Conditioning and illposedness of tensor approximations and why engineers should care

Lek-Heng Lim

MSRI Summer Graduate Workshop

$$
\text { July 7-18, } 2008
$$

Slight change of plans

- Week 1
- Mon: Overview: tensor approximations (LH)
- Wed: Conditioning and ill-posedness of tensor approximations, nonnegative and symmetric tensors, some applications (LH)
- Week 2
- Tue: Computations: Gauss-Seidel method, semidefinite programming, Hilbert's 17th problem, optimization on Stiefel and Grassmann manifolds (LH)

Tensor rank is hard to compute

- Eugene L. Lawler: "The Mystical Power of Twoness."
- 2-SAT is easy, 3-SAT is hard;
- 2-dimensional matching is easy, 3-dimensional matching is hard;
- Order-2 tensor rank is easy, order-3 tensor rank is hard.

Theorem (Håstad)

Computing $\operatorname{rank}_{\otimes}(\mathcal{A})$ for $\mathcal{A} \in \mathbb{F}^{1 \times m \times n}$ is $N P$-hard for $\mathbb{F}=\mathbb{Q}$ and $N P$-complete for $\mathbb{F}=\mathbb{F}_{q}$?

- Open question: Is tensor rank NP-hard/NP-complete over $\mathbb{F}=\mathbb{R}, \mathbb{C}$ in the sense of BCSS?
- L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation, Springer-Verlag, New York, NY, 1998.

Tensor rank depends on base field

For $A \in \mathbb{R}^{m \times n} \subset \mathbb{C}^{m \times n}, \operatorname{rank}_{\mathbb{R}}(A)=\operatorname{rank}_{\mathbb{C}}(A)$. Not true for tensors.

Theorem (Bergman)

For $\mathcal{A} \in \mathbb{R}^{1 \times m \times n} \subset \mathbb{C}^{1 \times m \times n}$, $\operatorname{rank}_{\otimes}(\mathcal{A})$ is base field dependent.

- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ linearly independent and let $\mathbf{z}=\mathbf{x}+i \mathbf{y}$.

$$
\begin{aligned}
\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}+ & \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{x} \\
& =\frac{1}{2}(\mathbf{z} \otimes \overline{\mathbf{z}} \otimes \overline{\mathbf{z}}+\overline{\mathbf{z}} \otimes \mathbf{z} \otimes \mathbf{z}) .
\end{aligned}
$$

- May show that $\operatorname{rank}_{\otimes, \mathbb{R}}(\mathcal{A})=3$ and $\operatorname{rank}_{\otimes, \mathbb{C}}(\mathcal{A})=2$.
- $\mathbb{R}^{2 \times 2 \times 2}$ has 8 distinct orbits under $\mathrm{GL}_{2}(\mathbb{R}) \times \mathrm{GL}_{2}(\mathbb{R}) \times \mathrm{GL}_{2}(\mathbb{R})$.
- $\mathbb{C}^{2 \times 2 \times 2}$ has 7 distinct orbits under $\mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{2}(\mathbb{C})$.

Recall: fundamental problem of multiway data analysis

- \mathcal{A} hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix. Want

$$
\operatorname{argmin}_{\operatorname{rank}(\mathcal{B}) \leq r}\|\mathcal{A}-\mathcal{B}\| .
$$

- $\operatorname{rank}(\mathcal{B})$ may be outer product rank, multilinear rank, symmetric rank (for symmetric hypermatrix), or nonnegative rank (nonnegative hypermatrix).

Example

Given $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{w}_{r}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{d_{1} \times r_{1}}, V \in \mathbb{R}^{d_{2} \times r_{2}}, W \in \mathbb{R}^{d_{3} \times r_{3}}$, that minimizes

$$
\|\mathcal{A}-(U, V, W) \cdot \mathcal{C}\|
$$

- May assume $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}$ unit vectors and U, V, W orthonormal columns.

Recall: fundamental problem of multiway data analysis

Example

Given $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{C}^{n}\right)$, find $\mathbf{u}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\lambda_{1} \mathbf{u}_{1}^{\otimes k}-\lambda_{2} \mathbf{u}_{2}^{\otimes k}-\cdots-\lambda_{r} \mathbf{u}_{r}^{\otimes k}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{n \times r_{i}}$ that minimizes

$$
\|\mathcal{A}-(U, U, U) \cdot \mathcal{C}\|
$$

- May assume \mathbf{u}_{i} unit vector and U orthonormal columns.
- Pierre's lectures in Week 2.

Best low rank approximation of a matrix

- Given $A \in \mathbb{R}^{m \times n}$. Want

$$
\operatorname{argmin}_{\operatorname{rank}(B) \leq r}\|A-B\| .
$$

- More precisely, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r}\right\| .
$$

Theorem (Eckart-Young)
Let $A=U \Sigma V^{\top}=\sum_{i=1}^{r a n k(A)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$ be singular value decomposition. For $r \leq \operatorname{rank}(A)$, let

$$
A_{r}:=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Then

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank}(B) \leq r}\|A-B\|_{F}
$$

- No such thing for hypermatrices of order 3 or higher.

Lemma

Let $r \geq 2$ and $k \geq 3$. Given the norm-topology on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, the following statements are equivalent:
(1) The set $\mathscr{S}_{r}\left(d_{1}, \ldots, d_{k}\right):=\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}$ is not closed.
(2) There exists a sequence $\mathcal{A}_{n}, \operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq r, n \in \mathbb{N}$, converging to \mathcal{B} with rank $_{\otimes}(\mathcal{B})>r$.
(3) There exists \mathcal{B}, rank $_{\otimes}(\mathcal{B})>r$, that may be approximated arbitrarily closely by hypermatrices of strictly lower rank, i.e.

$$
\inf \left\{\|\mathcal{B}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}=0
$$

(9) There exists \mathcal{C}, rank $_{\otimes}(\mathcal{C})>r$, that does not have a best rank- r approximation, i.e.

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

is not attained (by any \mathcal{A} with $\operatorname{rank}_{\otimes}(\mathcal{A}) \leq r$).

Non-existence of best low-rank approximation

- For $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}, i=1,2,3$,

$$
\mathcal{A}:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- For $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}_{1}+\frac{1}{n} \mathbf{y}_{1}\right) \otimes\left(\mathbf{x}_{2}+\frac{1}{n} \mathbf{y}_{2}\right) \otimes\left(\mathbf{x}_{3}+\frac{1}{n} \mathbf{y}_{3}\right)-n \mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} .
$$

Lemma

$\operatorname{rank}_{\otimes}(\mathcal{A})=3$ iff $\mathbf{x}_{i}, \mathbf{y}_{i}$ linearly independent, $i=1,2,3$. Furthermore, it is clear that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

- Original result, in a slightly different form, due to:
- D. Bini, G. Lotti, F. Romani, "Approximate solutions for the bilinear form computational problem," SIAM J. Comput., 9 (1980), no. 4.

Outer product approximations are ill-behaved

- Such phenomenon can and will happen for all orders >2, all norms, and many ranks:

Theorem

Let $k \geq 3$ and $d_{1}, \ldots, d_{k} \geq 2$. For any s such that

$$
2 \leq s \leq \min \left\{d_{1}, \ldots, d_{k}\right\}
$$

there exists $\mathcal{A} \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ with rank $_{\otimes}(\mathcal{A})=s$ such that \mathcal{A} has no best rank-r approximation for some $r<s$. The result is independent of the choice of norms.

- For matrices, the quantity $\min \left\{d_{1}, d_{2}\right\}$ will be the maximal possible rank in $\mathbb{R}^{d_{1} \times d_{2}}$. In general, a hypermatrix in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ can have rank exceeding $\min \left\{d_{1}, \ldots, d_{k}\right\}$.
- Vin's next three lectures.

Outer product approximations are ill-behaved

- Tensor rank can jump over an arbitrarily large gap:

Theorem

Let $k \geq 3$. Given any $s \in \mathbb{N}$, there exists a sequence of order- k hypermatrix \mathcal{A}_{n} such that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq r$ and $\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}$ with $\operatorname{rank}_{\otimes}(\mathcal{A})=r+s$.

- Hypermatrices that fail to have best low-rank approximations are not rare. May occur with non-zero probability; sometimes with certainty.

Theorem

Let μ be a measure that is positive or infinite on Euclidean open sets in $\mathbb{R}^{I \times m \times n}$. There exists some $r \in \mathbb{N}$ such that
$\mu(\{\mathcal{A} \mid \mathcal{A}$ does not have a best rank-r approximation $\})>0$.
In $\mathbb{R}^{2 \times 2 \times 2}$, all rank-3 hypermatrices fail to have best rank- 2 approximation.

Message

- That the best rank- r approximation problem for hypermatrices has no solution poses serious difficulties.
- It is incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? i.e. what is the 'approximate solution' an approximate of?

Weak solutions

- For a hypermatrix \mathcal{A} that has no best rank- r approximation, we will call a $\mathcal{C} \in \overline{\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}}$ attaining

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(\mathcal{C})>r$.

- It is perhaps surprising that one may completely parameterize all limit points of order-3 rank-2 hypermatrices.

Weak solutions

Theorem

Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $\mathcal{A}_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ be a sequence of hypermatrices with $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

where the limit is taken in any norm topology. If the limiting hypermatrix \mathcal{A} has rank higher than 2 , then rank $_{\otimes}(\mathcal{A})$ must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}$, $\mathbf{x}_{3}, \mathbf{y}_{3} \in \mathbb{R}^{d_{3}}$ such that

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- In particular, a sequence of order-3 rank-2 hypermatrices cannot 'jump rank' by more than 1.
- Details: Vin's lectures. Not possible in general: JM's lectures.

Conditioning of linear systems

- Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Suppose we want to solve system of linear equations $A \mathbf{x}=\mathbf{b}$.
- $\mathscr{M}=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=0\right\}$ is the manifold of ill-posed problems.
- $A \in \mathscr{M}$ iff $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
- Note that $\operatorname{det}(A)$ is a poor measure of conditioning.
- Conditioning is the inverse distance to ill-posedness [Demmel; 1987] (also Dedieu, Shub, Smale), ie.

$$
\frac{1}{\left\|A^{-1}\right\|_{2}}
$$

- Normalizing by $\|A\|_{2}$ yields condition number

$$
\frac{1}{\|A\|_{2}\left\|A^{-1}\right\|_{2}}=\frac{1}{\kappa_{2}(A)}
$$

- Note that

$$
\left\|A^{-1}\right\|_{2}^{-1}=\sigma_{n}=\min _{\mathbf{x}_{i}, \mathbf{y}_{i}}\left\|A-\mathbf{x}_{1} \otimes \mathbf{y}_{1}-\cdots-\mathbf{x}_{n-1} \otimes \mathbf{y}_{n-1}\right\|_{2}
$$

Conditioning of linear systems

- Important for error analysis [Wilkinson, 1961].
- Let $A=U \Sigma V^{\top}$ and define

$$
\begin{aligned}
S_{\text {forward }}(\varepsilon)= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{b}, \quad\left\|\mathbf{x}^{\prime}-\mathbf{x}\right\|_{2} \leq \varepsilon\right\} \\
= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i}^{\prime}-\left.x_{i}\right|^{2} \leq \varepsilon^{2}\right\}, \\
S_{\text {backward }}(\varepsilon)= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid A \mathbf{x}^{\prime}=\mathbf{b}^{\prime}, \quad\left\|\mathbf{b}^{\prime}-\mathbf{b}\right\|_{2} \leq \varepsilon\right\} \\
= & \left\{\mathbf{x}^{\prime} \in \mathbb{R}^{n} \mid \mathbf{x}^{\prime}-\mathbf{x}=V\left(\mathbf{y}^{\prime}-\mathbf{y}\right),\right. \\
& \left.\quad \sum_{i=1}^{n} \sigma_{i}^{2}\left|y_{i}^{\prime}-y_{i}\right|^{2} \leq \varepsilon^{2}\right\} .
\end{aligned}
$$

Then

$$
S_{\text {backward }}(\varepsilon) \subseteq S_{\text {forward }}\left(\sigma_{n}^{-1} \varepsilon\right), \quad S_{\text {forward }}(\varepsilon) \subseteq S_{\text {backward }}\left(\sigma_{1} \varepsilon\right)
$$

- Determined by $\sigma_{1}=\|A\|_{2}$ and $\sigma_{n}^{-1}=\left\|A^{-1}\right\|_{2}$.
- Rule of thumb: $\log _{10} \kappa_{2}(A) \approx$ loss in number of digits of precision.

What about multilinear systems?

Look at the simplest case. Take $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ and $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{R}^{2}$.

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=b_{00}, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=b_{01}, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=b_{10}, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=b_{11}, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=b_{20}, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=b_{21} .
\end{aligned}
$$

- When does this have a solution?
- What is the corresponding manifold of ill-posed problems?
- When does the homogeneous system, ie. $\mathbf{b}_{0}=\mathbf{b}_{1}=\mathbf{b}_{2}=\mathbf{0}$, have a non-trivial solution, ie. $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}, \mathbf{z} \neq \mathbf{0}$?

$2 \times 2 \times 2$ hyperdeterminant

 Hyperdeterminant of $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ [Cayley; 1845] is$$
\begin{aligned}
\operatorname{Det}_{2,2,2}(\mathcal{A})=\frac{1}{4}[\operatorname{det} & \left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]+\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right) \\
& \left.-\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]-\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right]^{2} \\
& -4 \operatorname{det}\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right] .
\end{aligned}
$$

A result that parallels the matrix case is the following: the system of bilinear equations

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=0, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=0, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=0, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

$2 \times 2 \times 3$ hyperdeterminant

Hyperdeterminant of $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 3}$ is

$$
\begin{aligned}
& \operatorname{Det}_{2,2,3}(\mathcal{A})=\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \\
&-\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right]
\end{aligned}
$$

Again, the following is true:

$$
\begin{aligned}
a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
a_{002} x_{0} y_{0}+a_{012} x_{0} y_{1}+a_{102} x_{1} y_{0}+a_{112} x_{1} y_{1}=0, \\
a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{002} x_{0} z_{2}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}+a_{102} x_{1} z_{2}=0, \\
a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{012} x_{0} z_{2}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}+a_{112} x_{1} z_{2}=0, \\
a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{002} y_{0} z_{2}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}+a_{012} y_{1} z_{2}=0, \\
a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{102} y_{0} z_{2}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}+a_{112} y_{1} z_{2}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}_{2,2,3}(\mathcal{A})=0$.

Cayley hyperdeterminant and tensor rank

- The Cayley hyperdeterminant Det $_{2,2,2}$ may be extended to any $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ with rank $_{\otimes}(\mathcal{A}) \leq 2$.

Theorem
Let $d_{1}, d_{2}, d_{3} \geq 2$. $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is a weak solution, i.e.

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

iff $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

Theorem (Kruskal)
Let $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$. Then $\operatorname{rank}_{\otimes}(\mathcal{A})=2$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})>0$ and $\operatorname{rank}_{\otimes}(\mathcal{A})=3$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})<0$.

- Vin's next three lectures.

Condition number of a multilinear system

- Like the matrix determinant, the value of the hyperdeterminant is a poor measure of conditioning. Need to compute distance to \mathscr{M}.

Theorem
Let $A \in \mathbb{R}^{2 \times 2 \times 2}$. $\operatorname{Det}_{2,2,2}(A)=0$ iff

$$
A=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}
$$

for some $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{2}, i=1,2,3$.

- Conditioning of the problem can be obtained from

$$
\min _{\mathbf{x}, \mathbf{y}}\|A-\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}-\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}\| .
$$

- $\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}$ has outer product rank 3 generically (in fact, iff \mathbf{x}, \mathbf{y} are linearly independent).
- Surprising: the manifold of ill-posed problem has full rank almost everywhere!

Nonnegative hypermatrices and nonnegative tensor rank

- Let $0 \leq \mathcal{A} \in \mathbb{R}^{I \times m \times n}$. The nonnegative rank of \mathcal{A} is

$$
\operatorname{rank}_{+}(\mathcal{A}):=\min \left\{r \mid \sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}, \mathbf{x}_{p}, \mathbf{y}_{p}, \mathbf{z}_{p} \geq 0\right\}
$$

- Clearly nonnegative decomposition exists for any $\mathcal{A} \geq 0$.
- Arises in the Naïve Bayes model, Gaussian mixture models.

Theorem
Let $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$ be nonnegative. Then

$$
\inf \left\{\left\|\mathcal{A}-\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}\right\| \mid \mathbf{x}_{p}, \mathbf{y}_{p}, \mathbf{z}_{p} \geq 0\right\}
$$

is always attained.

Nonnegative matrix factorization

- D.D. Lee and H.S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, 401 (1999), pp. 788-791.
- Main idea behind NMF (everything else is fluff): the way dictionary functions combine to build 'target objects' is an exclusively additive process and should not involve any cancellations between the dictionary functions.
- NMF in a nutshell: given nonnegative matrix A, decompose it into a sum of outer-products of nonnegative vectors:

$$
A=X Y^{\top}=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i}
$$

- Noisy situation: approximate A by a sum of outer-products of nonnegative vectors

$$
\min _{x \geq 0, Y \geq 0}\left\|A-X Y^{\top}\right\|_{F}=\min _{\mathbf{x}_{i} \geq 0, \mathbf{y}_{i} \geq 0}\left\|A-\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i}\right\|_{F} .
$$

Generalizing to hypermatrices

- Nonnegative outer-product decomposition for hypermatrix $\mathcal{A} \geq 0$ is

$$
\mathcal{A}=\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}
$$

where $\mathbf{x}_{p} \in \mathbb{R}_{+}^{\prime}, \mathbf{y}_{p} \in \mathbb{R}_{+}^{m}, \mathbf{z}_{p} \in \mathbb{R}_{+}^{n}$.

- Clear that such a decomposition exists for any $\mathcal{A} \geq 0$.
- Nonnegative outer-product rank: minimal r for which such a decomposition is possible.
- Best nonnegative outer-product rank- r approximation:

$$
\operatorname{argmin}\left\{\left\|\mathcal{A}-\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}\right\|_{F} \mid \mathbf{x}_{p}, \mathbf{y}_{p}, \mathbf{z}_{p} \geq 0\right\}
$$

Recap: outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by [Bro; 1997].
- Specimens with a number of pure substances in different concentration
- $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{e m}$ of i th sample excited with light at wavelength $\lambda_{k}^{\mathrm{ex}}$.
- Get 3 -way data $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get outer product decomposition of \mathcal{A}

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

- Get the true chemical factors responsible for the data.
- r : number of pure substances in the mixtures,
- $\mathbf{x}_{p}=\left(x_{1 p}, \ldots, x_{l p}\right)$: relative concentrations of p th substance in specimens $1, \ldots$, ,
- $\mathbf{y}_{p}=\left(y_{1 p}, \ldots, y_{m p}\right)$: excitation spectrum of p th substance,
- $\mathbf{z}_{p}=\left(z_{1 p}, \ldots, z_{n p}\right)$: emission spectrum of p th substance.
- Noisy case: find best rank- r approximation (CANDECOMP/PARAFAC).

Proof

- Naive choice of objective: $g:\left(\mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right)^{r} \rightarrow \mathbb{R}$,

$$
g\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\left\|\mathcal{A}-\sum_{p=1}^{r} \mathbf{x}_{p} \otimes \mathbf{y}_{p} \otimes \mathbf{z}_{p}\right\|_{F}^{2}
$$

- Need to show g attains infimum on $\left(\mathbb{R}_{+}^{I} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n}\right)^{r}$.
- Doesn't work because of an additional degree of freedom - $\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}$ may be scaled by non-zero positive scalars that product to 1 ,

$$
\alpha \mathbf{x} \otimes \beta \mathbf{y} \otimes \gamma \mathbf{z}=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \quad \alpha \beta \gamma=1
$$

e.g. $(n \mathbf{x}) \otimes \mathbf{y} \otimes(\mathbf{z} / n)$ can have a diverging loading vector even while the outer-product remains fixed.

Picking the right objective function

- Define $f: \mathbb{R}^{r} \times\left(\mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right)^{r} \rightarrow \mathbb{R}$ by

$$
f(X):=\left\|\mathcal{A}-\sum_{p=1}^{r} \lambda_{p} \mathbf{u}_{p} \otimes \mathbf{v}_{p} \otimes \mathbf{w}_{p}\right\|_{F}^{2}
$$

where $X=\left(\lambda_{1}, \ldots, \lambda_{r} ; \mathbf{u}_{1}, \mathbf{v}_{1}, \mathbf{w}_{1}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{r}, \mathbf{w}_{r}\right)$.

- Let $\mathbb{S}_{+}^{n-1}:=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n} \mid\|\mathbf{x}\|_{2}=1\right\}$ and

$$
\mathscr{P}:=\mathbb{R}_{+}^{r} \times\left(\mathbb{S}_{+}^{\prime-1} \times \mathbb{S}_{+}^{m-1} \times \mathbb{S}_{+}^{n-1}\right)^{r}
$$

- Global minimizer of f on \mathscr{P}, $\left(\lambda_{1}, \ldots, \lambda_{r} ; \mathbf{u}_{1}, \mathbf{v}_{1}, \mathbf{w}_{1}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{r}, \mathbf{w}_{r}\right) \in \mathscr{P}$, gives required global minimizer (non-unique).

Level sets are compact

- Note \mathscr{P} is closed but unbounded.
- Will show that the level set of f restricted to \mathscr{P},

$$
\mathscr{E}_{\alpha}=\{X \in \mathscr{P} \mid f(X) \leq \alpha\}
$$

is compact for all α.

- $\mathscr{E}_{\alpha}=\mathscr{P} \cap f^{-1}(-\infty, \alpha]$ closed since f continuous.
- Now to show \mathscr{E}_{α} bounded.
- Suppose not, $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathscr{P}$ with $\left\|X_{n}\right\| \rightarrow \infty$ but $f\left(X_{n}\right) \leq \alpha$ for all n.
- Clearly, $\left\|X_{n}\right\| \rightarrow \infty$ implies $\lambda_{q}^{(n)} \rightarrow \infty$ for at least one $q \in\{1, \ldots, r\}$.
- Note

$$
f(X) \geq\left(\|\mathcal{A}\|_{F}-\left\|\sum_{p=1}^{r} \lambda_{p} \mathbf{u}_{p} \otimes \mathbf{v}_{p} \otimes \mathbf{w}_{p}\right\|_{F}\right)^{2}
$$

Using nonnegativity

- Taking $X \geq 0$ into account,

$$
\begin{aligned}
\left\|\sum_{p=1}^{r} \lambda_{p} \mathbf{u}_{p} \otimes \mathbf{v}_{p} \otimes \mathbf{w}_{p}\right\|_{F}^{2} & =\sum_{i, j, k=1}^{I, m, n}\left(\sum_{p=1}^{r} \lambda_{p} u_{p i} v_{p j} w_{p k}\right)^{2} \\
& \geq \sum_{i, j, k=1}^{I, m, n}\left(\lambda_{q} u_{q i} v_{q j} w_{q k}\right)^{2} \\
& =\lambda_{q}^{2} \sum_{i, j, k=1}^{I, m, n}\left(u_{q i} v_{q j} w_{q k}\right)^{2} \\
& =\lambda_{q}^{2}\left\|\mathbf{u}_{q} \otimes \mathbf{v}_{q} \otimes \mathbf{w}_{q}\right\|_{F}^{2} \\
& =\lambda_{q}^{2}
\end{aligned}
$$

since $\left\|\mathbf{u}_{q}\right\|=\left\|\mathbf{v}_{q}\right\|=\left\|\mathbf{w}_{q}\right\|=1$.

- Hence, as $\lambda_{q}^{(n)} \rightarrow \infty, f\left(X_{n}\right) \rightarrow \infty$.
- Contradicts $f\left(X_{n}\right) \leq \alpha$ for all n.

Symmetric hypermatrices for blind source separation

Problem

Given $\mathbf{y}=M \mathbf{x}+\mathbf{n}$. Unknown: source vector $\mathbf{x} \in \mathbb{C}^{n}$, mixing matrix $M \in \mathbb{C}^{m \times n}$, noise $\mathbf{n} \in \mathbb{C}^{m}$. Known: observation vector $\mathbf{y} \in \mathbb{C}^{m}$. Goal: recover \mathbf{x} from \mathbf{y}.

- Assumptions:
(1) components of \mathbf{x} statistically independent,
(2) M full column-rank,
(3) n Gaussian.
- Method: use cumulants

$$
\kappa_{k}(\mathbf{y})=(M, M, \ldots, M) \cdot \kappa_{k}(\mathbf{x})+\kappa_{k}(\mathbf{n})
$$

- By assumptions, $\kappa_{k}(\mathbf{n})=0$ and $\kappa_{k}(\mathbf{x})$ is diagonal. So need to diagonalize the symmetric hypermatrix $\kappa_{k}(\mathbf{y})$.
- Pierre's lectures in Week 2.

Diagonalizing a symmetric hypermatrix

- A best symmetric rank approximation may not exist either:

Example

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ be linearly independent. Define for $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right)^{\otimes k}-n \mathbf{x}^{\otimes k}
$$

and

$$
\mathcal{A}:=\mathbf{x} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{y}+\cdots+\mathbf{y} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{x}
$$

Then $\operatorname{rank}_{\mathrm{s}}\left(\mathcal{A}_{n}\right) \leq 2, \operatorname{rank}_{\mathrm{s}}(\mathcal{A})=k$, and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

