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Synopsis

o Week 1

» Mon: Tensor approximations (LH)

» Tue: Notions of tensor ranks: rank, border rank, multilinear rank,
nonnegative rank (Vin)

» Wed: Conditioning, computations, applications (LH)

» Thu: Constructibility of the set of tensors of a given rank (Vin)

» Fri: Hyperdeterminants and optimal approximability (Vin)

o Week 2

» Mon: Uniqueness of tensor decompositions, direct sum conjecture
(Vin)

Tue: Nonnegative hypermatrices, symmetric tensors (LH)

Wed: Linear mixtures of random variables, cumulants, and tensors
(Pierre)

Thu: Independent component analysis of invertible mixtures (Pierre)
Fri: Independent component analysis of underdetermined mixtures
(Pierre)
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Hypermatrices

Totally ordered finite sets: [n] ={1<2<---<n}, neN.

@ Vector or n-tuple
f:[n]— R

If (i) = a;, then f is represented by a = [ay,...,a,] € R".

@ Matrix
f:[m]x[n] —R.

If £(i,j) = ajj, then f is represented by A = [au],,J ; € R™XN,
@ Hypermatrix (order 3)

fo[l] x [m] x[n] —R.
If £(i,j, k) = ajjk, then f is represented by A = [a;jk]]fdmk" | € Rixmxn,

Normally RX = {f : X — R}. Ought to be RI"l RImIx[nl RUIX[mIx[n]
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Hypermatrices and tensors

Up to choice of bases
@ a € R" can represent a vector in V' (contravariant) or a linear
functional in V* (covariant).

@ A€ R™*" can represent a bilinear form V* x W* — R
(contravariant), a bilinear form V x W — R (covariant), or a linear
operator V — W (mixed).

o A e R*™Xn can represent trilinear form U x V x W — R
(covariant), bilinear operators V x W — U (mixed), etc.

A hypermatrix is the same as a tensor if

@ we give it coordinates (represent with respect to some bases);

@ we ignore covariance and contravariance.
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Basic operation on a hypermatrix

@ A matrix can be multiplied on the left and right: A € R™*",
X e RPXM Y ¢ R9*7,

(X,Y) A= XAYT = [c,5] € RP*Y

where .
CoB = T XaiV3idi-
af E :ile aiYBjaij

@ A hypermatrix can be multiplied on three sides: A = [aji] € R/xmxn
X e RPXI, Y € R, Z € R*",

(X,Y,Z2)- A= [[cagw]] € RP*axr
where

I,m,n
CaBy = E XeiVBiZyk Aiik-
By Pk=1 aiYBjZykaijk
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Basic operation on a hypermatrix

@ Covariant version:
A- (X", YT, ZT)=(X,Y,2)- A

@ Gives convenient notations for multilinear functionals and multilinear
operators. For x e R,y e R™,z € R",

I,m,n

.A(X, y, Z) =A- (X, Y, Z) = Zi,j =1 aAjjkXiYjZk,
m,n

A(la Y, Z) =A- (l7 Y, Z) = Zj k=1 QijkYjZk-
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Symmetric hypermatrices
o Cubical hypermatrix [aji] € R™ ™" is symmetric if
Ajjk = Ajkj = djik = djki = Akij = Aji-

@ Invariant under all permutations o € & on indices.

o SK(R") denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, ..., X,):

n

mk(x) = [E(X,'lx,-2 . .Xi“)]:'l,.-.,ik=1 = [/ oo ./X,'lx,-2 e X d/L(Xil) o000 dl,L(X,‘k)

ityennsig=1

v
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (Xi,..., X,):

kk(x) = > (—1)P*1(p—1)15(nx,-> E< Hx,-)]f

AL UAp={i1, ik} €A i€Ap

For n =1, k(x) for k =1,2,3,4 are the expectation, variance, skewness,

and kurtosis.

@ Important in Independent Component Analysis (ICA).

@ Pierre's lectures in Week 2.
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Inner products and norms

o /2([n]): a,b € R", (a,b) =a'b =" a;b;.
o (2([m] x [n]): A,B € R™", (A, B) =tr(ATB) = Y"") ajby.
o C([1] x [m] x [n]): A, B € RX™n (A B) = SI™" aybj.
@ In general,
C([m] x [n]) = ¢2([m]) @ E([n)),

(1) > [m] > [n]) = €2([) @ ([m]) @ ¢([n]).

@ Frobenius norm .
2 M 2
[AllE = Zi,j,k:l dijk-
@ Norm topology often more directly relevant to engineering
applications than Zariski toplogy.
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

o Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

@ Polynomial f € R[xy, ..., x,] of degree d can be expressed as
f(x) = ap + a; x +x' Aox + Az(x,%,%) + - - - + Ag(x, ..., X).

a0 € R,a; € R", Ay € R™N A3 € R*nxn A, € R0,
@ Numerical linear algebra: d = 2.

@ Numerical multilinear algebra: d > 2.
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Tensor ranks (Hitchcock, 1927)
e Matrix rank. A € R™*".
rank(A) = dim(spang{Ae1,...,Aen})  (column rank)
= dim(spang{Aie,...,Ame})  (row rank)
=min{r|A=Y"_juv'} (outer product rank).

o Multilinear rank. A € R™™*" rankg(A) = (r1(A), n(A), r3(A)),

ri(A) = dim(spang{Aiee;- - -;A/ee})

r(A) = dim(spang{Aete, - - - ; Aeme })

r3(A) = dim(spang{ Aee1;- - -, Asen})
e Outer product rank. A € R/xmxn,

rankg(A) = min{r | A=3"7_ju; ® v; ® w;}

I,m,n

whereu@vew: = [[UiVjWk]]iJ k=1
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Eigenvalue and singular value decompositions of a matrix
@ Swiss Army knife of engineering applications.
e Symmetric eigenvalue decomposition of A € S?(R"),
r
A=VAVT = Zi:l A\ivi ® v,

where rank(A) = r, V € O(n) eigenvectors, A eigenvalues.

e Singular value decomposition of A € R™*",
A=UsVT = Z:Zla,-u,- ® vj (1)

where rank(A) = r, U € O(m) left singular vectors, V € O(n) right
singular vectors, X singular values.

@ Rank-revealing decompositions.
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Eigenvalue and singular value decompositions

@ Rank revealing decompositions associated with outer product rank.

o Symmetric eigenvalue decomposition of A € S3(R"),
r
A= Zi:l AV @ V; ® V; (2)

where ranks(A) = min{r | A=37_  Avi®v;®v} =r.
» LH’s lecture in Week 2, Pierre’s lectures in Week 2.

o Singular value decomposition of A € R/xmxn
r
A= Zl.zlgiui@)w@w; (3)

where rankg(A) = r.

» Vin's lecture on Tue.

@ (2) used in applications of ICA to signal processing; (3) used in
applications of the PARAFAC model to analytical chemistry.
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Eigenvalue and singular value decompositions

@ Rank revealing decompositions associated with the multilinear rank.

e Symmetric eigenvalue decomposition of A € S3(R"),
A=(U,U,U)-C (4)

where rankg(A) = (r,r,r), U € R™ has orthonormal columns and
C € S3(R").
> Pierre's lectures in Week 2.

e Singular value decomposition of A € R/*m*",
A=(U,V,W)-C (5)

where rankg(A) = (r1, 2, r3), U € R™X1, V e R™*2 W € R™¥5
have orthonormal columns and C € R *"2%"3,

» Vin's lecture on Tue.
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Optimal approximation

Best r-term approximation
fromh+ab+-+af.

f € 'H vector space, cone, etc.
fi,...,f, € 2 C 'H dictionary.
ai,...,ar € Ror C (linear), Ry (convex), RU {—o0o} (tropical).

~ some measure of nearness.
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Dictionaries
@ Number base: 2 = {10" | n€ Z} CR,

22
7:3-1o°+1.10—1+4-10—2+2-10—3+---

e Spanning set: 2 = {[§],[ 4], [}].[%]} CR?
[ 5] =3[4]-1[3]
e Taylor: 2 ={x"| ne NU{0}},
exp(x):1+x+%x2+%x3+---
e Fourier: 2 = {cos(nx),sin(nx) | n € Z} C L?(—m,7),

1 ) 1 . 1.
5X= sin(x) — 5 sin(2x) + 3 sin(3x) — - -+

@ % orthonormal basis, Riesz basis, frames, or just a dense spanning set.
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More dictionaries

e Paley-Wiener: 9 = {sinc(x —n) | n€Z} C H*R).

o Gabor: 9 = {el@m<e=(x=mB)?/2 | (m n) € Z x Z} C L3(R).

o Wavelet: 2 = {2"/2(2"x — m) | (m,n) € Z x Z} C L?*(R).

o Friends of wavelets: & C L?(IR?) beamlets, brushlets, curvelets,
ridgelets, wedgelets.

Question: What about continuously varying families of functions?

o Neural networks: 2 = {o(w'x + wp) | (wo,w) € R x R"},
o : R — R sigmoid function, eg. o(x) = [1 + exp(—x)] L.

@ Rank-revealing decompositions:

» Matrices: 2 = {uv' | (u,v) € R™ x R"} (non-unique: LU, QR, SVD).
» Hypermatrices: 2 = {A | rankg(A) < 1} = {A | rankg(A) < 1}
(unique under mild conditions).

@ Structure other than rank, eg. entropy, sparsity, volume, may be used
to define 2.
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Decomposition approach to data analysis

@ 9 C 'H, not contained in any hyperplane.

Let 25 = union of bisecants to &, 23 = union of trisecants to &,

... 9, = union of r-secants to .

Define Z-rank of f € H to be min{r | f € Z,}.

If o : H xH — R is some measure of ‘nearness’ between pairs of
points (e.g. norms, Bregman divergences, etc), we want to find a best
low-rank approximation to A:

argmin{y(f, g) | Z-rank(g) < r}.

In the presence of noise, approximation instead of decomposition

frar A+ +a-f €D
fi € 2 reveal features of the dataset f.
Examples (p(A, B) = ||.A — B||f)
@ CANDECOMP/PARAFAC: 2 = {A | rankg(A) < 1}.
@ De Lathauwer model: 2 = {A | rankg(A) < (r1,r,r3)}.
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Scientific data mining

@ Spectroscopy: measure light absorption/emission of specimen as
function of energy.

e Typical specimen contains 103 to 1010 light absorbing entities or
chromophores (molecules, amino acids, etc).

Fact (Beer's Law)

A(N) = —log(h/l) = e(N)c. A= absorbance, I /Iy = fraction of
intensity of light of wavelength )\ that passes through specimen, ¢ =
concentration of chromophores.

e Multiple chromophores (f =1,...,r) and wavelengths (i =1,..., m)

and specimens/experimental conditions (j =1,...,n),

A()\,-,sj) = 2;21 €f(>\i)Cf(5j)-

@ Bilinear model aka factor analysis: Apxn = EmxrCrxn
rank-revealing factorization or, in the presence of noise, low-rank
approximation min||Amnxn — EmxrCrxnl|-
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Social data mining

Text mining is the spectroscopy of documents.
Specimens = documents.
Chromophores = terms.

Absorbance = inverse document frequency:

Alts) = —log (3 x(f)/n)

Concentration = term frequency: f;.
> X(fi)/n = fraction of documents containing t;.

A € R™*" term-document matrix. A= QR = ULV rank-revealing
factorizations.
Bilinear model aka vector space model.

Due to Gerald Salton and colleagues: SMART (system for the
mechanical analysis and retrieval of text).
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Bilinear models

@ Bilinear models work on ‘two-way’ data:

> measurements on object / (genomes, chemical samples, images,
webpages, consumers, etc) yield a vector a; € R" where n = number of
features of /;

» collection of m such objects, A= [ay,...,a,] may be regarded as an
m-by-n matrix, e.g. gene X microarray matrices in bioinformatics,
terms x documents matrices in text mining, facial images x
individuals matrices in computer vision.

@ Various matrix techniques may be applied to extract useful
information: QR, EVD, SVD, NMF, CUR, compressed sensing
techniques, etc.

@ Examples: vector space model, factor analysis, principal component
analysis, latent semantic indexing, PageRank, EigenFaces.

@ Some problems: factor indeterminacy — A = XY rank-revealing
factorization not unique; unnatural for k-way data when k > 2.
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Fundamental problem of multiway data analysis

o A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
@ Solve
argminrank(B)SrH‘A - BH

@ rank may be outer product rank, multilinear rank, symmetric rank (for
symmetric hypermatrix), or nonnegative rank (nonnegative

hypermatrix).
Example
Given A € R%x%xds find u;, vj,w;, i =1,...,r, that minimizes
[A—u1 @viQw; —u @va@Wy — -+ —u, @V, QZ,|

or C € R*2Xi and U € RA*1 Vv € R2X2 W € R%B*"3, that minimizes

A= (U,V,W)-C||.

v
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Fundamental problem of multiway data analysis

Example

Given A € SK(C"), find u;, i = 1,...,r, that minimizes
u®k K
(R L —
or C € Rn=xr2Xris gnd U € R™' that minimizes
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Outer product decomposition in spectroscopy

@ Application to fluorescence spectral analysis by [Bro; 1997].

@ Specimens with a number of pure substances in different
concentration

> ajx = fluorescence emission intensity at wavelength Af™ of ith sample
excited with light at wavelength Ag*.

» Get 3-way data A = [a;x] € R*mx"n.

» Get outer product decomposition of A

A=x1Q0y102z14+ - +X Yy, Q2.

@ Get the true chemical factors responsible for the data.

» r: number of pure substances in the mixtures,

> Xo = (X1a,-- -+ Xia): relative concentrations of ath substance in
specimens 1,...,/,

> Yo = (V1a,- -+ Yma): excitation spectrum of ath substance,

> 2z, = (Zias - - - Zna): emission spectrum of ath substance.

@ Noisy case: find best rank-r approximation (CANDECOMP/PARAFAC).
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Uniqueness of tensor decompositions

o M e R™*" spark(M) = size of minimal linearly dependent subset of
column vectors [Donoho, Elad; 2003].

Theorem (Kruskal)

X=[x1,--,x ], Y =1[y¥1,.--, ¥, Z = [z1,...,2/]. Decomposition is
unique up to scaling if

spark(X) + spark(Y) + spark(Z) > 2r +5.

e May be generalized to arbitrary order [Sidiroupoulos, Bro; 2000].
@ Avoids factor indeterminacy under mild conditions.

@ Vin's lecture in Week 2.
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Multilinear decomposition in bioinformatics

@ Application to cell cycle studies [Omberg, Golub, Alter; 2008].

@ Collection of gene-by-microarray matrices Ag, ..., A € R™*"
obtained under varying oxidative stress.

> aj = expression level of jth gene in kth microarray under ith stress.
» Get 3-way data array A = [a;] € R/>*mxn.
» Get multilinear decomposition of A

A:(Xa Y7Z)C,

to get orthogonal matrices X, Y, Z and core tensor C by applying SVD
to various 'flattenings’ of A.

@ Column vectors of X, Y, Z are 'principal components’ or
‘parameterizing factors’ of the spaces of stress, genes, and
microarrays; C governs interactions between these factors.

o Noisy case: approximate by discarding small cjj (Tucker Model).
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Outer product decomposition: separation of variables

Approximation by sum or integral of separable functions

@ Continuous

f(x,y,z /Gxt o(y, t)Y(z, t) dt.

@ Semi-discrete

F(xoy.2) = 30 0o(x)2p(0)0(2)

‘9P(X) = 0(x, tp)v ‘PP(Y) = o(y, tp)v 1/)P(Z) =1Y(z, tp): r possibly co.
@ Discrete

r
dijjk = szl UipVipWikp
ajjk = F(xi, Y5, 2k), tip = 0p(xi), Vip = ©p(¥j), Wkp = ¥p(2k)-
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Separation of variables

Useful for data analysis, machine learning, pattern recognition.

Gaussians are separable

exp(x® + y? + z°%) = exp(x?) exp(y?) exp(2?).

@ More generally for symmetric positive-definite A € R™",

exp(x " Ax) = exp(z' Az) = Hn

) exp(\;z?).

Gaussian mixture models

m

f(x) = ijl aj expl(x — Hj)TAj(x - “’j)]v

f is a sum of separable functions.
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Multilinear decomposition: integral kernels

Approximation by sum or integral kernels

@ Continuous

f(x,y,z ///K(X,yzﬁ(xx) (v, y"W(z,2") dx'dy’dZ'.
o Semi-discrete

P.q.r
f(x,y,z) = Z., . cinjrie O (X) i (v )0owr (2)

i’ k'=1

Cirjrk! = K(X;’vyjh le</)1 0,‘/(X) = G(X,XI{/), ij'(y) = @(yayj{')'
Y(z) = (2, 2s), p,q, r possibly oo.
@ Discrete

P9,
Qi = § Cirir i Uit Vit Wikt
ijk i j' k=1 i'j" k" it Vi Wk

ajjk = f(xi,yj, 2k), uiv = 0i(xi), viir = @jr(¥j), Wi = i (zk).
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