for matrices in Cn1×n2 = L2(X1 × X2).
For general d ≥ 3, Definition VII yields a notion of nuclear
norm4 for hypermatrices in Cn1×···×nd = L2(X1 × · · · × Xd),
while Definition VII agrees with the usual notion of spectral
norm for hypermatrices [46].

Example 19 (Nuclear and spectral norms for 3-tensors). Let
T ∈ Cn1×n2×n3 . Then by Definition VII, we have

‖T ‖∗ = inf

⎧
⎨

⎩

r∑

p=1

λp : T =
r∑

p=1

λpup ⊗ vp ⊗ wp

⎫
⎬

⎭ ,

where the infimum is taken over all linear combinations of
complex vectors of unit 2-norm up ∈ Cn1 , vp ∈ Cn2 ,
wp ∈ Cn3 , with real positive coefficientss λp ∈ [0,∞), and
p = 1, . . . , r , with r ∈ N.

We shall write ‖ · ‖ = ‖ · ‖2. The spectral norm of T is

‖T ‖σ = sup {|〈T,u ⊗ v ⊗ w〉| : ‖u‖ = ‖v‖ = ‖w‖ = 1}
= sup

x,y,z�=0

|T (x, y, z)|
‖x‖‖y‖‖z‖ = ‖T ‖2,2,2.

We have regarded T as a trilinear functional defined by
T (x, y, z) = ∑n1,n2,n3

i, j,k=1 ti j k xi y j zk and ‖T ‖2,2,2 is its induced
norm as defined in [46], [47]. Again, these clearly extend to
any d-tensors. We will see in Lemma VII that the nuclear and
spectral norms for tensors are dual to each other.

Note that we have used the term tensors, as opposed to
hypermatrices, in the above example. In fact, Definition 17
defines nuclear norms for the tensors, not just their coordinate
representations as hypermatrices (see our discussion after
Example III), because of the following invariant properties.

Lemma 20. The nuclear and spectral norms for Cn1×···×nd

are unitarily invariant, i.e., invariant under the natural action

4The notion of a nuclear norm for tensors was originally introduced in
Section 3 of our 2010 article (cf. http://arxiv.org/abs/1002.4935v1). However,
it was ultimately removed in the published version [49] because of the page
limit of the journal.
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of Un1(C)× · · · × Und (C) where Un(C) denotes the group of
unitary matrices in Cn×n .

Proof: To avoid the clutter of indices, we will assume
that d = 3. It is easy, although notationally cumbersome, to
extend this to general d ≥ 3. Let (U, V ,W ) ∈ Un1(C) ×
Un2(C) × Un3(C) and T ∈ Cn1×n2×n3 . The natural action,
given in coordinates by

(U, V ,W ) · T =
⎡

⎣
n1,n2,n3∑

i, j,k=1

uaivbjwck ti j k

⎤

⎦
n1,n2,n3

a,b,c=1

,

has the property that if T has a multilinear decomposition of
the form

T =
r∑

p=1

λpxp ⊗ yp ⊗ zp,

then

(U, V ,W ) · T =
r∑

p=1

λp(Uxp)⊗ (V yp)⊗ (Wzp). (40)

(40) is obvious when r = 1 and for general r follows from the
linearity of the action, i.e., (U, V ,W ) · (S + T ) = (U, V ,W ) ·
S +(U, V ,W ) ·T . We also need the simple fact that Un1(C)×
Un2(C)×Un3(C) acts transitively on unit-norm rank-1 tensors,
i.e., take any x ∈ Cn1 , y ∈ Cn2 , z ∈ Cn3 of unit norm, then
every other unit-norm rank-1 tensor may be written as Ux ⊗
V y ⊗ Wz for some (U, V ,W ) ∈ Un1(C)× Un2(C)× Un3(C).
With these, it follows immediately from Definition 17 that
nuclear norms satisfy

‖(U, V ,W ) · T‖∗ = ‖T ‖∗.

One may similarly show that the spectral norm is also unitarily
invariant or deduce the fact from Lemma 21 below.

Recall that on a Hilbert space H with inner product 〈· , ·〉
the dual norm of a given norm ‖ · ‖ is defined as

‖ f ‖∨ := sup
{|〈 f, g〉| : ‖g‖ ≤ 1}.

If ‖ · ‖ is the norm induced by the inner product, then
‖ · ‖∨ = ‖ · ‖; but in general they are different. Nevertheless
one always have that (‖ · ‖∨)∨ = ‖ · ‖ and

|〈 f, g〉| ≤ ‖ f ‖∨‖g‖ (41)

for any f, g ∈ H.
Since the �1- and �∞-norms on Cn are dual, as are the

nuclear and spectral norms on C
n1×n2 , one may wonder if

it is true in general that the nuclear and spectral norms are
dual to each other. This is in fact almost a tautology when
X1, . . . , Xd are finite.

Lemma 21. Let X1, . . . , Xd be finite sets. Then nuclear and
spectral norms on L2(X1 × · · · × Xd) satisfy

|〈 f, g〉| ≤ ‖ f ‖σ‖g‖∗ (42)

and in fact
‖ f ‖∨∗ = ‖ f ‖σ . (43)

Proof: We first need to establish (42) without
invoking (41). Since X1, . . . , Xd are finite, any g ∈ L2

(X1 × · · · × Xd ) is of finite rank. Take any multilinear
decomposition

g =
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

where r ∈ N is arbitrary. Now

|〈 f, g〉| ≤
r∑

p=1

|λp||〈 f, ϕ1p ⊗ · · · ⊗ ϕdp〉|

≤ ‖ f ‖σ
r∑

p=1

|λp|

by definition of spectral norm. Taking infimum over all finite-
rank decompositions, we arrive at (42) by definition of nuclear
norm. Hence

‖ f ‖∨∗ = sup
{|〈 f, g〉| : ‖g‖∗ ≤ 1}

≤ sup
{‖ f ‖σ ‖g‖∗ : ‖g‖∗ ≤ 1} = ‖ f ‖σ .

On the other hand, using (41) for ‖ · ‖∗ and ‖ · ‖∨∗ , we get

‖ f ‖σ = sup
{|〈 f, ϕ1 ⊗ · · · ⊗ ϕd〉| : ‖ϕk‖ = 1

}

≤ sup
{‖ f ‖∨∗ ‖ϕ1 ⊗ · · · ⊗ ϕd‖∗ : ‖ϕk‖ = 1

} = ‖ f ‖∨∗ .

where the last equality follows from (38).
When X1, . . . , Xd are only required to be σ -finite measur-

able spaces, we may use a limiting argument to show that (42)
still holds for f of finite spectral norm and g of finite nuclear
norm; a proper generalization of (43) is more subtle and we
will leave this to future work since we do not require it in this
article.

It is known [27] that the �1-norm is the largest con-
vex underestimator5 of the “�0-norm” on the �∞-norm unit
ball [44] and that the nuclear norm is the largest convex
underestimator of rank on spectral norm unit ball [30]. In
particular,

‖x‖1 ≤ nnz(x)‖x‖∞
for all x ∈ Cn while

‖X‖∗ ≤ rank(X)‖X‖σ
for all X ∈ Cm×n . The quantity nnz(x) := #{i : xi �= 0}
is often called “�0-norm” even though it is not a norm (and
neither a seminorm nor a quasinorm nor a pseudonorm).

We had suspected that the following generalization might
perhaps be true, namely, rank, nuclear, and spectral norms as
defined in (10), (37), and (39) would also satisfy the same
inequality:

‖ f ‖∗ ≤ rank( f )× ‖ f ‖σ . (44)

If true, this would immediately imply the same for border rank

‖ f ‖∗ ≤ rank( f )× ‖ f ‖σ
by a limiting argument. Furthermore, (44) would provide a
simple way to remedy the nonexistence problem highlighted in
Theorem 14: One may use the ratio ‖ f ‖∗/‖ f ‖σ as a ‘proxy’

5Also called the greatest convex minorant, in this case also equivalent to
the Legendre-Frenchel biconjugate or convex biconjugate.
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in place of rank( f ) and replace the condition rank( f ) ≤ r
by the weaker condition ‖ f ‖∗ ≤ r‖ f ‖σ . The discussion in
Section VI shows that there are f̂ for which

argmin{‖ f̂ − f ‖ : rank( f ) ≤ r} = ∅,

which really results from the fact that

{ f ∈ L2(X1 × · · · × Xd ) : rank( f ) ≤ r}
is not a closed set. But

{ f ∈ L2(X1 × · · · × Xd ) : ‖ f ‖∗ ≤ r‖ f ‖σ } (45)

is always closed (by the continuity of norms) and so for any
r ∈ N, the optimization problem

argmin{‖ f̂ − f ‖ : ‖ f ‖∗ ≤ r‖ f ‖σ }
always has a solution.

Unfortunately, (44) is not true when d > 2. The following
example shows that nuclear norm is not an underestimator
of rank on the spectral norm unit ball, and can in fact be
arbitrarily larger than rank on the spectral norm unit ball.

Example 22 (Matrix multiplication). Let Tn ∈ Cn2×n2×n2

be the matrix multiplication tensor (cf. Applications 2 and 3
in [47, Section 15.3]). The well-known result of Strassen [67]
implies that

rank(Tn) ≤ cnlog2 7

for some c > 0 and for n sufficiently large. On the other hand,
Derksen [25] has recently established the exact values for the
nuclear and spectral norm of Tn:

‖Tn‖∗ = n3, ‖Tn‖σ = 1

for all n ∈ N. It then follows that

lim
n→∞

‖Tn‖∗
rank(Tn)

= ∞.

Fortunately, we do not need to rely on (45) for the applica-
tions consider in this article. Instead another workaround that
uses the notion of coherence, discussed in the next section, is
more naturally applicable in our situtations.

VIII. COHERENCE

We will show in this section that a simple measure of
angular constraint called coherence, or rather, the closely
related notion of relative incoherence, allows us to alleviate
two problems simultaneously: the computational intractability
of checking for uniqueness discussed in Section IV and the
non-existence of a best approximant in Section VI.

Definition 23. Let H be a Hilbert space provided with scalar
product 〈·, ·〉, and let  ⊆ H be a set of elements of unit norm
in H. The coherence of  is defined as

μ() = sup
ϕ �=ψ

|〈ϕ,ψ〉|

where the supremum is taken over all distinct pairs ϕ,ψ ∈ .
If  = {ϕ1, . . . , ϕr } is finite, we also write μ(ϕ1, . . . , ϕr ) :=
maxp �=q |〈ϕp, ϕq 〉|.

We adopt the convention that whenever we write μ()
(resp. μ(ϕ1, . . . , ϕr )) as in Definition 23, it is implicitly

implied that all elements of  (resp. ϕ1, . . . , ϕr ) are of unit
norm.

The notion of coherence has received different names in
the literature: mutual incoherence of two dictionaries [27],
mutual coherence of two dictionaries [9], the coherence of
a subspace projection [8], etc. The version here follows that
of [33]. Usually, dictionaries are finite or countable, but we
have here a continuum of atoms. Clearly, 0 ≤ μ() ≤ 1, and
μ() = 0 iff ϕ1, . . . , ϕr are orthonormal. Also, μ() = 1 iff
 contains at least a pair of collinear elements, i.e., ϕp = λϕq

for some p �= q , λ �= 0.
We find it useful to introduce a closely related notion that

we call relative incoherence. It allows us to formulate some
of our results slightly more elegantly.

Definition 24. Let  ⊆ H be a set of elements of unit norm.
The relative incoherence of  is defined as

ω() = 1 − μ()

μ()
.

For a finite set of unit vectors  = {ϕ1, . . . , ϕr }, we will also
write ω(ϕ1, . . . , ϕr ) occasionally.

It follows from our observation about coherence that
0 ≤ ω() ≤ ∞, ω() = ∞ iff ϕ1, . . . , ϕr are orthonormal,
and ω() = 0 iff  contains at least a pair of collinear
elements.

In the next few subsections, we will see respectively how
coherence can inform us about the existence (Section VIII-A),
uniqueness (Section VIII-B), as well as both existence and
uniqueness (Section VIII-C) of a solution to the best rank-r
multilinear approximation problem (28). We will also see
how it can be used for establishing exact recoverability
(Section VIII-D) and approximation bounds (Section VIII-E)
in greedy algorithms.

A. Existence Via Coherence

The goal is to prevent the phenomenon we observed in
Example 12 to occur, by imposing natural and weak con-
straints; we do not want to reduce the search to a compact set.
It is clear that the objective is not coercive, which explains why
the minimum may not exist. But with an additional condition
on the coherence, we shall be able to prove existence thanks
to coercivity.

The following shows that a solution to the bounded coher-
ence best rank-r approximation problem always exists:

Theorem 25. Let f ∈ L2(X1 × · · · × Xd ) be a d-partite
function. If

d∏

k=1

(1 + ωk) > r − 1 (46)

or equivalently if

d∏

k=1

μk <
1

r − 1
, (47)
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where μk denotes the coherence as in Definition 23, then

η = inf

{∥∥∥∥ f −
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥ :

λ ∈ C
r , μ(ϕk1, . . . , ϕkr ) ≤ μk

}
(48)

= inf

{∥∥∥∥ f −
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥ :

λ ∈ C
r , ω(ϕk1, . . . , ϕkr ) ≥ ωk

}

is attained. Here, ‖ · ‖ denotes the L2-norm on
L2(X1 × · · ·× Xd) and λ = (λ1, . . . , λr ). If desired, we may
assume that λ ∈ Rr and λ1 ≥ · · · ≥ λr > 0 by Theorem 2.

Proof: The equivalence between (46) and (47) follows
from Definition 24. We show that if either of these conditions
are met, then the loss function is coercive. We have the
following inequalities

∥∥∥∥∥∥

r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥∥∥

2

=
r∑

p,q=1

λpλ̄q

d∏

k=1

〈ϕkp, ϕkq 〉

≥
r∑

p=1

λpλ̄p

d∏

k=1

‖ϕkp‖2 −
r∑

p �=q

∣∣∣∣∣λpλ̄q

d∏

k=1

〈ϕkp, ϕkq 〉
∣∣∣∣∣

≥
r∑

p=1

|λp|2 −
d∏

k=1

μk

∑

p �=q

|λpλ̄q | ≥ ‖λ‖2
2 − (r − 1)‖λ‖2

2

d∏

k=1

μk

where the last inequality follows from
∑

p �=q

|λpλ̄q | ≤ (r − 1)‖λ‖2
2,

which is true because
∑

p �=q(|λp| − |λq |)2 ≥ 0. This yields

∥∥∥∥∥∥

r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥∥∥

2

≥
[

1 − (r − 1)
d∏

k=1

μk

]
‖λ‖2

2

(49)
Since by assumption (r − 1)

∏d
k=1 μk < 1, it is clear that

the left hand side of (49) tends to infinity as ‖λ‖2 → ∞.
And because f is fixed,

∥∥∥ f −∑r
p=1 λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥ also
tends to infinity as ‖λ‖2 → ∞. This proves coercivity of the
loss function and hence the existential statement.

The condition (46) or, equivalently, (47), in Theorem 25
is sharp in an appropriate sense. Theorem 25 shows that the
condition (47) is sufficient in the sense that it guarantees a best
rank-r approximation when the condition is met. We show that
it is also necessary in the sense that if (47) does not hold, then
there are examples where a best rank-r approximation fails to
exist.

In fact, let f̂ be as in Example VI. As demonstrated in the
proof of Theorem VI, the infimum for the case d = 3 and
r = 2,

inf‖gk‖=‖hk‖=1, λ,μ≥0
‖ f̂ − λg1 ⊗ g2 ⊗ g3 − μh1 ⊗ h2 ⊗ h3‖

is not attained. Since

gk = ϕk + n−1ψk

‖ϕk + n−1ψk‖ , hk = ϕk

‖ϕk‖ ,
for k = 1, 2, 3, the corresponding coherence

μ(gk, hk) ≥ |〈gk, hk〉| → 1

as n → ∞. For any values of μ1, μ2, μ3 ∈ [0, 1] such that
(47) holds, i.e. μ1μ2μ3 < 1/(r − 1) = 1, we cannot possibly
have μ(gk, hk) ≤ μk for all k = 1, 2, 3 since

μ(g1, h1)μ(g2, h2)μ(g3, h3) → 1

as n → ∞.

B. Uniqueness and Minimality Via Coherence

In order to relate uniqueness and minimality of multilinear
decompositions to coherence, we need a simple observation
about the notion of Kruskal rank introduced in Definition 7.

Lemma 26. Let  ⊆ L2(X1 × · · · × Xd ) be finite and
krank < dim span. Then

krank ≥ 1

μ()
. (50)

Proof: Let s = krank+ 1. Then there exists a subset of
s distinct unit vectors in , {ϕ1, . . . , ϕs} such that α1ϕ1+· · ·+
αsϕs = 0 with |α1| = max{|α1|, . . . , |αs |} > 0. Taking inner
product with ϕ1 we get α1 = −α2〈ϕ2, ϕ1〉 − · · · − αs〈ϕs , ϕ1〉
and so |α1| ≤ (|α2| + · · · + |αs |)μ(). Dividing by |α1| then
yields 1 ≤ (s − 1)μ(). The condition krank < dim span
prevents  from being orthonormal, so μ() > 0 and we
obtain (50).

We now characterize the uniqueness of the rank-
retaining decomposition in terms of coherence introduced in
Definition 23.

Theorem 27. Suppose f ∈ L2(X1 × · · · × Xd ) has a
multilinear decomposition

f =
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

where k := {ϕk1, . . . , ϕkr } are elements in L2(Xk) of unit
norm and krankk < dim spank for all k = 1, . . . , d . Let
ωk = ω(k). If

d∑

k=1

ωk ≥ 2r − 1, (51)

then r = rank( f ) and the decomposition is essentially unique.
In terms of coherence, (51) takes the form

d∑

k=1

1

μk
≥ 2r + d − 1. (52)

Proof: Inequality (52) implies that
∑d

k=1 μ
−1
k ≥ 2r+d−1,

where μk denotes μ(k). If it is satisfied, then so is Kruskal’s
condition (25) thanks to Lemma 26. The result hence directly
follows from Lemma 9 and Definition 24.

Note that unlike the Kruskal ranks in (25), the coherences in
(52) are trivial to compute. In addition to uniqueness, an easy
but important consequence of Theorem 27 is that it provides
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a readily checkable sufficient condition for tensor rank, which
is NP-hard over any field [42], [43].

Since the purpose of Theorem 27 is to provide a com-
putationally feasible alternative of Lemma 9, excluding the
case krankk = dim spank is not an issue. Note that
krankk = dim spank iff k comprises linearly indepen-
dent elements, and the latter can be checked in polynomial
time. So this is a case where Lemma 9 can be readily checked
and one does not need Theorem 27.

C. Existence and Uniqueness Via Coherence

The following existence and uniqueness sufficient condition
may now be deduced from Theorems 25 and 27.

Corollary 28. If d ≥ 3 and if coherences μk satisfy

(
d∏

k=1

μk

)1/d

≤ d

2r + d − 1
(53)

then the bounded coherence best rank-r approximation prob-
lem has a unique solution up to unimodulus scaling.

Proof: The existence in the case r = 1 is assured, because
the set of separable functions {ϕ1 ⊗ · · · ⊗ ϕd : ϕk ∈ L2(Xk)}
is closed. Consider thus the case r ≥ 2. Since the function

f (x) = 1
x −

(
d

2x+d−1

)d
is strictly positive for x ≥ 2 and

d ≥ 3, condition (53) implies that
∏d

k=1 μk is smaller than
1/r , which permits to claim that the solution exists by calling
for Theorem 25. Next in order to prove uniqueness, we use
the inequality between harmonic and geometric means: if (53)

is verified, then we also necessarily have d
(∑d

k=1 μ
−1
k

)−1 ≤
d

2r+d−1 . Hence
∑d

k=1 μ
−1
k ≥ 2r + d − 1 and we can apply

Theorem 27.
In practice, simpler expressions than (53) can be more

attractive for computational purposes. These can be derived
from the inequalities between means:

[
1

d

d∑

k=1

μ−1
k

]−1

≤
[

d∏

k=1

μk

] 1
d

≤ 1

d

d∑

k=1

μk ≤
[

1

d

d∑

k=1

μ2
k

] 1
2

.

Examples of stronger sufficient conditions that could be used
in place of (53) include

d∑

k=1

μk ≤ d2

2r + d − 1
, (54)

d∑

k=1

μ2
k ≤ d

(
d

2r + d − 1

)2

. (55)

Another simplification can be performed, which yields dif-
ferentiable expressions of the constraints if (55) is to be used.
In fact, noting that for any set of numbers x1, . . . , xn ∈ C,

maxi=1,...,n|xi | ≤
√∑n

i=1|xi |2, a sufficient condition ensuring
that (55) is satisfied, and hence (53), is

d∑

k=1

∑

p<q

|〈ϕkp, ϕkq 〉|2 ≤ d

(
d

2r + d − 1

)2

.

D. Exact Recoverability Via Coherence

We now describe a result that follows from the remarkable
work of Temlyakov. It allows us to in principle determine
the multilinear decomposition meeting the type of coherence
conditions in Section VIII-A.

Some additional notations would be useful. We let
 ⊆ { f ∈ L2(X1 × · · · × Xd : rank( f ) = 1} be a dictionary6

of separable functions (i.e. rank-1) in L2(X1 × · · · × Xd) that
meets a bounded coherence condition, i.e.

μ() < μ (56)

for some μ ∈ [0, 1) to be chosen later. Recall that the elements
of  are implicitly assumed to be of unit norm (cf. remark
after Definition 23).

Let t ∈ (0, 1]. The weakly orthogonal greedy algorithm
(WOGA) is simple to describe: Set f0 = f . For each m ∈ N,
we inductively define a sequence of fm ’s as follows:

1) gm ∈  is any element satisfying

|〈 fm−1, gm〉| ≥ t sup
g∈

|〈 fm−1, g〉|;

2) hm ∈ L2(X1 × · · · × Xd ) is a projection of f onto
span(g1, . . . , gm), i.e.

hm ∈ argmin{‖ f − g‖ : g ∈ span(g1, . . . , gm)}; (57)

3) fm ∈ L2(X1 × · · · × Xd ) is a deflation of f by hm , i.e.

fm = f − hm .

Note that deflation alone, without the coherence require-
ment, generally does not work for computing multilinear
decompositions [65]. The following result, adapted here for
our purpose, was proved for any arbitrary dictionary in [69].

Theorem 29 (Temlyakov). Suppose f ∈ L2(X1 ×· · ·× Xd)
has a multilinear decomposition

f =
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

with ϕ1p ⊗ · · · ⊗ ϕdp ∈  and the condition that

r <
t

1 + t

(
1 + 1

μ

)

for some t ∈ (0, 1]. Then the WOGA algorithm recovers the
factors exactly, or more precisely, fr = 0 and thus f = hr .

So hr , by its definition in (57) and our choice of , is given
in the form of a linear combination of rank-1 functions, i.e.,
an rank-r multilinear decomposition.

E. Greedy Approximation Bounds Via Coherence

This discussion in Section VIII-D pertains to exact recovery
of a rank-r multilinear decomposition although our main prob-
lem really takes the form of a best rank-r approximation more
often than not. We will describe some greedy approximation
bounds for the approximation problem in this section.

6A dictionary is any set  ⊆ H whose linear span is dense in the Hilbert
space H.
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We let

σr ( f̂ ) := inf
α∈Cr , ‖ϕkp‖=1

∥∥∥∥∥∥
f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥∥
.

By our definition of rank and border rank,

σr ( f̂ ) = inf{‖ f̂ − f ‖ : rank( f ) ≤ r}
= min{‖ f̂ − f ‖ : rank( f ) ≤ r}.

It would be wonderful if greedy algorithms along the lines
of what we discussed in Section VIII-D could yield an
approximant within some provable bounds that is a factor
of σr ( f̂ ). However this is too much to hope for mainly
because a dictionary comprising all separable functions, i.e.,
{ f : rank( f ) = 1} is far too large to be amenable to such
analysis. This does not prevent us from considering somewhat
more restrictive dictionaries like what we did in the previous
section. So again, let  ⊆ { f ∈ L2(X1 × · · · × Xd) :
rank( f ) = 1} be such that

μ() < μ

for some given μ ∈ [0, 1) to be chosen later. Let us instead
define

sr ( f̂ ) = inf
α∈Cr , ϕp∈

∥∥∥∥∥∥
f̂ −

r∑

p=1

αpϕp

∥∥∥∥∥∥
.

Clearly
σr ( f̂ ) ≤ sr ( f̂ ) (58)

since the infimum is taken over a smaller dictionary.
The special case where t = 1 in the WOGA described in

Section VIII-D is also called the orthogonal greedy algorithm
(OGA). The result we state next comes from the work of
a number of people done over the last decade: (59) is due
to Gilbert, Muthukrisnan, and Strauss in 2003 [32]; (60) is
due to Tropp in 2004 [72]; (61) is due to Dohono, Elad,
and Temlyakov in 2006 [28]; and (62) is due to Livshitz in
2012 [50]. We merely apply these results to our approximation
problem here.

Theorem 30. Let f̂ ∈ L2(X1 ×· · ·× Xd) and fr be the r th
iterate as defined in WOGA with t = 1 and input f̂ .

(i) If r < 1
32μ

−1, then

‖ f̂ − fr ‖ ≤ 8r1/2sr ( f̂ ). (59)

(ii) If r < 1
3μ

−1, then

‖ f̂ − fr‖ ≤ (1 + 6r)1/2sr ( f̂ ). (60)

(iii) If r ≤ 1
20μ

−2/3, then

‖ f̂ − fr log r‖ ≤ 24sr ( f̂ ). (61)

(iv) If r ≤ 1
20μ

−1, then

‖ f̂ − f2r‖ ≤ 3sr ( f̂ ). (62)

It would be marvelous if one could instead establish bounds
in (59), (60), (61), and (62) with σr ( f̂ ) in place of sr ( f̂ )
and { f : rank( f ) = 1} in place of , dropping the
coherence μ altogether. In which case one may estimate how

well the r th OGA iterates fr approximates the best rank-r
approximation. This appears to be beyond present capabilites.

We would to note that although the approximation theo-
retic technqiues (coherence, greedy approximation, redundant
dictionaries, etc) used in this article owe their newfound
popularity to compressive sensing, they owe their roots to
works of the Russian school of approximation theorists (e.g.,
Boris Kashin, Vladimir Temlyakov, et al.) dating back to the
1980s. We refer readers to the bibliography of [68] for more
information.

F. Checking Coherence-Based Conditions

Since the conditions in Theorems 25, 27, 29, and
Corollary 28 all involve coherence, we will say a brief word
about its computation.

It has recently been established that computing the spark
of a finite set of vectors , i.e., the size of the smallest
linearly dependent subset of, is strongly NP-hard [70]. Since
spark = krank+ 1, it immediately follows that the same
is true for Kruskal rank.

Corollary 31 (Kruskal rank is NP-hard) Let H be a Hilbert
space and  ⊆ H be finite. The optimization problem of
computing

krank() := max

{
k : all � ∈

(


k

)
linearly independent

}

is strongly NP-hard.
(

k

) = set of all k-element subsets of .
Given the NP-hardness of Kruskal rank, one expects that

Lemma 9, as well as its finite-dimensional counterparts [41],
[61], would be computationally intractable to apply in reality.
The reciprocal of coherence is therefore a useful surrogate
for Kruskal rank by virtue of Lemma 26 and the fact that
computing μ() requires only r(r − 1)/2 inner products
〈ϕi , ϕ j 〉, i �= j , where r = ||.

For finite-dimensional problems, i.e., X1, . . . , Xd are all
finite sets, we may regard  as a matrix in Cn×r , and μ()
is simply the largest entry in magnitude in the Gram matrix
T, which may be rapidly computed using Strassen-type
algorithms [67] in numerically stable ways [23]. For infinite-
dimensional problems, the problem depends on the cost of
integrating complex-valued functions defined on Xk , k =
1, . . . , d . For example, if X1, . . . , Xd are all finite intervals of
R, one may use inner product quadratures [13] to efficiently
compute the Gram matrix (〈ϕi , ϕ j 〉)ni, j=1 ∈ Rn×n and thereby
find μ().

IX. APPLICATIONS

Various applications, many under the headings7 of CANDE-
COMP [11] and PARAFAC [36], have appeared in psychomet-
rics and, more recently, also other data analytic applications.
We found that many of these applications suffer from a
regretable defect — there are no compelling reasons nor
rigorous arguments that support the use of a rank-r multilinear
decomposition model. The mere fact that a data set may be

7Other than CANDECOMP and PARAFAC, the finite-dimensional multilinear
decompositions have also been studied under the names CP, CAND, canonical
decomposition, and canonical polyadic decompositions.
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cast in the form of a d-dimensional array A ∈ Cn1×···×nd does
not mean that (13) would be the right or even a reasonable
thing to do. In particular, how would one interpret the factors
ϕkp’s when d > 2? When d = 2, one could arguably interpret
these as principal or varimax components when orthonormality
is imposed but for general d > 2, a convincing application
of a model based on the rank-r multilinear decomposition
(13) must rely on careful arguments that follow from first
principles.

The goal of this section is two-fold. First we provide a selec-
tion of applications where the rank-r multilinear decomposi-
tion (13) arises naturally via considerations of first principles
(in electrodynamics, quantum mechanics, wave propagation,
etc). Secondly, we demonstrate that the coherence conditions
discussed extensively in Section VIII invariably have reason-
able interpretations in terms of physical quantities.

The use of a rank-r multilinear decomposition model in
signal processing via higher-order statistics has a long history
[10], [16], [31], [59], [60]. Our signal processing applications
here are of a different nature, they are based on geometrical
properties of sensor arrays instead of considerations of higher-
order statistics. This line of argument first appeared in the
work of Sidiropoulos and Bro [62], which is innovative and
well-motivated by first principles. However, like all other
applications considered thus far, whether in data analysis,
signal processing, psychometrics, or chemometrics, it does not
address the serious nonexistence problem that we discussed at
length in Section VIII-A. Without any guarantee that a solution
to (28) exists, one can never be sure when the model would
yield a solution. Another issue of concern is that the Kruskal
uniqueness condition in Lemma 9 has often been invoked to
provide evidence of a unique solution but we now know that
this condition is practically impossible to check because of
Corollary 31. The applications considered below would use
the coherence conditions developed in Section VIII to avoid
these difficulties. More precisely, Theorem 25, Theorem 27,
and Corollary 28 are invoked to guarantee the existence of
a solution to the approximation problem and provide readily
checkable conditions for uniqueness of the solution, all via
the notion of coherence. Note that unlike Kruskal’s condition,
which applies only to an exact decomposition, Corollary 28
gives uniqueness of an approximation in noisy circumstances.

In this section, applications are presented in finite dimen-
sion. In order to avoid any confusion, X∗, XH and XT will
denote complex conjugate, hermitian transpose, and transpose,
of the matrix X respectively.

A. Joint Channel and Source Estimation

Consider a narrow band transmission problem in the far
field. We assume here that we are in the context of wireless
telecommunications, but the same principle could also apply
in other areas. Let r signals impinge on an array, so that their
mixture is recorded. We wish to recover the original signals
and to estimate their directions of arrival and respective powers
at the receiver. If the channel is specular, some of these signals
can correspond to different propagation paths of the same
radiating source, and are therefore correlated. In other words,

r does not denote the number of sources, but the total number
of distinct paths viewed from the receiver.

In the present framework, we assume that channels can be
time-varying, but that they can be regarded to be constant over
a sufficiently short observation length. The goal is to be able
to work with extremely short samples.

In order to face this challenge, we assume that the sensor
array is structured, as in [62]. More precisely, the sensor array
comprises a reference array with n1 sensors, whose location
is defined by a vector bi ∈ R3, and n2 − 1 other subarrays
obtained from the reference array by a translation in space
defined by a vector � j ∈ R3, j = 2, . . . , n2. The reference
subarray is numbered with j = 1 in the remainder.

Under these assumptions, the signal received at discrete time
tk , k = 1, . . . , n3, on the i th sensor of the reference subarray
can be written as

si,1(k) =
r∑

p=1

σp(tk) exp(ψi,p)

with ψi,p = j ωC (b
T
i dp) where the dotless j denotes

√−1;
dp ∈ R3 is of unit norm and denotes direction of arrival of
the pth path, C denotes the wave celerity, and ω denotes the
pulsation. Next, on the j th subarray, j = 2, . . . , n2, we have

si, j (k) =
r∑

p=1

σp(tk) exp(ψi, j,p) (63)

with ψi, j,p = j ωC (b
T
i dp +�T

j dp). If we let �1 = 0, then (63)
also applies to the reference subarray. The crucial feature of
this structure is that variables i and j decouple in the function
exp(ψi, j,p), yielding a relation resembling the rank-retaining
multilinear decomposition:

si, j (k) =
r∑

p=1

λpuipv j pwkp

where uip = exp
(
j ωC b�

i dp
)
, v j p = exp

(
j ωC �T

j dp

)
and

wkp = σp(tk)/‖σ p‖, λp = ‖σ p‖.
By computing a rank-retaining decomposition of the hyper-

matrix S = (si, j (k)) ∈ Cn1×n2×n3 , one may jointly estimate:
(i) signal waveforms σp(k), and (ii) directions of arrival dp of
each propagation path, provided bi or � j are known.

However, the observation model (63) is not realistic, and
an additional error term should be added in order to account
for modeling inaccuracies and background noise. It is cus-
tomary (and realistic thanks to the central limit theorem) to
assume that this additive error has a continuous probability
distribution, and that therefore the hypermatrix S has the
generic rank. Since the generic rank is at least as large
as �n1n2n3/(n1 + n2 + n3 − 2)�, which is always larger
than Kruskal’s bound [19], we are led to the problem of
approximating the hypermatrix S by another of rank r . We
have seen that the angular constraint imposed in Section VIII
permits us to deal with a well-posed problem. In order to see
the physical meaning of this constraint, we need to first define
the tensor product between sensor subarrays.
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Fig. 1. Antenna array (a) obtained as tensor product of subarrays (b) & (c).

Fig. 2. Antenna array (a) obtained as tensor product of subarrays (b) & (c).

B. Tensor Product Between Sensor Subarrays

The sensor arrays we encounter are structured, in the sense
that the whole array is generated by one subarray defined by
the collection of vector locations {bi ∈ R3 : 1 ≤ i ≤ n1}, and
a collection of translations in space, {� j ∈ R3 : 1 ≤ j ≤ n2}.
If we define vectors

up = 1√
n1

[
exp

(
j
ω

C
bT

i dp

)]n1

i=1
,

vp = 1√
n2

[
exp

(
j
ω

C
�T

j dp

)]n2

j=1
, (64)

wp = σ p/‖σ p‖,
then we may view all measurements as the superimposition of
decomposable hypermatrices λpup ⊗ vp ⊗ wp .

Geometrical information of the sensor array is contained in
up ⊗ vp while energy and time information on each path p is
contained in λp and wp respectively. Note that the reference
subarray and the set of translations play symmetric roles, in the
sense that up and vp could be interchanged without changing
the whole array. This will become clear with a few examples.

When we are given a structured sensor array, there can be
several ways of splitting it into a tensor product of two (or
more) subarrays, as shown in the following simple examples.

Example 32. Define the matrix of sensor locations

[b1,b2,b3] =
[

0 0 1
0 1 1

]
.

This subarray is depicted in Figure 1(b). By translating it via
the translation in Figure 1(c) one obtains another subarray.
The union of the two subarrays yields the array of Figure 1(a).
The same array is obtained by interchanging roles of the two
subarrays, i.e., three subarrays of two sensors deduced from
each other by two translations.

Example 33. Define the array by

[b1,b2, . . . ,b6] =
[

0 1 2 0 1 2
0 0 0 1 1 1

]
. (65)

This array, depicted in Figure 2(a), can either be obtained from
the union of subarray of Figure 2(b) and its translation defined
by Figure 2(c), or from the array of Figure 2(c) translated three
times according to Figure 2(b). We express this relationship as

Another decomposition may be obtained as

In fact, and . However,
it is important to stress that the various decompositions of
the whole array into tensor products of subarrays are not
equivalent from the point of view of performance. In particular,
the Kruskal bound can be different, as we will see next.

Similar observations can be made for grid arrays in general.
Example 34. Take an array of 9 sensors located at (x, y) ∈

{1, 2, 3} × {1, 2, 3}. We have the relations

among others.
Let us now have a look at the maximal number of sources

rmax that can be extracted from a n1 × n2 × n3 hypermatrix
in the absence of noise. A sufficient condition is that the total
number of paths, r , is smaller than Kruskal’s bound (25). We
shall simplify the bound by making two assumptions: (a) the
loading matrices are generic, i.e., they are of full rank, and
(b) the number of paths is larger than the sizes n1 and n2
of the two subarrays entering the array tensor product, and
smaller than the number of time samples, n3. Under these
simplifying assumptions, Kruskal’s bound becomes 2rmax ≤
n1 + n2 + rmax − 2, or:

rmax = n1 + n2 − 2 (66)

The table below illustrates the fact that the choice of subarrays
has an impact on this bound.

C. Significance of the Angular Constraint

We are now in a position to interpret the meanings of the
various coherences in light of this application. According to
the notations given in (64), the first coherence

μ1 = max
p �=q

|uH
p uq |

corresponds to the angular separation viewed from the refer-
ence subarray. The vectors bi and dp have unit norm, as do
the vectors up . The quantity |uH

p uq | may thus be viewed as a
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measure of angular separation between dp and dq , as we shall
demonstrate in Proposition IX-C.

Definition 35. We shall say that a collection of vectors
{b1, . . . ,bn} is resolvent with respect to a direction v ∈ R3

if there exist two indices k and l such that v = bk − bl and

0 < ‖v‖ < λ

2
,

where λ = 2πC/ω denotes the wavelength.
Let bi , dp and uq be defined as in (64), i = 1, . . . , n1,

p, q = 1, . . . , n2. Then we have the following.
Proposition 36. If {b1, . . . ,bn} is resolvent with respect to

three linearly independent directions, then

|uH
p uq | = 1 ⇔ dp = dq .

Proof: Assume that |uH
p uq | = 1. Since they are of

unit norm, vectors up and uq are collinear with a unit
modulus proportionality factor. Hence, from (64), for all
j, k = 1, . . . , n1, (b j − bk)

T(dp − dq ) ∈ λZ, where λ is as
in Definition 25. Since {b1, . . . ,bn} is resolvent, there exist
k, l such that 0 < ‖bk − bl‖ < λ/2. As the vectors dp

are of unit norm, ‖dp − dq‖ ≤ 2 and we necessarily have
that (bk − bl)

T(dp − dq) = 0, i.e., dp − dq is orthogonal
to bk − bl . The same reasoning can be carried out with the
other two independent vectors. The vector dp − dq must
be 0 because it is orthogonal to three linearly independent
vectors in R3. The converse is immediate from the definition
of uq .

Note that the condition in Definition 35 is not very restric-
tive, since sensor arrays usually contain sensors separated by
half a wavelength or less. Thanks to Proposition 36, we now
know that uniqueness of the matrix factor U = [u1, . . . ,ur ]
and the identifiability of the directions of arrival dp are
equivalent. By the results of Section VIII, the uniqueness can
be ensured by a constraint on coherence such as (53).

As in Section IX-B, the second coherence may be inter-
preted as a measure of the minimal angular separation between
paths, viewed from the subarray defining translations.

The third coherence is the maximal correlation coefficient
between signals received from various paths on the array

μ3 = max
p �=q

|σH
p σ q |

‖σ p‖‖σ q‖ .

In conclusion, the best rank-r approximation exists and is
unique if either signals propagating through various paths are
not too correlated, or if their direction of arrival are not too
close, where “not too” is taken to mean that the product of
coherences satisfies inequality (53) of Corollary 28. In other
words, one can separate paths with arbitrarily high correlation
provided they are sufficiently well separated in space.

Hence, the decomposition of a sensor array into a tensor
product of two (or more) sensor subarrays depends not only
on Kruskal’s bound, as elaborated in Section IX-B, but also
on the ability of the latter subarrays to separate two distinct
directions of arrival (cf. Proposition 36).

D. CDMA Communications

The application to antenna array processing we described
in Section IX-A also applies to all source separation problems
[18], provided an additional diversity is available. An exam-
ple is the case of Code Division Multiple Access (CDMA)
communications. In fact, as pointed out in [63], it is possible
to distinguish between symbol and chip diversities. We will
elaborate on the latter example.

Consider a downlink CDMA communication with r users,
each assigned a spreading sequence Cp(k), p = 1, . . . , r ,
k = 1, . . . , n. Denote by Aip the complex gain between sensor
i , i = 1, . . . ,m, and user p, by Sj p the symbol sequence
transmitted by user p, j ∈ Z, and by Hp(k) the channel
impulse response of user p. The signal received on sensor
i during the kth chip of the j th symbol period takes the form

Ti jk =
r∑

p=1

Aip S j p Bkp

where Bkp = ∑
t Hp(k − t)Cp(t) denotes the output of the

pth channel excited by the pth coding sequence, upon removal
of the guard chips (which may be affected by two different
consecutive symbols) [63].

The columns of matrix B = (Bkp) ∈ Rn×r are often
referred to as “effective codes”, and coincide with spreading
codes if the channel is memoryless and noiseless. In practice,
the receiver filter is matched to the transmitter shaping filter
combined with the propagation channel, so that effective and
spreading codes are ideally proportional. Under these condi-
tions, the coherence μC accounts for the angular separation
between spreading sequences: μC = 0 means that they are
orthogonal. On the other hand, μA = 0 means that the
symbol sequences are all uncorrelated. Lastly, as seen in
Proposition 36, μB = 1 means that the directions of arrival
are collinear.

In order to avoid multiple access interferences, spread-
ing sequences are usually chosen to be uncorrelated for all
delays, which implies that they are orthogonal. However, the
results obtained in Section VIII show that spreading sequences
do not need to be orthogonal, and symbol sequences need
not be uncorrelated, as long as the directions of arrival
are not collinear. In particular, shorter spreading sequences
may be used for the same number of users, which increases
throughput. Alternatively, for a given spreading gain, one may
increase the number of users. These are possible because the
coherence conditions in Section VIII allow one to relax the
constraint of having almost orthogonal spreading sequences.
On the other hand, some directions of arrival may be collinear
if the corresponding spreading sequences are sufficiently well
separated angularly. These conclusions are essentially valid
when users are synchronized, i.e., for downlink communica-
tions.

E. Polarization

The use of polarization as an additional diversity has its
roots in [56]. Several attempts to use this diversity in the
framework of tensor-based source localization and estimation
can be found in the literature [35].
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In this framework, we consider again an array of n1 sensors,
whose locations are given by bi ∈ R3, i = 1, . . . , n. We
assume a narrow-band transmission in the far field (i.e.,
sources, or source paths, are all seen as plane waves at the
receiver sensor array). The difference with Section IX-B is that
translation diversity is not mandatory anymore, provided that
the impinging waves are polarized and that their polarization
is neither linear nor circular. One measures the electric and
magnetic fields at each sensor as a function of time, so that
n2 = 6. More precisely, vp of (64) is replaced by

vp = Bpgp (67)

where Bp ∈ R
6×2 depends only on the direction of arrival dp

(defined in Section IX-B), and gp ∈ C2 depends only on the
orientation and ellipticity of the polarization of the pth wave.

Coherences μ1 and μ3 are the same as in Section IX-C,
and represent respectively the angular separation between
directions of arrival, and correlation between arriving sources.
It is slightly more difficult to see the significance of μ2, the
coherence associated with polarization.

For this, we need to go into more details [56]. Let
αp ∈ (−π/2, π/2] and βp ∈ (−π/4, 0) ∪ (0, π/4) denote
respectively the orientation and ellipticity angles of the polar-
ization of the pth wave. Let θp ∈ [0, 2π) and φp ∈
(−π/2, π/2] denote respectively the azimuth and elevation of
the direction of arrival of the pth path. We have

Bp = 1√
2

[
ep fp

fp −ep

]
, gp = Q(αp)hp,

where

ep =
⎡

⎣
− sin θp

cos θp

0

⎤

⎦ , fp =
⎡

⎣
− cos θp sin φp

− sin θp sin φp

cosφp

⎤

⎦ ,

Q(α) =
[

cosα sin α
− sin α cosα

]
, hp =

[
cosβp

j sin βp

]
.

The unit vector defining the pth direction of arrival is

dp =
⎡

⎣
cos θp cosφp

sin θp cosφp

sin φp

⎤

⎦ .

So the triplet (dp, ep, fp) forms a right orthonormal triad.
Lemma 37. |gH

p gq | = 1 if and only if αp = αq + kπ and
βp = βq , k ∈ Z.

Proof: First note that Q(αp)
HQ(αq ) = Q(αq−αp). Hence

gH
p gq can be of unit modulus only if hp and Q(αq − αp)hq

are collinear. But the first entry of hp is real and the second
is purely imaginary. So the corresponding imaginary and real
parts of Q(αq − αp)hq must be zero, which implies that
sin(αq − αp) = 0. Consequently Q(αq − αp) = ± I ,
which yields hp = ±hq . But because the angle β lies
in the interval (−π/4, π/4), only the positive sign is
acceptable.

Proposition 38. |vH
p vq | ≤ 1, with equality if and only if

αp = αq + kπ , βp = βq , θp = θq + k ′π and φp = φq ,
k, k ′ ∈ Z. Proof: We have |vH

p vq | = |gH
p BT

p Bqgq |. Notice

that the matrix BT
p Bq is of the form

BT
p Bq =

[
γ η
−η γ

]

where γ and η are real, γ = 1
2 (e

T
peq + fT

p fq) and
η = 1

2 (e
T
pfq − fT

p eq). Since gp and gq are of unit norm, |vH
p vq |

can be of unit modulus only if BT
p Bq has an eigenvalue of unit

modulus, which requires that γ 2 +η2 = 1. We now prove that
γ 2 + η2 ≤ 1 with equality if and only if the four sets of
equalities hold.

With this goal in mind, define the 6-dimensional vectors

z = 1√
2

[
ep

fp

]
, w = 1√

2

[
eq

fq

]
, w′ = 1√

2

[
fq

−eq

]
.

Then γ = zTw and γ = zTw′. Decompose z into two
orthogonal parts: z = z0 + z1, with z0 ∈ span{w,w′} and
z0⊥z1. Clearly, γ 2 + η2 = ‖z0‖2. Moreover, ‖z0‖2 ≤ ‖z‖2 =
1, with equality if and only if z ∈ span{w,w′}. By inspection
of the definitions of ep and eq , we see that the third entry of
z and w is 0. Hence z ∈ span{w,w′} is possible only if either
z is collinear to w or if the third entry of w′ is 0. In the latter
case, it means that φq = π/2, and so φp = π/2 and θp = θq .
In the former case, it can be seen that sin θp = sin θq , and
finally that φp = φq .

The last step is to rewrite γ and η as a function of angle
θp − θq , using trigonometric relations: γ = cos(θp − θq)
(1 + sin φp sin φq) + cosφp cosφq and η = sin(θp −
θq)(sin φp + sin φq). This eventually shows that γ = 1 and
η = 0. As a consequence, |vH

p vq | = 1 only if BT
p Bq = I , and

the result follows from Lemma 37.
Proposition 38 shows that a constraint on the coherence

μ2 compels source paths to have either different directions of
arrival or different polarizations, giving μ2 physical meaning.

F. Fluorescence Spectral Analysis

Here is a well-known application to fluorescence spectral
analysis originally discussed in [64]. We use the notations in
Example 6. Suppose we have l samples with an unknown
number of pure substances in different concentrations that
are fluorescent. If ai jk is the measured fluorescence emission
intensity at wavelength λem

j of the i th sample excited with
light of wavelength λex

k . The measured data is a 3-dimensional
hypermatrix A = (ai jk) ∈ R

l×m×n . At low concentrations,
Beer’s law of spectroscopy (which is in turn a consequence
of fundamental principles in quantum mechanics) can be
linearized [51], yielding a rank-retaining decomposition

A = x1 ⊗ y1 ⊗ z1 + · · · + xr ⊗ yr ⊗ zr .

This reveals the true chemical factors responsible for the data:
r = rank(A) gives the number of pure substances in the
mixtures, xp = (x1p, . . . , xlp) gives the relative concentrations
of pth substance in specimens 1, . . . , l; yp = (y1p, . . . , ymp)
gives the excitation spectrum of pth substance; and
zp = (z1p, . . . , znp) gives the emission spectrum of pth
substance. The emission and excitation spectra would then
allow one to identify the pure substances.
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Of course, this is only valid in an idealized situation when
measurements are performed perfectly without error and noise.
Under realistic noisy circumstances, one would then need to a
find best rank-r approximation, which is where the coherence
results of Section VIII play a role. In this case, μ(x1, . . . , xr )
measures the relative abundance of the pure substances in the
samples while μ(y1, . . . , yr ) and μ(z1, . . . , zr ) measure the
spectroscopic likeness of these pure substances in the sense
of absorbance and fluorescence respectively.

G. Statistical Independence Induces Diversity

We will now discuss a somewhat different way to achieve
diversity. Assume the linear model below

x(t) = Us(t), (68)

where only the signal x(t) is observed, U = [u1, . . . ,ur ] is
an unknown n×r mixing matrix, and s(t) = (s1(t), . . . , sr (t))
has mutually statistically independent components. One may
construct Kd (x), the dth order cumulant hypermatrix [54] of
x(t), and it will satisfy the multilinear model

Kd(x) =
r∑

p=1

λp(s)up ⊗ · · · ⊗ up

where λp(s) denotes the pth diagonal entry of the dth cumu-
lant hypermatrix of s. Because of the statistical independence
of s(t), the off-diagonal entries of the dth cumulant hyperma-
trix of s are zero [18], [54]. If d ≥ 3, then the matrix U and
the entries λp(s) can be identified [18]. One may apply the
results of Section VIII to deduce uniqueness of the solution.

Such problems generalize to convolutive mixtures and
have applications in telecommunications, radar, sonar, speech
processing, and biomedical engineering [18].

H. Nonstationarity Induces Diversity

If a signal x(t) is nonstationary, its time-frequency trans-
form, defined by

X (t, f ) =
∫

x(u)κ(u − t; f ) du

for some given kernel κ , bears information. If variables t
and f are discretized, then the values of X (t, f ) can be
stored in a matrix X ; and the more nonstationary the signal
x(t), the larger the rank of X . A similar statement can be
made on a signal y(z) depending on a spatial variable z.
The discrete values of the space-wavevector transform Y (z,w)
of a field y(z) can be stored in a matrix Y ; and the less
homogeneous the field y(z), the larger the rank of Y . This
is probably the reason why algorithms proposed in [2], [73]
permit one to localize and extract dipole contributions in the
brains using a multilinear model, provided that one has distinct
time-frequency or space-wavevector patterns. Nevertheless,
such localization is guaranteed to be successful only under
restrictive assumptions.

X. FURTHER WORK

A separate article discussing practical algorithms for the
bounded coherence best rank-r multilinear approximation is
under preparation with additional coauthors. These algorithms
follow the general strategy of the greedy approximations
WOGA and OGA discussed in Sections VIII-D and VIII-E
but contain other elements exploiting the special separable
structure of our problem. Extensive numerical experiments will
be provided in the forthcoming article.
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useful pointers he graciously provided afterwards. We grate-
fully acknowledge Tom Luo, Nikos Sidiropoulos, Yuan Yao,
and two anonymous reviewers for their helpful comments.
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