Algorithms for tensor approximations

Lek-Heng Lim
MSRI Summer Graduate Workshop
July 7-18, 2008

Synopsis

- Naïve: the Gauss-Seidel heuristic.
- Harmonic analysis: pursuits algorithms.
- Real algebraic geometry: semi-definite programming.
- Riemannian geometry: Grassman-Newton method.

Recap: best low rank approximation of a hypermatrix

- Outer product rank: $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. Want $\mathbf{u}_{i} \in \mathbb{R}^{I}, \mathbf{v}_{i} \in \mathbb{R}^{m}$, $\mathbf{w}_{i} \in \mathbb{R}^{n}$ unit vectors, $\sigma_{i} \in \mathbb{R}$, that minimize

$$
\left\|\mathcal{A}-\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\|
$$

- Symmetric outer product rank: $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$. Want \mathbf{v}_{i} unit vector, $\lambda_{i} \in \mathbb{R}$, that minimize

$$
\left\|\mathcal{A}-\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}\right\|
$$

- Nonnegative outer product rank: $\mathcal{A} \in \mathbb{R}_{+}^{1 \times m \times n}$. Want $\mathbf{x}_{i} \in \mathbb{R}_{+}^{I}$, $\mathbf{y}_{i} \in \mathbb{R}_{+}^{m}, \mathbf{z}_{i} \in \mathbb{R}_{+}^{n}$ unit vectors, $\delta_{i} \in \mathbb{R}_{+}$, that minimize

$$
\left\|\mathcal{A}-\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}\right\|
$$

Recap: best low rank approximation of a hypermatrix

- Multilinear rank: $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$. Want $U \in \mathbb{R}^{1 \times r_{1}}, V \in \mathbb{R}^{m \times r_{2}}$, $W \in \mathbb{R}^{n \times r_{3}}$ matrices with orthonormal columns, $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$, that minimize

$$
\|\mathcal{A}-(U, V, W) \cdot \mathcal{C}\|
$$

- Hybrid: $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. Want $\mathcal{B}_{1}, \ldots, \mathcal{B}_{r} \in \mathbb{R}^{I \times m \times n}$ with

$$
\operatorname{rank}_{\boxplus}\left(\mathcal{B}_{i}\right) \leq\left(r_{1}, r_{2}, r_{3}\right), \quad\left\|\mathcal{B}_{i}\right\|=1
$$

that minimize

$$
\left\|\mathcal{A}-\sum_{i=1}^{r} \sigma_{i} \mathcal{B}_{i}\right\|
$$

Gauss-Seidel method

- Optimal solution \mathcal{B}_{*} to $\operatorname{argmin}_{\text {rank }_{\otimes}(\mathcal{B}) \leq r}\|\mathcal{A}-\mathcal{B}\|_{F}$ not easy to compute since the objective function is non-convex.
- A widely used strategy is a nonlinear Gauss-Seidel algorithm, better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

$$
\begin{aligned}
& \text { initialize } X^{(0)} \in \mathbb{R}^{I \times r}, Y^{(0)} \in \mathbb{R}^{m \times r}, Z^{(0)} \in \mathbb{R}^{n \times r} ; \\
& \text { initialize } s^{(0)}, \varepsilon>0, k=0 ; \\
& \text { while } \rho^{(k+1)} / \rho^{(k)}>\varepsilon ; \\
& \quad X^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{\chi} \in \mathbb{R}^{\prime \times r}}\left\|T-\sum_{\alpha=1}^{r} \overline{\mathbf{x}}_{\alpha}^{(k+1)} \otimes \mathbf{y}_{\alpha}^{(k)} \otimes \mathbf{z}_{\alpha}^{(k)}\right\|_{F}^{2} ; \\
& \quad Y^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{Y} \in \mathbb{R}^{m \times r}}\left\|T-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha}^{(k+1)} \otimes \overline{\mathbf{y}}_{\alpha}^{(k+1)} \otimes \mathbf{z}_{\alpha}^{(k)}\right\|_{F}^{2} ; \\
& \quad Z^{(k+1)} \leftarrow \operatorname{argmin}_{\bar{Z} \in \mathbb{R}^{n \times r}}\left\|T-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha}^{(k+1)} \otimes \mathbf{y}_{\alpha}^{(k+1)} \otimes \overline{\mathbf{z}}_{\alpha}^{(k+1)}\right\|_{F}^{2} ; \\
& \left.\quad \rho^{(k+1)} \leftarrow \| \sum_{\alpha=1}^{r} \mathbf{x}_{a}^{(k+1)} \otimes \mathbf{y}_{\alpha}^{(k+1)} \otimes \mathbf{z}_{\alpha}^{(k+1)}-\mathbf{x}_{\alpha}^{(k)} \otimes \mathbf{y}_{\alpha}^{(k)} \otimes \mathbf{z}_{\alpha}^{(k)}\right] \|_{F}^{2} ; \\
& \quad k \leftarrow k+1 ;
\end{aligned}
$$

- Coordinate cycling heuristic. May not converge.

Best r-term approximation

$$
f \approx \alpha_{1} f_{1}+\alpha_{2} f_{2}+\cdots+\alpha_{r} f_{r}
$$

- Target function $f \in \mathcal{H}$ vector space, cone, etc.
- $f_{1}, \ldots, f_{r} \in \mathscr{D} \subset \mathcal{H}$ dictionary.
- $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$ or \mathbb{C} (linear), \mathbb{R}_{+}(convex), $\mathbb{R} \cup\{-\infty\}$ (tropical).
- \approx with respect to $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$, some measure of 'nearness' between pairs of points (e.g. norms, metric, volumes, expectation, entropy, Brègman divergences, etc), want

$$
\operatorname{argmin}\left\{\varphi\left(f, \alpha_{1} f_{1}+\ldots \alpha_{r} f_{r}\right) \mid f_{i} \in \mathscr{D}\right\}
$$

- For concreteness, \mathcal{H} separable Hilbert space; measure of nearness is a norm, but not necessarily the one induced by its inner product.
- Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.

Recap: dictionaries

- Discrete cosine:

$$
\mathscr{D}=\left\{\left.\sqrt{\frac{2}{N}} \cos \left(k+\frac{1}{2}\right)\left(n+\frac{1}{2}\right) \frac{\pi}{N} \right\rvert\, k \in[N-1]\right\} \subseteq \mathbb{C}^{N}
$$

- Taylor:

$$
\mathscr{D}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\} \subseteq C^{\omega}(\mathbb{R})
$$

- Fourier:

$$
\mathscr{D}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\} \subseteq L^{2}(-\pi, \pi) .
$$

- Peter-Weyl:

$$
\mathscr{D}=\left\{\left\langle\pi(x) \mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle \mid \pi \in \widehat{G}, i, j \in\left[d_{\pi}\right]\right\} \subseteq L^{2}(G)
$$

Recap: dictionaries

- Paley-Wiener:

$$
\mathscr{D}=\{\operatorname{sinc}(x-n) \mid n \in \mathbb{Z}\} \subseteq H^{2}(\mathbb{R})
$$

- Gabor:

$$
\mathscr{D}=\left\{e^{i \alpha n x} e^{-(x-m \beta)^{2} / 2} \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Wavelet:

$$
\mathscr{D}=\left\{2^{n / 2} \psi\left(2^{n} x-m\right) \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Friends of wavelets: $\mathscr{D} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$ beamlets, brushlets, curvelets, ridgelets, wedgelets, multiwavelets.

Approximants

Definition

Dictionary $\mathscr{D} \subset \mathcal{H}$. For $r \in \mathbb{N}$, the set of \boldsymbol{r}-term approximants is

$$
\Sigma_{r}(\mathscr{D}):=\left\{\sum_{i=1}^{r} \alpha_{i} f_{i} \in \mathcal{H} \mid \alpha_{i} \in \mathbb{C}, f_{i} \in \mathscr{D}\right\} .
$$

Let $f \in \mathcal{H}$. The error of r-term approximation is

$$
\sigma_{n}(f):=\inf _{g \in \Sigma_{r}(\mathscr{D})}\|f-g\| .
$$

- Linear combination of two r-term approximants may have more than r non-zero terms.
- $\Sigma_{r}(\mathscr{D})$ not a subspace of \mathcal{H}. Hence nonlinear approximation.
- In contrast with usual (linear) approximation, ie.

$$
\inf _{g \in \operatorname{span}(\mathscr{D})}\|f-g\| .
$$

Small is beautiful

$$
f \approx \sum_{i \in \mathscr{I} \subseteq \mathscr{O}} \alpha_{i} f_{i}
$$

- Want good approximation, ie. $\left\|f-\sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_{i} f_{i}\right\|$ small.
- Want sparse/concentrated representation, ie. $|\mathscr{I}|$ small.
- Sparsity depends on choice of \mathscr{D}.
- $\mathscr{D}_{10}=\left\{10^{n} \mid n \in \mathbb{Z}\right\}, \mathscr{D}_{3}=\left\{3^{n} \mid n \in \mathbb{Z}\right\} \subseteq \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{3} & =[0.33333 \cdots]_{10}=\sum_{n=1}^{\infty} 3 \cdot 10^{-n} \\
& =[0.1]_{3}=1 \cdot 3^{-1} .
\end{aligned}
$$

- $\mathscr{D}_{\text {fourier }}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\}$,

$$
\frac{1}{2} x=\sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\cdots .
$$

- $\mathscr{D}_{\text {taylor }}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}$,

$$
\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots
$$

Bigger is better

- Union of dictionaries: allows for efficient (sparse) representation of different features
- $\mathscr{D}=\mathscr{D}_{\text {fourier }} \cup \mathscr{D}_{\text {wavelets }}$,
- $\mathscr{D}=\mathscr{D}_{\text {spikes }} \cup \mathscr{D}_{\text {sinusoids }} \cup \mathscr{D}_{\text {splines }}$,
- $\mathscr{D}=\mathscr{D}_{\text {wavelets }} \cup \mathscr{D}_{\text {curvelets }} \cup \mathscr{D}_{\text {beamlets }} \cup \mathscr{D}_{\text {ridgelets }}$.
- \mathscr{D} overcomplete or redundant dictionary. Trade off: computational complexity.
- Rule of thumb: the larger and more diverse the dictionary, the more efficient/sparser the representation.
- Observation: \mathscr{D} above all zero dimensional (at most countably infinite).
- Question: What about dictionaries with a continuously varying families of functions?

Dictionaries of positive dimensions

- Neural networks:

$$
\mathscr{D}=\left\{\sigma\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right) \in L^{2}\left(\mathbb{R}^{n}\right) \mid\left(w_{0}, \mathbf{w}\right) \in \mathbb{R} \times \mathbb{R}^{n}\right\}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ sigmoid function, eg. $\sigma(x)=[1+\exp (-x)]^{-1}$.

- Exponential:

$$
\mathscr{D}=\left\{e^{-t x} \mid t \in \mathbb{R}_{+}\right\} \quad \text { or } \quad \mathscr{D}=\left\{e^{\tau x} \mid \tau \in \mathbb{C}\right\} .
$$

- Separable:

$$
\mathscr{D}=\left\{g \in L^{2}\left(\mathbb{R}^{3}\right) \mid g(x, y, z)=\vartheta(x) \varphi(y) \psi(z)\right\}
$$

where $\vartheta, \varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$.

- Symmetric separable:

$$
\mathscr{D}=\left\{g \in L^{2}\left(\mathbb{R}^{3}\right) \mid g(x, y, z)=\varphi(x) \varphi(y) \varphi(z)\right\}
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$.

Same thing different names

- r th secant (quasiprojective) variety of the Segre variety is the set of r term approximants.
- If $\mathscr{D}=\operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$, then

$$
\Sigma_{r}(\mathscr{D})=\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

- Outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \mid(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq 1\right\}
\end{aligned}
$$

- Symmetric outer product decomposition:

$$
\mathscr{D}=\left\{\mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v} \mid \mathbf{v} \in \mathbb{R}^{n}\right\}=\left\{\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right) \mid \operatorname{rank}_{\mathrm{S}}(\mathcal{A}) \leq 1\right\} .
$$

- Nonnegative outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \mid(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}_{+}^{\prime} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}_{+}^{\prime \times m \times n} \mid \text { rank }_{+}(\mathcal{A}) \leq 1\right\}
\end{aligned}
$$

Pursuit algorithms

- Stepwise projection:

$$
\begin{aligned}
g_{k} & =\operatorname{argmin}_{g \in \mathscr{D}}\left\{\|f-h\| \mid h \in \operatorname{span}\left\{g_{1}, \ldots, g_{k-1}, g\right\}\right\}, \\
f_{k} & =\operatorname{proj}_{\text {span }\left\{g_{1}, \ldots, g_{k}\right\}}(f)
\end{aligned}
$$

- Orthonormal matching pursuit:

$$
\begin{aligned}
g_{k} & =\operatorname{argmax}_{g \in \mathscr{D}}\left|\left\langle f-f_{k-1}, g\right\rangle\right|, \\
f_{k} & =\operatorname{proj}_{\text {span }\left\{g_{1}, \ldots, g_{k}\right\}}(f) .
\end{aligned}
$$

- Pure greedy:

$$
\begin{aligned}
g_{k} & =\operatorname{argmax}_{g \in \mathscr{D}}\left|\left\langle f-f_{k-1}, g\right\rangle\right|, \\
f_{k} & =f_{k-1}+\left\langle f-f_{k-1}, g_{k}\right\rangle g_{k} .
\end{aligned}
$$

- Relaxed greedy:

$$
\begin{aligned}
g_{k} & =\operatorname{argmin}_{g \in \mathscr{D}}\left\{\|f-h\| \mid h \in \operatorname{span}\left\{f_{k-1}, g\right\}\right\} \\
f_{k} & =\alpha_{k} f_{k-1}+\beta_{k} g_{k}
\end{aligned}
$$

Recap: hypermatrices are functions on finite sets

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

- If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{l \times m \times n}$.
- $\ell^{2}([/] \times[m] \times[n])=\ell^{2}([/]) \otimes \ell^{2}([m]) \otimes \ell^{2}([n]): \mathcal{A}, \mathcal{B} \in \mathbb{R}^{I \times m \times n}$,

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i, j, k=1}^{l, m, n} a_{i j k} b_{i j k}
$$

- Frobenius norm

$$
\|\mathcal{A}\|_{F}^{2}=\sum_{i, j, k=1}^{1, m, n} a_{i j k}^{2}
$$

Pursuit algorithms for tensor approximations

- Tensor approximation.
- Target function

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

- Dictionary of separable functions,

$$
\mathscr{D}_{\otimes}=\{g:[I] \times[m] \times[n] \rightarrow \mathbb{R} \mid g(i, j, k)=\vartheta(i) \varphi(j) \psi(k)\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}, \varphi:[m] \rightarrow \mathbb{R}, \psi:[n] \rightarrow \mathbb{R}$.

- Symmetric tensor approximation.
- Target function:

$$
f:[n] \times[n] \times[n] \rightarrow \mathbb{R}
$$

with $f(i, j, k)=f(j, i, k)=\cdots=f(k, j, i)$.

- Dictionary of symmetric separable functions:

$$
\mathscr{D}_{\mathrm{S}}=\{g:[n] \times[n] \times[n] \rightarrow \mathbb{R} \mid g(i, j, k)=\vartheta(i) \vartheta(j) \vartheta(k)\},
$$

where $\vartheta:[I] \rightarrow \mathbb{R}$.

Pursuit algorithms for tensor approximations

- Nonnegative tensor approximation.
- Target function

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}_{+} .
$$

- Dictionary of nonnegative separable functions,

$$
\mathscr{D}_{+}=\left\{g:[/] \times[m] \times[n] \rightarrow \mathbb{R}_{+} \mid g(i, j, k)=\vartheta(i) \varphi(j) \psi(k)\right\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}_{+}, \varphi:[m] \rightarrow \mathbb{R}_{+}, \psi:[n] \rightarrow \mathbb{R}_{+}$.

Some history

- f polynomial in variables $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$. Suppose $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ non-negative valued, ie. $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{N}$.
- Question: Can we write f as a sum of squares of polynomials,

$$
f(\mathbf{x})=\sum_{j=1}^{M} p_{j}(\mathbf{x})^{2} \quad ?
$$

- Answer (Hilbert): Not in general, eg. $f(w, x, y, z)=w^{4}+x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}-4 x y z w$.
- Hilbert's 17th Problem: Can we write f as a sum of squares of rational functions,

$$
f(\mathbf{x})=\sum_{j=1}^{M}\left(\frac{p_{j}(\mathbf{x})}{q_{j}(\mathbf{x})}\right)^{2} ?
$$

- Answer (Artin): Yes!

SDP based algorithms

- Observation 1:

$$
\begin{aligned}
F\left(x_{11}, \ldots, z_{n r}\right) & =\left\|A-\sum_{\alpha=1}^{r} \mathbf{x}_{\alpha} \otimes \mathbf{y}_{\alpha} \otimes \mathbf{z}_{\alpha}\right\|_{F}^{2} \\
& =\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
\end{aligned}
$$

is a polynomial of total degree 6 (resp. $2 k$ for order k-tensors) in variables $x_{11}, \ldots, z_{n r}$.

- Multivariate polynomial optimization: non-convex problem

$$
\operatorname{argmin} F\left(x_{11}, \ldots, z_{n r}\right)
$$

may be relaxed to a convex problem (thus global optima is guranteed) which can in turn be solved using semidefinite programming (SDP).

- [Lasserre; 2001], [Parrilo; 2003], [Parrilo, Sturmfels; 2003].

How it works

- Observation 2: If $F-\lambda$ can be expressed as a sum of squares of polynomials

$$
F\left(x_{11}, \ldots, z_{n r}\right)-\lambda=\sum_{i=1}^{n} P_{i}\left(x_{11}, \ldots, z_{n r}\right)^{2}
$$

then λ is a global lower bound for F, ie.

$$
F\left(x_{11}, \ldots, z_{n r}\right) \geq \lambda
$$

for all $x_{11}, \ldots, z_{n r} \in \mathbb{R}$.

- Simple strategy: Find the largest λ^{*} such that $F-\lambda^{*}$ is a sum of squares. Then λ^{*} is often $\min F\left(x_{11}, \ldots, z_{n r}\right)$.

Sketch

- Write $\mathbf{v}=\left(1, x_{11}, \ldots, z_{n r}, \ldots, x_{/ 1} y_{m 1} z_{n 1}, \ldots, z_{n r}^{6}\right)^{\top}$, the D-tuple of monomials of total degree ≤ 6, where

$$
D:=\binom{r(I+m+n)+3}{3}
$$

- Write $F\left(x_{11}, \ldots, z_{n r}\right)=\boldsymbol{\alpha}^{\top} \mathbf{v}$ where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{D}\right) \in \mathbb{R}^{D}$ are the coefficients of the respective monomials.
- Since $\operatorname{deg}(F)$ is even, F may also be written as

$$
F\left(x_{11}, \ldots, z_{n r}\right)=\mathbf{v}^{\top} M \mathbf{v}
$$

for some $M \in \mathbb{R}^{D \times D}$.

- So

$$
F\left(x_{11}, \ldots, z_{n r}\right)-\lambda=\mathbf{v}^{\top}\left(M-\lambda E_{11}\right) \mathbf{v}
$$

where $E_{11}=\mathbf{e}_{1} \mathbf{e}_{1}^{\top} \in \mathbb{R}^{D \times D}$.

Sketch

- Observation 3: The RHS is a sum of squares iff $M-\lambda E_{11}$ is positive semidefinite (since $M-\lambda E_{11}=B^{\top} B$). Hence we have

$$
\begin{aligned}
\operatorname{minimize} & -\lambda \\
\text { subjected to } & \mathbf{v}^{\top}\left(S+\lambda E_{11}\right) \mathbf{v}=F, \\
& S \succeq 0 .
\end{aligned}
$$

- This is an SDP problem

$$
\begin{array}{rll}
\begin{aligned}
\operatorname{minimize} & 0 \circ S-\lambda \\
\text { subjected to } & S \circ B_{1}+\lambda=\alpha_{1}, \\
& S \circ B_{k}=\alpha_{k}, \\
& S \succeq 0,
\end{aligned} \quad \lambda=2, \ldots, D \\
& \lambda \in \mathbb{R} .
\end{array}
$$

Properties

- May be solved in polynomial time.
- Like all SDP-based algorithms, duality produces a certificate that tells us whether we have arrived at a globally optimal solution.
- The duality gap, ie. difference between the values of the primal and dual objective functions, is 0 at a global minima.
- Complexity: For rank- r approximations to order- k tensors $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$,

$$
D=\binom{r\left(d_{1}+\cdots+d_{k}\right)+k}{k}
$$

is large even for moderate d_{i}, r and k.

- Sparsity to the rescue: The polynomials that we are interested in are always sparse (eg. for $k=3$, only terms of the form $x y z$ or $x^{2} y^{2} z^{2}$ or uvwxyz appear).

Newton polytope

Newton polytope of a polynomial f is the convex hull of the powers of the monomials in f.

Example

Newton polytope of
$f(x, y)=3.67 x^{4} y^{1} 0+-2.03 x^{3} y^{3}+5.74 x^{3}-20.1 y^{2}-7.23$ is the convex hull of the points $(4,10),(3,3),(3,0),(2,0),(0,0)$ in \mathbb{R}^{2}. Newton polytope of $g(x, y, z)=1.7 x^{4} y^{6} z^{2}+7.4 x^{3} z^{5}-3.0 y^{4}+0.1 y z^{2}$ is the convex hull of the points $(4,6,2),(3,0,5),(0,4,0),(0,1,2)$ in \mathbb{R}^{3}.

Theorem (Reznick)

If $f(\mathbf{x})=\sum_{i=1}^{m} p_{i}(\mathbf{x})^{2}$, then the powers of the monomials in p_{i} must lie in $\frac{1}{2}$ Newton (f).

Multilinear polynomial

- The Newton polytope for a polynomial of the form

$$
f\left(x_{11}, \ldots, z_{n r}\right)=-\lambda+\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
$$

is spanned by 1 and monomials of the form $x_{i \alpha}^{2} y_{j \alpha}^{2} z_{k \alpha}^{2}$ (ie. monomials of the form $x_{i \alpha} y_{j \alpha} z_{k \alpha}$ and $x_{i \alpha} y_{j \alpha} z_{k \alpha} x_{i \beta} y_{j \beta} z_{k \beta}$ may all be dropped).

- So if $f\left(x_{11}, \ldots, z_{n r}\right)=\sum_{j=1}^{N} p_{j}\left(x_{11}, \ldots, z_{n r}\right)^{2}$, then only 1 and monomials of the form $x_{i \alpha} y_{j \alpha} z_{k \alpha}$ may occur in p_{1}, \ldots, p_{N}.
- In other words, we have reduced the size of the problem from $\binom{r(I+m+n)+3}{3}$ to $r / m n+1$.

Global convergence

- If polynomials of the form

$$
-\lambda+\sum_{i, j, k=1}^{l, m, n}\left(a_{i j k}-\sum_{\alpha=1}^{r} x_{i \alpha} y_{j \alpha} z_{k \alpha}\right)^{2}
$$

can always be written as a sum of polynomials (we don't know), then the SDP algorithm for optimal low-rank tensor approximation will always converge globally.

- Numerical experiments performed by Parrilo on general polynomials yield $\lambda^{*}=\min F$ in all cases.

Best multilinear rank approximation

- Given $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$, want $\operatorname{rank}_{\boxplus}(\mathcal{B})=\left(r_{1}, r_{2}, r_{3}\right)$ with

$$
\min \|\mathcal{A}-\mathcal{B}\|_{F}=\min \|\mathcal{A}-(X, Y, Z) \cdot \mathcal{C}\|_{F}
$$

$$
\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}, X \in \mathbb{R}^{\prime \times r_{1}}, Y \in \mathbb{R}^{m \times r_{2}}, Z \in \mathbb{R}^{n \times r_{3}} \text { orthonormal. }
$$

- Problem overparameterized and equivalent to

$$
\begin{aligned}
& \max \left\|\left(X^{\top}, Y^{\top}, Z^{\top}\right) \cdot \mathcal{A}\right\|_{F}=\max \|\mathcal{A} \cdot(X, Y, Z)\|_{F}, \\
& X^{\top} X=I, Y^{\top} Y=I, Z^{\top} Z=I
\end{aligned}
$$

- Problem defined on a product of Grassmann manifolds since

$$
\|\mathcal{A} \cdot(X, Y, Z)\|_{F}=\left\|\mathcal{A} \cdot\left(X Q_{1}, Y Q_{2}, Z Q_{3}\right)\right\|_{F}
$$

for any $\left(Q_{1}, Q_{2}, Q_{3}\right) \in O(I) \times O(m) \times O(n)$. Only the subspaces spanned by X, Y, Z matters.

- Problem reformulated as

$$
\max _{(X, Y, Z) \in \operatorname{Gr}\left(1, r_{1}\right) \times \operatorname{Gr}\left(m, r_{2}\right) \times \operatorname{Gr}\left(n, r_{3}\right)} \Phi(X, Y, Z)
$$

Newton and Quasi-Newton algorithms on manifolds

- \mathbf{T}_{X} tangent space at $X \in \operatorname{Gr}(n, r)$

$$
\mathbb{R}^{n \times r} \ni \Delta \in \mathbf{T}_{X} \quad \Longleftrightarrow \quad \Delta^{\top} X=0
$$

(1) Compute Grassmann gradient $\nabla \Phi \in \mathbf{T}_{(X, Y, Z)}$.
(2) Compute Hessian or update Hessian approximation

$$
H: \Delta \in \mathbf{T}_{(X, Y, Z)} \rightarrow H \Delta \in \mathbf{T}_{(X, Y, Z)}
$$

(3) At $(X, Y, Z) \in \operatorname{Gr}\left(I, r_{1}\right) \times \operatorname{Gr}\left(m, r_{2}\right) \times \operatorname{Gr}\left(n, r_{3}\right)$, solve

$$
H \Delta=-\nabla \Phi
$$

for search direction Δ.
(9) Update iterate (X, Y, Z) : Move along geodesic from (X, Y, Z) in the direction given by Δ.

- Optimize over a product of three (or more) Grassmannians.
- [Gabay, 1982], [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008].

Picture

Quasi-Newton and BFGS update

The BFGS update

$$
H_{k+1}=H_{k}-\frac{H_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{\top} H_{k}}{\mathbf{s}_{k}^{\top} H_{k} \mathbf{s}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{y}_{k}}
$$

where

$$
\begin{aligned}
& \mathbf{s}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k}=t_{k} \mathbf{p}_{k}, \\
& \mathbf{y}_{k}=\nabla f_{k+1}-\nabla f_{k} .
\end{aligned}
$$

On Grassmann manifold the vectors are defined on different points belonging to different tangent spaces.

Different ways of parallel transporting vectors

$X \in \operatorname{Gr}(n, r), \Delta_{1}, \Delta_{2} \in \mathbf{T}_{X}$ and $X(t)$ geodesic path along Δ_{1}

- Parallel transport using global coordinates

$$
\Delta_{2}(t)=T_{\Delta_{1}}(t) \Delta_{2}
$$

we have also

$$
\Delta_{1}=X_{\perp} D_{1} \quad \text { and } \quad \Delta_{2}=X_{\perp} D_{2}
$$

where X_{\perp} basis for \mathbf{T}_{X}. Let $X(t)_{\perp}$ be basis for $\mathbf{T}_{X(t)}$.

- Parallel transport using local coordinates

$$
\Delta_{2}(t)=X(t)_{\perp} D_{2}
$$

Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in the basis $X(t)_{\perp}$ at all points on the path $X(t)$.

Plus No need to transport the gradient or the Hessian.
Minus Need to compute $X(t)_{\perp}$.
In global coordinate we compute

- $\mathbf{T}_{k+1} \ni \mathbf{s}_{k}=t_{k} T_{\Delta_{k}}\left(t_{k}\right) \mathbf{p}_{k}$
- $\mathbf{T}_{k+1} \ni \mathbf{y}_{k}=\nabla f_{k+1}-T_{\Delta_{k}}\left(t_{k}\right) \nabla f_{k}$
- $T_{\Delta_{k}}\left(t_{k}\right) H_{k} T_{\Delta_{k}}^{-1}\left(t_{k}\right): \mathbf{T}_{k+1} \longrightarrow \mathbf{T}_{k+1}$

$$
H_{k+1}=H_{k}-\frac{H_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{\top} H_{k}}{\mathbf{s}_{k}^{\top} H_{k} \mathbf{s}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{y}_{k}}
$$

Limited memory BFGS

Compact representation of BFGS in Euclidean space:

$$
H_{k}=H_{0}+\left[\begin{array}{ll}
S_{k} & H_{0} Y_{k}
\end{array}\right]\left[\begin{array}{cc}
R_{k}^{-\top}\left(D_{k}+Y_{k}^{\top} H_{0} Y_{k}\right) R_{k}^{-1} & -R_{k}^{-\top} \\
-R_{k}^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
S_{k}^{\top} \\
Y_{k}^{\top} H_{0}
\end{array}\right]
$$

where

$$
\begin{aligned}
S_{k} & =\left[\mathbf{s}_{0}, \ldots, \mathbf{s}_{k-1}\right], \\
Y_{k} & =\left[\mathbf{y}_{0}, \ldots, \mathbf{y}_{k-1}\right], \\
D_{k} & =\operatorname{diag}\left[\mathbf{s}_{0}^{\top} \mathbf{y}_{0}, \ldots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}\right], \\
R_{k} & =\left[\begin{array}{cccc}
\mathbf{s}_{0}^{\top} \mathbf{y}_{0} & \mathbf{s}_{0}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{0}^{\top} \mathbf{y}_{k-1} \\
0 & \mathbf{s}_{1}^{\top} \mathbf{y}_{1} & \cdots & \mathbf{s}_{1}^{\top} \mathbf{y}_{k-1} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}
\end{array}\right]
\end{aligned}
$$

Limited memory BFGS

Limited memory BFGS [Byrd et al; 1994]. Replace H_{0} by $\gamma_{k} l$ and keep the m most resent \mathbf{s}_{j} and \mathbf{y}_{j},

$$
H_{k}=\gamma_{k} I+\left[\begin{array}{ll}
S_{k} & \gamma_{k} Y_{k}
\end{array}\right]\left[\begin{array}{cc}
R_{k}^{-\top}\left(D_{k}+\gamma_{k} Y_{k}^{\top} Y_{k}\right) R_{k}^{-1} & -R_{k}^{-\top} \\
-R_{k}^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
S_{k}^{\top} \\
\gamma_{k} Y_{k}^{\top}
\end{array}\right]
$$

where

$$
\left.\begin{array}{rl}
S_{k} & =\left[\mathbf{s}_{k-m}, \ldots, \mathbf{s}_{k-1}\right], \\
Y_{k} & =\left[\mathbf{y}_{k-m}, \ldots, \mathbf{y}_{k-1}\right], \\
D_{k} & =\operatorname{diag}\left[\mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m}, \ldots, \mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}\right]
\end{array}\right] \begin{array}{cccc}
\mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m} & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m}^{\top} \mathbf{y}_{k-1} \\
0 & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-m+1} & \cdots & \mathbf{s}_{k-m+1}^{\top} \mathbf{y}_{k-1} \\
\vdots & & \ddots & \vdots \\
R_{k} & =\left[\begin{array}{ccc}
\mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}
\end{array}\right] .
\end{array}
$$

L-BFGS on the Grassmann manifold

- In each iteration, parallel transport vectors in S_{k} and Y_{k} to \mathbf{T}_{k}, ie. perform

$$
\bar{S}_{k}=T S_{k}, \quad \bar{Y}_{k}=T Y_{k}
$$

where T is the transport matrix.

- No need to modify R_{k} or D_{k}

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\langle T \mathbf{u}, T \mathbf{v}\rangle
$$

where $\mathbf{u}, \mathbf{v} \in \mathbf{T}_{k}$ and $T \mathbf{u}, T \mathbf{v} \in \mathbf{T}_{k+1}$.

- H_{k} nonsingular, Hessian is singular. No problem \mathbf{T}_{k} at \mathbf{x}_{k} is invariant subspace of H_{k}, ie. if $\mathbf{v} \in \mathbf{T}_{k}$ then $H_{k} \mathbf{v} \in \mathbf{T}_{k}$.
- [Savas, L.; 2008]

