
Numerical multilinear algebra
From matrices to tensors

Lek-Heng Lim

University of California, Berkeley

March 1, 2008

Lek-Heng Lim (UC Berkeley) Numerical multilinear algebra March 1, 2008 1 / 29



Lesson 1: work over R or C

Facts that every numerical linear algebraist takes for granted:

1 Every matrix has a singular value decomposition.

2 Normal equation A>Ax = A>b always consistent for any A and b.

3 rank(A>A) = rank(A).

4 If A ∈ Rm×n, then

Rn = nullsp(A)⊕ range(A>),

Rm = nullsp(A>)⊕ range(A).

5 〈x, y〉 =
∑n

i=1 xiyi , 〈A,B〉 = tr(A>B) define inner products.

6 ‖x‖pp =
∑n

i=1|xi |p, ‖A‖2F =
∑m,n

i ,j=1|aij |2 define norms.

All these statements are false in general over arbitrary fields.
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Lesson 2: work with matrices

Isomorphic doesn’t mean identical.

A matrix doesn’t always come from an operator.

Can be a list of column or row vectors:

I gene-by-microarray matrix,
I movies-by-viewers matrix,
I list of codewords.

Can be a convenient way to represent graph structures:

I adjacency matrix,
I graph Laplacian,
I webpage-by-webpage matrix.

Useful to regard them as matrices and apply matrix operations:

I A gene-by-microarray matrix, A = UΣV> gives cellular states
(eigengenes), biological phenotype (eigenarrays) [Alter, Golub; 2004],

I A adjacency matrix, Ak counts number of paths of length ≤ k from
node i to node j .
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Lesson 3: look at other areas

Linear algebra is probably the topic least likely to yield interesting
problems and tools for numerical linear algebra.

Algebraic geometry: varieties of Segre (rank-1 matrices) and
Veronese (rank-1 symmetric matrices)

Classical mechanics: high frequency oscillations of membranes
(pseudospectrum)

Lie groups: Bruhat (LU), Cartan (SVD), Iwasawa (QR)
decompositions

Machine learning: collaborative filtering (maximum margin matrix
factorization)

Psychology: Eckart-Young theorem (optimal low rank
approximation)

Representation theory: cyclic representations (Krylov subspaces)

Statistics: errors-in-variables model (total least squares)
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Hypermatrices

Multiply indexed real numbers A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n on which the
following algebraic operations are defined:

1 Addition/scalar multiplication: for JbijkK ∈ Rl×m×n, λ ∈ R,

JaijkK + JbijkK := Jaijk + bijkK and λJaijkK := JλaijkK ∈ Rl×m×n.

2 Multilinear matrix multiplication: for matrices L = [λαi ] ∈ Rp×l ,
M = [µβj ] ∈ Rq×m, N = [νγk ] ∈ Rr×n,

(L,M,N) · A := JcαβγK ∈ Rp×q×r

where

cαβγ :=
∑l ,m,n

i ,j ,k=1
λαiµβjνγkaijk .
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Hypermatrices

Think of A as 3-dimensional array of numbers. (L,M,N) · A as
multiplication on ‘3 sides’ by matrices L,M,N.

Generalizes to arbitrary order k . If k = 2, ie. matrix, then
(M,N) · A = MAN>.

Covariant version:

A · (L>,M>,N>) := (L,M,N) · A.

Gives convenient notations for multilinear functionals and multilinear
operators. For x ∈ Rl , y ∈ Rm, z ∈ Rn,

A(x, y, z) := A · (x, y, z) =
∑l ,m,n

i ,j ,k=1
aijkxiyjzk ,

A(I , y, z) := A · (I , y, z) =
∑m,n

j ,k=1
aijkyjzk .
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Hypermatrices and tensors

Up to a choice of bases,

a matrix A ∈ Rm×n may represent

I an order-2 tensor in V1 ⊗ V2,
I a bilinear functional V1 × V2 → R,
I a linear operator V2 → V1,

where dim(V1) = m and dim(V2) = n;

a hypermatrix A ∈ Rd1×d2×···×dk may represent

I an order-k tensor in V1 ⊗ V2 ⊗ · · · ⊗ Vk ,
I a multilinear functional V1 × V2 × · · · × Vk → R,
I a multilinear operator V2 × · · · × Vk → V1,

where dim(Vi ) = di , i = 1, . . . , k .
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Numerical multilinear algebra

Bold claim: every topic discussed in Golub-Van Loan has a multilinear
generalization.

Numerical tensor rank (GV Chapter 2)

Conditioning of multilinear systems (GV Chapter 3)

Unsymmetric eigenvalue problem for hypermatrices (GV Chapter 7)

Symmetric eigenvalue problem for hypermatrices (GV Chapter 8)

Regularization of tensor approximation problems (GV Chapter 12)
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

Polynomial f ∈ R[x1, . . . , xn] of degree d can be expressed as

f (x) = a0 + a>1 x + x>A2x + A3(x, x, x) + · · ·+ Ad(x, . . . , x).

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n.

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Tensor ranks

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.

Both notions of tensor ranks first appeared in [Hitchcock; 1927].
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Recall: conditioning for linear systems

Let A ∈ Rn×n and b ∈ Rn. Suppose we want to solve system of linear
equations Ax = b.

M = {A ∈ Rn×n | det(A) = 0} is the manifold of ill-posed problems.

A ∈M iff Ax = 0 has nontrivial solutions.

Note that det(A) is a poor measure of conditioning.

Conditioning is the inverse distance to ill-posedness [Demmel; 1987]
(also Dedieu, Shub, Smale), ie.

1

‖A−1‖2
.

Normalizing by ‖A‖2 yields

1

‖A‖2‖A−1‖2
=

1

κ2(A)
.

Note that

‖A−1‖−1
2 = σn = min

xi ,yi

‖A− x1 ⊗ y1 − · · · − xn−1 ⊗ yn−1‖2.
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Recall: conditioning for linear systems

Important for error analysis [Wilkinson, 1961]. Let A = UΣV> and

Sforward(ε) = {x′ ∈ Rn | Ax = b, ‖x′ − x‖2 ≤ ε}
= {x′ ∈ Rn |

∑n
i=1|x ′i − xi |2 ≤ ε2},

Sbackward(ε) = {x′ ∈ Rn | Ax′ = b′, ‖b′ − b‖2 ≤ ε}
= {x′ ∈ Rn | x′ − x = V (y′ − y),

∑n
i=1σ

2
i |y ′i − yi |2 ≤ ε2}.

Then

Sbackward(ε) ⊆ Sforward(σ−1
n ε), Sforward(ε) ⊆ Sbackward(σ1ε).

Determined by σ1 = ‖A‖2 and σ−1
n = ‖A−1‖2.
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What about multilinear systems?

Look at the simplest case. Take A = JaijkK ∈ R2×2×2 and b0,b1,b2 ∈ R2.

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = b00,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = b01,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = b10,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = b11,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = b20,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = b21.

When does this have a solution?

What is the corresponding manifold of ill-posed problems?

When does the homogeneous system, ie. b0 = b1 = b2 = 0, have a
non-trivial solution, ie. x 6= 0, y 6= 0, z 6= 0?
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Hyperdeterminant

Work in C(d1+1)×···×(dk+1) for the time being (di ≥ 1). Consider

M := {A ∈ C(d1+1)×···×(dk+1) | ∇A(x1, . . . , xk) = 0

for non-zero x1, . . . , xk}.

Theorem (Gelfand, Kapranov, Zelevinsky)

M is a hypersurface iff for all j = 1, . . . , k,

dj ≤
∑

i 6=j
di .

The hyperdeterminant Det(A) is the equation of the hypersurface,
ie. a multivariate polynomial in the entries of A such that

M = {A ∈ C(d1+1)×···×(dk+1) | Det(A) = 0}.

Det(A) may be chosen to have integer coefficients.

For Cm×n, condition becomes m ≤ n and n ≤ m, ie. square matrices.
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2× 2× 2 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×2 [Cayley; 1845] is

Det(A) =
1

4

[
det

([
a000 a010

a001 a011

]
+

[
a100 a110

a101 a111

])
− det

([
a000 a010

a001 a011

]
−
[
a100 a110

a101 a111

])]2

− 4 det

[
a000 a010

a001 a011

]
det

[
a100 a110

a101 a111

]
.

A result that parallels the matrix case is the following: the system of
bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

has a non-trivial solution iff Det(A) = 0.
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2× 2× 3 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×3 is

Det(A) = det

a000 a001 a002

a100 a101 a102

a010 a011 a012

 det

a100 a101 a102

a010 a011 a012

a110 a111 a112


− det

a000 a001 a002

a100 a101 a102

a110 a111 a112

 det

a000 a001 a002

a010 a011 a012

a110 a111 a112


Again, the following is true:

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a002x0y0 + a012x0y1 + a102x1y0 + a112x1y1 = 0,

a000x0z0 + a001x0z1 + a002x0z2 + a100x1z0 + a101x1z1 + a102x1z2 = 0,

a010x0z0 + a011x0z1 + a012x0z2 + a110x1z0 + a111x1z1 + a112x1z2 = 0,

a000y0z0 + a001y0z1 + a002y0z2 + a010y1z0 + a011y1z1 + a012y1z2 = 0,

a100y0z0 + a101y0z1 + a102y0z2 + a110y1z0 + a111y1z1 + a112y1z2 = 0,

has a non-trivial solution iff Det(A) = 0.
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Condition number of a multilinear system

Like the matrix determinant, the value of the hyperdeterminant is a
poor measure of conditioning. Need to compute distance to M.

Theorem (de Silva, L)

Let A ∈ R2×2×2. Det(A) = 0 iff

A = x⊗ x⊗ y + x⊗ y ⊗ x + y ⊗ x⊗ x

for some xi , yi ∈ R2, i = 1, 2, 3.

Conditioning of the problem can be obtained from

min
x,y
‖A− x⊗ x⊗ y − x⊗ y ⊗ x− y ⊗ x⊗ x‖.

x⊗ x⊗ y + x⊗ y⊗ x + y⊗ x⊗ x has outer product rank 3 generically
(in fact, iff x, y are linearly independent).

Surprising: the manifold of ill-posed problem has full rank almost
everywhere!
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Generalization

Use Gaussian elimination to get ‘LDU-decomposition’ for hypermatrices.

Lemma (de Silva, L)

Let A ∈ Rl×m×n. If rank�(A) ≤ (r , r , r) or if rank⊗(A) ≤ r , then there
exists unit lower-triangular matrices L1, L2, L3 such that

A = (L1, L2, L3) · C

where C is everywhere zero except for an r × r × r block.

Corollary

If r = 2 above, then A ∈ Rl×m×n is ill-posed iff Det(C ) = 0 iff

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

for some x1, y1 ∈ Rl , x2, y2 ∈ Rm, x3, y3 ∈ Rn.
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Symmetric hypermatrices

An order-k cubical hypermatrix Jai1···ik K ∈ Rn×···×n is symmetric if

aiσ(1)···iσ(k)
= ai1···ik , i1, . . . , ik ∈ {1, . . . , n},

for all permutations σ ∈ Sk . Sk(Rn) is the set of all order-k
symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, . . . ,Xn):

mk(x) =
[
E(xi1xi2 · · · xik )

]n
i1,...,ik=1

=

[∫
· · ·
∫

xi1xi2 · · · xik dµ(xi1) · · · dµ(xik )

]n

i1,...,ik=1

.
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, . . . ,Xn):

κk(x) =

 ∑
A1t···tAp={i1,...,ik}

(−1)p−1(p − 1)!E

( ∏
i∈A1

xi

)
· · ·E

( ∏
i∈Ap

xi

)n

i1,...,ik=1

.

For n = 1, κk(x) for k = 1, 2, 3, 4 are the expectation, variance, skewness,
and kurtosis.

Symmetric hypermatrices, in the form of cumulants, are of particular
importance in Independent Component Analysis (ICA).
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Symmetric eigenvalue decomposition

Want to understand properties of symmetric rank, defined for
A ∈ Sk(Rn) as

rankS(A) = min
{

r
∣∣ A =

∑r

i=1
λivi ⊗ · · · ⊗ vi

}
.

Lemma (Comon, Golub, L, Mourrain)

Let A ∈ Sk(Rn). Then there exist v1, . . . , vr ∈ Rn such that

A =
∑r

i=1
λivi ⊗ · · · ⊗ vi .

If A ∈ Sk(Rn), is rankS(A) = rank⊗(A)? Yes in many cases:

P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric tensor
and symmetric tensor rank,” SIAM J. Matrix Anal. Appl., to appear.
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Multilinear spectral theory

Eigenvalues/vectors of symmetric A are critical values/points of
Rayleigh quotient, x>Ax/‖x‖22.

Similar characterization exists for singular values/vectors

For x = [x1, . . . , xn]> ∈ Rn, write xp := [xp
1 , . . . , x

p
n ]>. Define the

‘`k -norm’ ‖x‖k = (xk
1 + · · ·+ xk

n )1/k .

Define eigenvalues/vectors of A ∈ Sk(Rn) as critical values/points of
the multilinear Rayleigh quotient

A(x, . . . , x)/‖x‖kk .

x eigenvector iff A(I , x, . . . , x) = λxk−1.

Note that for a symmetric hypermatrix A,

A(I , x, x, . . . , x) = A(x, I , x, . . . , x) = · · · = A(x, x, . . . , x, I ).

These equations have also been obtained by L. Qi independently
using a different approach.
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Perron-Frobenius theorem for hypermatrices

An order-k cubical hypermatrix A ∈ Tk(Rn) is reducible if there exist
a permutation σ ∈ Sn such that the permuted hypermatrix

Jbi1···ik K = Jaσ(j1)···σ(jk )K

has the property that for some m ∈ {1, . . . , n − 1}, bi1···ik = 0 for all
i1 ∈ {1, . . . , n −m} and all i2, . . . , ik ∈ {1, . . . ,m}.
We say that A is irreducible if it is not reducible. In particular, if
A > 0, then it is irreducible.

Theorem (L)

Let 0 ≤ A = Jaj1···jk K ∈ Tk(Rn) be irreducible. Then A has

1 a positive real eigenvalue λ with an eigenvector x;

2 λ may be chosen to have all entries non-negative;

3 λ is simple, ie. x is unique up to scaling.

Lek-Heng Lim (UC Berkeley) Numerical multilinear algebra March 1, 2008 23 / 29



Spectral hypergraph theory

Define the order-3 adjacency hypermatrix A by

Axyz =

{
1 if [x , y , z ] ∈ E ,

0 otherwise.

A is |V |-by-|V |-by-|V | nonnegative symmetric hypermatrix.

Consider cubic form A(f , f , f ) =
∑

x ,y ,z Axyz f (x)f (y)f (z) (f is a
vector of dimension |V |).

Look at eigenvalues/vectors of A, ie. critical values/points of
A(f , f , f ) constrained to

∑
x f (x)3 = 1.

Lemma (L)

G m-regular 3-hypergraph. A its adjacency hypermatrix. Then

1 m is an eigenvalue of A;

2 if λ is an eigenvalue of A, then |λ| ≤ m;

3 λ has multiplicity 1 if and only if G is connected.
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Spectral hypergraph theory

A hypergraph G = (V ,E ) is said to be k-partite or k-colorable if
there exists a partition of the vertices V = V1 ∪ · · · ∪Vk such that for
any k vertices u, v , . . . , z with Auv ···z 6= 0, u, v , . . . , z must each lie in
a distinct Vi (i = 1, . . . , k).

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices.
Then

1 If k ≡ 1 mod 4, then every eigenvalue of G occurs with multiplicity a
multiple of k.

2 If k ≡ 3 mod 4, then the spectrum of G is symmetric, ie. if λ is an
eigenvalue, then so is −λ.

3 Furthermore, every eigenvalue of G occurs with multiplicity a multiple
of k/2, ie. if λ is an eigenvalue of G , then λ and −λ occurs with the
same multiplicity.
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Regularization

Date: Fri, 19 Oct 2007 06:50:56 -0700 (PDT)
From: Gene H Golub <golub@stanford.edu>
To: Lek-Heng Lim <lekheng@math.berkeley.edu>
Subject: Return

Dear Lek-Heng,

I am returning from Luminy tomorrow morning; my flight leaves at 7:15!
It’s not been an easy meeting for me. I have not felt well --- my stomach
is bothering me. And depression is looming greater tan ever. If you recall,
I needed to see a doctor the last time I was here.

It occurred to me that it might be fun for the two of us to apply for a
grant together. Volker Mehrmann said he feels tensor decompositions are one
of the three most important problems this next decade! Have you any
knowledge of tensor decompositions and regularization. It could be a very
interesting topic.

Let me hear your thoughts.

Best,
Gene
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Regularization

The best low-rank approximation problem for hypermatrices is
ill-posed in general.

Over a wide range of dimensions, orders, ranks, one can construct
hypermatrices A for which

inf{‖A− Ar‖ | rank⊗(Ar ) ≤ r}

is not attained by any Ar with rank⊗(Ar ) ≤ r [de Silva-L; 2006].

This ill-posedness can be overcomed with appropriate regularization.

If ui , vi , . . . , zi are restricted to compact sets, then clearly a solution
must exist. What about more general non-compact constraints?

Lek-Heng Lim (UC Berkeley) Numerical multilinear algebra March 1, 2008 27 / 29



Conic regularization

Theorem (L)

Let A = Jaj1···jk K ∈ Rd1×···×dk . Then

inf
{∥∥A−

∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

∥∥ ∣∣ ui , . . . , zi ≥ 0
}

is always attained.

Note that the optimization is over a product of nonnegative orthants. The
result extends to more general cones.

Corollary

Nonnegative tensor approximation always has an optimal solution.
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Final words

We take familiar things for granted. In particular, it is
obvious to us that numerical practice is underpinned by solid,
honest-to-god mathematical theory and this informs much of our
professional life. This paradigm, which transcends any single
theorem or result, we owe mainly to three individuals: Germund
Dahlquist, Peter Lax, and Jim Wilkinson. In the early fifties they
demonstrated that numerical algorithms do not just ‘happen.’
They can be understood and must be justified by rigourous
mathematical analysis. If, as numerical analysts, we can see so
far today, it is because we are standing on the shoulders of these
giants and their generation.

Arieh Iserles and Syvert Nørsett, “Colleagues remember Germund
Dahlquist,” SIAM News, 38 (2005), no. 4, pp. 3.
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