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Synopsis

Week 1

I Mon: Tensor approximations (LH)
I Tue: Notions of tensor ranks: rank, border rank, multilinear rank,

nonnegative rank (Vin)
I Wed: Conditioning, computations, applications (LH)
I Thu: Constructibility of the set of tensors of a given rank (Vin)
I Fri: Hyperdeterminants and optimal approximability (Vin)

Week 2

I Mon: Uniqueness of tensor decompositions, direct sum conjecture
(Vin)

I Tue: Nonnegative hypermatrices, symmetric tensors (LH)
I Wed: Linear mixtures of random variables, cumulants, and tensors

(Pierre)
I Thu: Independent component analysis of invertible mixtures (Pierre)
I Fri: Independent component analysis of underdetermined mixtures

(Pierre)
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Hypermatrices

Totally ordered finite sets: [n] = {1 < 2 < · · · < n}, n ∈ N.

Vector or n-tuple
f : [n]→ R.

If f (i) = ai , then f is represented by a = [a1, . . . , an]> ∈ Rn.

Matrix
f : [m]× [n]→ R.

If f (i , j) = aij , then f is represented by A = [aij ]
m,n
i ,j=1 ∈ Rm×n.

Hypermatrix (order 3)

f : [l ]× [m]× [n]→ R.

If f (i , j , k) = aijk , then f is represented by A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Normally RX = {f : X → R}. Ought to be R[n],R[m]×[n],R[l ]×[m]×[n].
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Hypermatrices and tensors

Up to choice of bases

a ∈ Rn can represent a vector in V (contravariant) or a linear
functional in V ∗ (covariant).

A ∈ Rm×n can represent a bilinear form V ∗ ×W ∗ → R
(contravariant), a bilinear form V ×W → R (covariant), or a linear
operator V →W (mixed).

A ∈ Rl×m×n can represent trilinear form U × V ×W → R
(covariant), bilinear operators V ×W → U (mixed), etc.

A hypermatrix is the same as a tensor if

1 we give it coordinates (represent with respect to some bases);

2 we ignore covariance and contravariance.
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Basic operation on a hypermatrix

A matrix can be multiplied on the left and right: A ∈ Rm×n,
X ∈ Rp×m, Y ∈ Rq×n,

(X ,Y ) · A = XAY> = [cαβ] ∈ Rp×q

where
cαβ =

∑m,n

i ,j=1
xαiyβjaij .

A hypermatrix can be multiplied on three sides: A = JaijkK ∈ Rl×m×n,
X ∈ Rp×l , Y ∈ Rq×m, Z ∈ Rr×n,

(X ,Y ,Z ) · A = JcαβγK ∈ Rp×q×r

where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .
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Basic operation on a hypermatrix

Covariant version:

A · (X>,Y>,Z>) := (X ,Y ,Z ) · A.

Gives convenient notations for multilinear functionals and multilinear
operators. For x ∈ Rl , y ∈ Rm, z ∈ Rn,

A(x, y, z) := A · (x, y, z) =
∑l ,m,n

i ,j ,k=1
aijkxiyjzk ,

A(I , y, z) := A · (I , y, z) =
∑m,n

j ,k=1
aijkyjzk .
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Symmetric hypermatrices

Cubical hypermatrix JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

Invariant under all permutations σ ∈ Sk on indices.

Sk(Rn) denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, . . . ,Xn):

mk(x) =
[
E(xi1xi2 · · · xik )

]n
i1,...,ik=1

=

[∫
· · ·
∫

xi1xi2 · · · xik dµ(xi1) · · · dµ(xik )

]n

i1,...,ik=1

.
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, . . . ,Xn):

κk(x) =

 ∑
A1t···tAp={i1,...,ik}

(−1)p−1(p − 1)!E

( ∏
i∈A1

xi

)
· · ·E

( ∏
i∈Ap

xi

)n

i1,...,ik=1

.

For n = 1, κk(x) for k = 1, 2, 3, 4 are the expectation, variance, skewness,
and kurtosis.

Important in Independent Component Analysis (ICA).

Pierre’s lectures in Week 2.
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Inner products and norms

`2([n]): a,b ∈ Rn, 〈a,b〉 = a>b =
∑n

i=1 aibi .

`2([m]× [n]): A,B ∈ Rm×n, 〈A,B〉 = tr(A>B) =
∑m,n

i ,j=1 aijbij .

`2([l ]× [m]× [n]): A,B ∈ Rl×m×n, 〈A,B〉 =
∑l ,m,n

i ,j ,k=1 aijkbijk .

In general,

`2([m]× [n]) = `2([m])⊗ `2([n]),

`2([l ]× [m]× [n]) = `2([l ])⊗ `2([m])⊗ `2([n]).

Frobenius norm

‖A‖2F =
∑l ,m,n

i ,j ,k=1
a2
ijk .

Norm topology often more directly relevant to engineering
applications than Zariski toplogy.
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

Polynomial f ∈ R[x1, . . . , xn] of degree d can be expressed as

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x).

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n.

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Tensor ranks (Hitchcock, 1927)

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
>
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.
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Eigenvalue and singular value decompositions of a matrix

Swiss Army knife of engineering applications.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑r

i=1
λivi ⊗ vi ,

where rank(A) = r , V ∈ O(n) eigenvectors, Λ eigenvalues.

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑r

i=1
σiui ⊗ vi (1)

where rank(A) = r , U ∈ O(m) left singular vectors, V ∈ O(n) right
singular vectors, Σ singular values.

Rank-revealing decompositions.
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Eigenvalue and singular value decompositions

Rank revealing decompositions associated with outer product rank.

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi (2)

where rankS(A) = min
{
r
∣∣ A =

∑r
i=1 λivi ⊗ vi ⊗ vi

}
= r .

I LH’s lecture in Week 2, Pierre’s lectures in Week 2.

Singular value decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi (3)

where rank⊗(A) = r .

I Vin’s lecture on Tue.

(2) used in applications of ICA to signal processing; (3) used in
applications of the parafac model to analytical chemistry.
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Eigenvalue and singular value decompositions

Rank revealing decompositions associated with the multilinear rank.

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A = (U,U,U) · C (4)

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

I Pierre’s lectures in Week 2.

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C (5)

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .

I Vin’s lecture on Tue.
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Optimal approximation

Best r -term approximation

f ≈ α1f1 + α2f2 + · · ·+ αr fr .

f ∈ H vector space, cone, etc.

f1, . . . , fr ∈ D ⊂ H dictionary.

α1, . . . , αr ∈ R or C (linear), R+ (convex), R ∪ {−∞} (tropical).

≈ some measure of nearness.
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Dictionaries

Number base: D = {10n | n ∈ Z} ⊆ R,

22

7
= 3 · 100 + 1 · 10−1 + 4 · 10−2 + 2 · 10−3 + · · ·

Spanning set: D =
{[

1
0

]
,
[

1
−1

]
,
[

1
1

]
,
[

0
1

]}
⊆ R2,[

2
−3

]
= 3
[

1
−1

]
− 1
[

1
0

]
.

Taylor: D = {xn | n ∈ N ∪ {0}},

exp(x) = 1 + x +
1

2
x2 +

1

6
x3 + · · ·

Fourier: D = {cos(nx), sin(nx) | n ∈ Z} ⊆ L2(−π, π),

1

2
x = sin(x)− 1

2
sin(2x) +

1

3
sin(3x)− · · ·

D orthonormal basis, Riesz basis, frames, or just a dense spanning set.
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More dictionaries

Paley-Wiener: D = {sinc(x − n) | n ∈ Z} ⊆ H2(R).

Gabor: D = {e iαnxe−(x−mβ)2/2 | (m, n) ∈ Z× Z} ⊆ L2(R).

Wavelet: D = {2n/2ψ(2nx −m) | (m, n) ∈ Z× Z} ⊆ L2(R).

Friends of wavelets: D ⊆ L2(R2) beamlets, brushlets, curvelets,
ridgelets, wedgelets.

Question: What about continuously varying families of functions?

Neural networks: D = {σ(w>x + w0) | (w0,w) ∈ R× Rn},
σ : R→ R sigmoid function, eg. σ(x) = [1 + exp(−x)]−1.

Rank-revealing decompositions:

I Matrices: D = {uv> | (u, v) ∈ Rm × Rn} (non-unique: LU, QR, SVD).
I Hypermatrices: D = {A | rank⊗(A) ≤ 1} = {A | rank�(A) ≤ 1}

(unique under mild conditions).

Structure other than rank, eg. entropy, sparsity, volume, may be used
to define D .
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Decomposition approach to data analysis
D ⊂ H, not contained in any hyperplane.
Let D2 = union of bisecants to D , D3 = union of trisecants to D ,
. . . , Dr = union of r -secants to D .
Define D-rank of f ∈ H to be min{r | f ∈ Dr}.
If ϕ : H×H → R is some measure of ‘nearness’ between pairs of
points (e.g. norms, Bregman divergences, etc), we want to find a best
low-rank approximation to A:

argmin{ϕ(f , g) | D-rank(g) ≤ r}.
In the presence of noise, approximation instead of decomposition

f ≈ α1 · f1 + · · ·+ αr · fr ∈ Dr .

fi ∈ D reveal features of the dataset f .

Examples (ϕ(A,B) = ‖A − B‖F )

1 candecomp/parafac: D = {A | rank⊗(A) ≤ 1}.
2 De Lathauwer model: D = {A | rank�(A) ≤ (r1, r2, r3)}.
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Scientific data mining

Spectroscopy: measure light absorption/emission of specimen as
function of energy.

Typical specimen contains 1013 to 1016 light absorbing entities or
chromophores (molecules, amino acids, etc).

Fact (Beer’s Law)

A(λ) = − log(I1/I0) = ε(λ)c. A = absorbance, I1/I0 = fraction of
intensity of light of wavelength λ that passes through specimen, c =
concentration of chromophores.

Multiple chromophores (f = 1, . . . , r) and wavelengths (i = 1, . . . ,m)
and specimens/experimental conditions (j = 1, . . . , n),

A(λi , sj) =
∑r

f =1
εf (λi )cf (sj).

Bilinear model aka factor analysis: Am×n = Em×rCr×n

rank-revealing factorization or, in the presence of noise, low-rank
approximation min‖Am×n − Em×rCr×n‖.
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Social data mining

Text mining is the spectroscopy of documents.

Specimens = documents.

Chromophores = terms.

Absorbance = inverse document frequency:

A(ti ) = − log
(∑

j
χ(fij)/n

)
.

Concentration = term frequency: fij .∑
j χ(fij)/n = fraction of documents containing ti .

A ∈ Rm×n term-document matrix. A = QR = UΣV T rank-revealing
factorizations.

Bilinear model aka vector space model.

Due to Gerald Salton and colleagues: SMART (system for the
mechanical analysis and retrieval of text).
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Bilinear models

Bilinear models work on ‘two-way’ data:

I measurements on object i (genomes, chemical samples, images,
webpages, consumers, etc) yield a vector ai ∈ Rn where n = number of
features of i ;

I collection of m such objects, A = [a1, . . . , am] may be regarded as an
m-by-n matrix, e.g. gene × microarray matrices in bioinformatics,
terms × documents matrices in text mining, facial images ×
individuals matrices in computer vision.

Various matrix techniques may be applied to extract useful
information: QR, EVD, SVD, NMF, CUR, compressed sensing
techniques, etc.

Examples: vector space model, factor analysis, principal component
analysis, latent semantic indexing, PageRank, EigenFaces.

Some problems: factor indeterminacy — A = XY rank-revealing
factorization not unique; unnatural for k-way data when k > 2.
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Fundamental problem of multiway data analysis

A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.

Solve
argminrank(B)≤r‖A − B‖.

rank may be outer product rank, multilinear rank, symmetric rank (for
symmetric hypermatrix), or nonnegative rank (nonnegative
hypermatrix).

Example

Given A ∈ Rd1×d2×d3 , find ui , vi ,wi , i = 1, . . . , r , that minimizes

‖A − u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖

or C ∈ Rr1×r2×r3 and U ∈ Rd1×r1 ,V ∈ Rd2×r2 ,W ∈ Rd3×r3 , that minimizes

‖A − (U,V ,W ) · C‖.
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Fundamental problem of multiway data analysis

Example

Given A ∈ Sk(Cn), find ui , i = 1, . . . , r , that minimizes

‖A − u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖

or C ∈ Rr1×r2×r3 and U ∈ Rn×ri that minimizes

‖A − (U,U,U) · C‖.
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Outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by [Bro; 1997].

Specimens with a number of pure substances in different
concentration

I aijk = fluorescence emission intensity at wavelength λem
j of ith sample

excited with light at wavelength λex
k .

I Get 3-way data A = JaijkK ∈ Rl×m×n.
I Get outer product decomposition of A

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr .

Get the true chemical factors responsible for the data.

I r : number of pure substances in the mixtures,
I xα = (x1α, . . . , xlα): relative concentrations of αth substance in

specimens 1, . . . , l ,
I yα = (y1α, . . . , ymα): excitation spectrum of αth substance,
I zα = (z1α, . . . , znα): emission spectrum of αth substance.

Noisy case: find best rank-r approximation (candecomp/parafac).
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Uniqueness of tensor decompositions

M ∈ Rm×n, spark(M) = size of minimal linearly dependent subset of
column vectors [Donoho, Elad; 2003].

Theorem (Kruskal)

X = [x1, . . . , xr ],Y = [y1, . . . , yr ],Z = [z1, . . . , zr ]. Decomposition is
unique up to scaling if

spark(X ) + spark(Y ) + spark(Z ) ≥ 2r + 5.

May be generalized to arbitrary order [Sidiroupoulos, Bro; 2000].

Avoids factor indeterminacy under mild conditions.

Vin’s lecture in Week 2.
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Multilinear decomposition in bioinformatics

Application to cell cycle studies [Omberg, Golub, Alter; 2008].

Collection of gene-by-microarray matrices A1, . . . ,Al ∈ Rm×n

obtained under varying oxidative stress.

I aijk = expression level of jth gene in kth microarray under ith stress.
I Get 3-way data array A = JaijkK ∈ Rl×m×n.
I Get multilinear decomposition of A

A = (X ,Y ,Z ) · C,

to get orthogonal matrices X ,Y ,Z and core tensor C by applying SVD
to various ’flattenings’ of A.

Column vectors of X ,Y ,Z are ‘principal components’ or
‘parameterizing factors’ of the spaces of stress, genes, and
microarrays; C governs interactions between these factors.

Noisy case: approximate by discarding small cijk (Tucker Model).
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Outer product decomposition: separation of variables

Approximation by sum or integral of separable functions

Continuous

f (x , y , z) =

∫
θ(x , t)ϕ(y , t)ψ(z , t) dt.

Semi-discrete

f (x , y , z) =
∑r

p=1
θp(x)ϕp(y)ψp(z)

θp(x) = θ(x , tp), ϕp(y) = ϕ(y , tp), ψp(z) = ψ(z , tp), r possibly ∞.

Discrete
aijk =

∑r

p=1
uipvjpwkp

aijk = f (xi , yj , zk), uip = θp(xi ), vjp = ϕp(yj), wkp = ψp(zk).
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Separation of variables

Useful for data analysis, machine learning, pattern recognition.

Gaussians are separable

exp(x2 + y2 + z2) = exp(x2) exp(y2) exp(z2).

More generally for symmetric positive-definite A ∈ Rn×n,

exp(x>Ax) = exp(z>Λz) =
∏n

i=1
exp(λiz

2
i ).

Gaussian mixture models

f (x) =
∑m

j=1
αj exp[(x− µj)

>Aj(x− µj)],

f is a sum of separable functions.
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Multilinear decomposition: integral kernels

Approximation by sum or integral kernels

Continuous

f (x , y , z) =

∫∫∫
K (x ′, y ′, z ′)θ(x , x ′)ϕ(y , y ′)ψ(z , z ′) dx ′dy ′dz ′.

Semi-discrete

f (x , y , z) =
∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′θi ′(x)ϕj ′(y)ψk ′(z)

ci ′j ′k ′ = K (x ′i ′ , y
′
j ′ , z
′
k ′), θi ′(x) = θ(x , x ′i ′), ϕj ′(y) = ϕ(y , y ′j ′),

ψk ′(z) = ψ(z , z ′k ′), p, q, r possibly ∞.

Discrete
aijk =

∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′uii ′vjj ′wkk ′

aijk = f (xi , yj , zk), uii ′ = θi ′(xi ), vjj ′ = ϕj ′(yj), wkk ′ = ψk ′(zk).
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