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Synopsis

Näıve: the Gauss-Seidel heuristic.

Harmonic analysis: pursuits algorithms.

Real algebraic geometry: semi-definite programming.

Riemannian geometry: Grassman-Newton method.
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Recap: best low rank approximation of a hypermatrix

Outer product rank: A ∈ Rl×m×n. Want ui ∈ Rl , vi ∈ Rm,
wi ∈ Rn unit vectors, σi ∈ R, that minimize∥∥A−∑r

i=1
σiui ⊗ vi ⊗wi

∥∥.
Symmetric outer product rank: A ∈ S3(Rn). Want vi unit vector,
λi ∈ R, that minimize∥∥A−∑r

i=1
λivi ⊗ vi ⊗ vi

∥∥.
Nonnegative outer product rank: A ∈ Rl×m×n

+ . Want xi ∈ Rl
+,

yi ∈ Rm
+, zi ∈ Rn

+ unit vectors, δi ∈ R+, that minimize∥∥A−∑r

i=1
δixi ⊗ yi ⊗ zi

∥∥.
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Recap: best low rank approximation of a hypermatrix

Multilinear rank: A ∈ Rl×m×n. Want U ∈ Rl×r1 , V ∈ Rm×r2 ,
W ∈ Rn×r3 matrices with orthonormal columns, C ∈ Rr1×r2×r3 , that
minimize

‖A − (U,V ,W ) · C‖.

Hybrid: A ∈ Rl×m×n. Want B1, . . . ,Br ∈ Rl×m×n with

rank�(Bi ) ≤ (r1, r2, r3), ‖Bi‖ = 1,

that minimize ∥∥A−∑r

i=1
σiBi

∥∥.
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Gauss-Seidel method

Optimal solution B∗ to argminrank⊗(B)≤r‖A − B‖F not easy to
compute since the objective function is non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm, better
known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X (0) ∈ Rl×r ,Y (0) ∈ Rm×r ,Z (0) ∈ Rn×r ;

initialize s(0), ε > 0, k = 0;

while ρ(k+1)/ρ(k) > ε;

X (k+1) ← argminX̄∈Rl×r ‖T −
∑r

α=1x̄(k+1)
α ⊗ y(k)

α ⊗ z(k)
α ‖2

F ;

Y (k+1) ← argminȲ∈Rm×r ‖T −
∑r

α=1x(k+1)
α ⊗ ȳ(k+1)

α ⊗ z(k)
α ‖2

F ;

Z (k+1) ← argminZ̄∈Rn×r ‖T −
∑r

α=1x(k+1)
α ⊗ y(k+1)

α ⊗ z̄(k+1)
α ‖2

F ;

ρ(k+1) ← ‖
∑r

α=1[x
(k+1)
a ⊗ y(k+1)

α ⊗ z(k+1)
α − x(k)

α ⊗ y(k)
α ⊗ z(k)

α ]‖2
F ;

k ← k + 1;

Coordinate cycling heuristic. May not converge.
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Best r -term approximation

f ≈ α1f1 + α2f2 + · · ·+ αr fr .

Target function f ∈ H vector space, cone, etc.

f1, . . . , fr ∈ D ⊂ H dictionary.

α1, . . . , αr ∈ R or C (linear), R+ (convex), R ∪ {−∞} (tropical).

≈ with respect to ϕ : H×H → R, some measure of ‘nearness’
between pairs of points (e.g. norms, metric, volumes, expectation,
entropy, Brègman divergences, etc), want

argmin{ϕ(f , α1f1 + . . . αr fr ) | fi ∈ D}.

For concreteness, H separable Hilbert space; measure of nearness is a
norm, but not necessarily the one induced by its inner product.

Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.
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Recap: dictionaries

Discrete cosine:

D =
{√

2
N cos(k + 1

2 )(n + 1
2 ) πN

∣∣∣ k ∈ [N − 1]
}
⊆ CN .

Taylor:
D = {xn | n ∈ N ∪ {0}} ⊆ Cω(R).

Fourier:

D = {cos(nx), sin(nx) | n ∈ Z} ⊆ L2(−π, π).

Peter-Weyl:

D = {〈π(x)ei , ej〉 | π ∈ Ĝ , i , j ∈ [dπ]} ⊆ L2(G ).
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Recap: dictionaries

Paley-Wiener:

D = {sinc(x − n) | n ∈ Z} ⊆ H2(R).

Gabor:

D = {e iαnxe−(x−mβ)2/2 | (m, n) ∈ Z× Z} ⊆ L2(R).

Wavelet:

D = {2n/2ψ(2nx −m) | (m, n) ∈ Z× Z} ⊆ L2(R).

Friends of wavelets: D ⊆ L2(R2) beamlets, brushlets, curvelets,
ridgelets, wedgelets, multiwavelets.
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Approximants

Definition

Dictionary D ⊂ H. For r ∈ N, the set of r-term approximants is

Σr (D) :=
{∑r

i=1
αi fi ∈ H

∣∣∣ αi ∈ C, fi ∈ D
}
.

Let f ∈ H. The error of r-term approximation is

σn(f ) := infg∈Σr (D)‖f − g‖.

Linear combination of two r -term approximants may have more than
r non-zero terms.

Σr (D) not a subspace of H. Hence nonlinear approximation.

In contrast with usual (linear) approximation, ie.

infg∈span(D)‖f − g‖.
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Small is beautiful

f ≈
∑

i∈I⊆Dαi fi

Want good approximation, ie. ‖f −
∑

i∈I⊆Dαi fi‖ small.

Want sparse/concentrated representation, ie. |I | small.

Sparsity depends on choice of D .

I D10 = {10n | n ∈ Z},D3 = {3n | n ∈ Z} ⊆ R,

1
3 = [0.33333 · · · ]10 =

∑∞
n=13 · 10−n

= [0.1]3 = 1 · 3−1.

I Dfourier = {cos(nx), sin(nx) | n ∈ Z},

1
2x = sin(x)− 1

2 sin(2x) + 1
3 sin(3x)− · · · .

I Dtaylor = {xn | n ∈ N ∪ {0}},

sin(x) = x − 1
6x3 + 1

120x5 − · · · .
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Bigger is better

Union of dictionaries: allows for efficient (sparse) representation of
different features

I D = Dfourier ∪Dwavelets,
I D = Dspikes ∪Dsinusoids ∪Dsplines,
I D = Dwavelets ∪Dcurvelets ∪Dbeamlets ∪Dridgelets.

D overcomplete or redundant dictionary. Trade off: computational
complexity.

Rule of thumb: the larger and more diverse the dictionary, the more
efficient/sparser the representation.

Observation: D above all zero dimensional (at most countably
infinite).

Question: What about dictionaries with a continuously varying
families of functions?
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Dictionaries of positive dimensions

Neural networks:

D = {σ(w>x + w0) ∈ L2(Rn) | (w0,w) ∈ R× Rn}

where σ : R→ R sigmoid function, eg. σ(x) = [1 + exp(−x)]−1.

Exponential:

D = {e−tx | t ∈ R+} or D = {eτx | τ ∈ C}.

Separable:

D = {g ∈ L2(R3) | g(x , y , z) = ϑ(x)ϕ(y)ψ(z)}

where ϑ, ϕ, ψ : R→ R.

Symmetric separable:

D = {g ∈ L2(R3) | g(x , y , z) = ϕ(x)ϕ(y)ϕ(z)}

where ϕ : R→ R.
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Same thing different names

r th secant (quasiprojective) variety of the Segre variety is the set of r
term approximants.

If D = Seg(Rl ,Rm,Rn), then

Σr (D) = {A ∈ Rl×m×n | rank⊗(A) ≤ r}.

Outer product decomposition:

D = {u⊗ v ⊗w | (u, v,w) ∈ Rl × Rm × Rn}
= {A ∈ Rl×m×n | rank⊗(A) ≤ 1}.

Symmetric outer product decomposition:

D = {v ⊗ v ⊗ v | v ∈ Rn} = {A ∈ S3(Rn) | rankS(A) ≤ 1}.

Nonnegative outer product decomposition:

D = {x⊗ y ⊗ z | (x, y, z) ∈ Rl
+ × Rm

+ × Rn
+}

= {A ∈ Rl×m×n
+ | rank+(A) ≤ 1}.
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Pursuit algorithms

Stepwise projection:

gk = argming∈D{‖f − h‖ | h ∈ span{g1, . . . , gk−1, g}},
fk = projspan{g1,...,gk}(f ).

Orthonormal matching pursuit:

gk = argmaxg∈D |〈f − fk−1, g〉|,
fk = projspan{g1,...,gk}(f ).

Pure greedy:

gk = argmaxg∈D |〈f − fk−1, g〉|,
fk = fk−1 + 〈f − fk−1, gk〉gk .

Relaxed greedy:

gk = argming∈D{‖f − h‖ | h ∈ span{fk−1, g}},
fk = αk fk−1 + βkgk .
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Recap: hypermatrices are functions on finite sets

Totally ordered finite sets: [n] = {1 < 2 < · · · < n}, n ∈ N.

Hypermatrix (order 3)

f : [l ]× [m]× [n]→ R.

If f (i , j , k) = aijk , then f is represented by A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

`2([l ]× [m]× [n]) = `2([l ])⊗ `2([m])⊗ `2([n]): A,B ∈ Rl×m×n,

〈A,B〉 =
∑l ,m,n

i ,j ,k=1
aijkbijk .

Frobenius norm

‖A‖2
F =

∑l ,m,n

i ,j ,k=1
a2
ijk .
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Pursuit algorithms for tensor approximations

Tensor approximation.

I Target function
f : [l ]× [m]× [n]→ R.

I Dictionary of separable functions,

D⊗ = {g : [l ]× [m]× [n]→ R | g(i , j , k) = ϑ(i)ϕ(j)ψ(k)},

where ϑ : [l ]→ R, ϕ : [m]→ R, ψ : [n]→ R.

Symmetric tensor approximation.

I Target function:
f : [n]× [n]× [n]→ R

with f (i , j , k) = f (j , i , k) = · · · = f (k , j , i).
I Dictionary of symmetric separable functions:

DS = {g : [n]× [n]× [n]→ R | g(i , j , k) = ϑ(i)ϑ(j)ϑ(k)},

where ϑ : [l ]→ R.
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Pursuit algorithms for tensor approximations

Nonnegative tensor approximation.

I Target function
f : [l ]× [m]× [n]→ R+.

I Dictionary of nonnegative separable functions,

D+ = {g : [l ]× [m]× [n]→ R+ | g(i , j , k) = ϑ(i)ϕ(j)ψ(k)},

where ϑ : [l ]→ R+, ϕ : [m]→ R+, ψ : [n]→ R+.
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Some history

f polynomial in variables x = (x1, . . . , xN). Suppose f : RN → R
non-negative valued, ie. f (x) ≥ 0 for all x ∈ RN .

Question: Can we write f as a sum of squares of polynomials,

f (x) =
∑M

j=1
pj(x)2 ?

Answer (Hilbert): Not in general, eg.
f (w , x , y , z) = w4 + x2y2 + y2z2 + z2x2 − 4xyzw .

Hilbert’s 17th Problem: Can we write f as a sum of squares of
rational functions,

f (x) =
∑M

j=1

(
pj(x)

qj(x)

)2

?

Answer (Artin): Yes!
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SDP based algorithms

Observation 1:

F (x11, . . . , znr ) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2
F

=
∑l ,m,n

i ,j ,k=1 (aijk −
∑r

α=1xiαyjαzkα)2

is a polynomial of total degree 6 (resp. 2k for order k-tensors) in
variables x11, . . . , znr .

Multivariate polynomial optimization: non-convex problem

argmin F (x11, . . . , znr )

may be relaxed to a convex problem (thus global optima is guranteed)
which can in turn be solved using semidefinite programming (SDP).

[Lasserre; 2001], [Parrilo; 2003], [Parrilo, Sturmfels; 2003].
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How it works

Observation 2: If F − λ can be expressed as a sum of squares of
polynomials

F (x11, . . . , znr )− λ =
∑n

i=1
Pi (x11, . . . , znr )2,

then λ is a global lower bound for F , ie.

F (x11, . . . , znr ) ≥ λ

for all x11, . . . , znr ∈ R.

Simple strategy: Find the largest λ∗ such that F − λ∗ is a sum of
squares. Then λ∗ is often min F (x11, . . . , znr ).
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Sketch

Write v = (1, x11, . . . , znr , . . . , xl1ym1zn1, . . . , z
6
nr )>, the D-tuple of

monomials of total degree ≤ 6, where

D :=

(
r(l + m + n) + 3

3

)
.

Write F (x11, . . . , znr ) = α>v where α = (α1, . . . , αD) ∈ RD are the
coefficients of the respective monomials.

Since deg(F ) is even, F may also be written as

F (x11, . . . , znr ) = v>Mv

for some M ∈ RD×D .

So
F (x11, . . . , znr )− λ = v>(M − λE11)v

where E11 = e1e>1 ∈ RD×D .
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Sketch

Observation 3: The rhs is a sum of squares iff M − λE11 is positive
semidefinite (since M − λE11 = B>B). Hence we have

minimize −λ
subjected to v>(S + λE11)v = F ,

S � 0.

This is an SDP problem

minimize 0 ◦ S − λ
subjected to S ◦ B1 + λ = α1,

S ◦ Bk = αk , k = 2, . . . ,D
S � 0, λ ∈ R.
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Properties

May be solved in polynomial time.

Like all SDP-based algorithms, duality produces a certificate that tells
us whether we have arrived at a globally optimal solution.

The duality gap, ie. difference between the values of the primal and
dual objective functions, is 0 at a global minima.

Complexity: For rank-r approximations to order-k tensors
A ∈ Rd1×···×dk ,

D =

(
r(d1 + · · ·+ dk) + k

k

)
is large even for moderate di , r and k .

Sparsity to the rescue: The polynomials that we are interested in
are always sparse (eg. for k = 3, only terms of the form xyz or x2y2z2

or uvwxyz appear).
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Newton polytope

Newton polytope of a polynomial f is the convex hull of the powers of the
monomials in f .

Example

Newton polytope of
f (x , y) = 3.67x4y10 +−2.03x3y3 + 5.74x3 − 20.1y2 − 7.23 is the convex
hull of the points (4, 10), (3, 3), (3, 0), (2, 0), (0, 0) in R2. Newton polytope
of g(x , y , z) = 1.7x4y6z2 + 7.4x3z5 − 3.0y4 + 0.1yz2 is the convex hull of
the points (4, 6, 2), (3, 0, 5), (0, 4, 0), (0, 1, 2) in R3.

Theorem (Reznick)

If f (x) =
∑m

i=1 pi (x)2, then the powers of the monomials in pi must lie in
1
2 Newton(f ).
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Multilinear polynomial

The Newton polytope for a polynomial of the form

f (x11, . . . , znr ) = −λ+
∑l ,m,n

i ,j ,k=1

(
aijk −

∑r

α=1
xiαyjαzkα

)2

is spanned by 1 and monomials of the form x2
iαy2

jαz2
kα (ie. monomials

of the form xiαyjαzkα and xiαyjαzkαxiβyjβzkβ may all be dropped).

So if f (x11, . . . , znr ) =
∑N

j=1 pj(x11, . . . , znr )2, then only 1 and
monomials of the form xiαyjαzkα may occur in p1, . . . , pN .

In other words, we have reduced the size of the problem from(r(l+m+n)+3
3

)
to rlmn + 1.

L.-H. Lim (MSRI SGW) Algorithms for tensor approximations July 7–18, 2008 25 / 35



Global convergence

If polynomials of the form

−λ+
∑l ,m,n

i ,j ,k=1

(
aijk −

∑r

α=1
xiαyjαzkα

)2

can always be written as a sum of polynomials (we don’t know), then
the SDP algorithm for optimal low-rank tensor approximation will
always converge globally.

Numerical experiments performed by Parrilo on general polynomials
yield λ∗ = min F in all cases.
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Best multilinear rank approximation

Given A ∈ Rl×m×n, want rank�(B) = (r1, r2, r3) with

min ‖A − B‖F = min ‖A − (X ,Y ,Z ) · C‖F

C ∈ Rr1×r2×r3 , X ∈ Rl×r1 , Y ∈ Rm×r2 , Z ∈ Rn×r3 orthonormal.

Problem overparameterized and equivalent to

max
∥∥∥(X>,Y>,Z>) · A

∥∥∥
F

= max ‖A · (X ,Y ,Z )‖F ,

X>X = I ,Y>Y = I ,Z>Z = I .

Problem defined on a product of Grassmann manifolds since

‖A · (X ,Y ,Z )‖F = ‖A · (XQ1,YQ2,ZQ3)‖F ,

for any (Q1,Q2,Q3) ∈ O(l)× O(m)× O(n). Only the subspaces
spanned by X ,Y ,Z matters.

Problem reformulated as

max(X ,Y ,Z)∈Gr(l ,r1)×Gr(m,r2)×Gr(n,r3) Φ(X ,Y ,Z ).
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Newton and Quasi-Newton algorithms on manifolds

TX tangent space at X ∈ Gr(n, r)

Rn×r 3 ∆ ∈ TX ⇐⇒ ∆>X = 0

1 Compute Grassmann gradient ∇Φ ∈ T(X ,Y ,Z).
2 Compute Hessian or update Hessian approximation

H : ∆ ∈ T(X ,Y ,Z) → H∆ ∈ T(X ,Y ,Z).

3 At (X ,Y ,Z ) ∈ Gr(l , r1)× Gr(m, r2)× Gr(n, r3), solve

H∆ = −∇Φ

for search direction ∆.
4 Update iterate (X ,Y ,Z ): Move along geodesic from (X ,Y ,Z ) in the

direction given by ∆.

Optimize over a product of three (or more) Grassmannians.

[Gabay, 1982], [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008].
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Picture
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Quasi-Newton and BFGS update

The BFGS update

Hk+1 = Hk −
Hksks>k Hk

s>k Hksk
+

yky>k
y>k yk

where

sk = xk+1 − xk = tkpk ,

yk = ∇fk+1 −∇fk .

On Grassmann manifold the vectors are defined on different points
belonging to different tangent spaces.
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Different ways of parallel transporting vectors

X ∈ Gr(n, r), ∆1,∆2 ∈ TX and X (t) geodesic path along ∆1

Parallel transport using global coordinates

∆2(t) = T∆1(t)∆2

we have also
∆1 = X⊥D1 and ∆2 = X⊥D2

where X⊥ basis for TX . Let X (t)⊥ be basis for TX (t).

Parallel transport using local coordinates

∆2(t) = X (t)⊥D2.
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Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in
the basis X (t)⊥ at all points on the path X (t).

Plus No need to transport the gradient or the Hessian.

Minus Need to compute X (t)⊥.

In global coordinate we compute

Tk+1 3 sk = tkT∆k
(tk)pk

Tk+1 3 yk = ∇fk+1 − T∆k
(tk)∇fk

T∆k
(tk)HkT−1

∆k
(tk) : Tk+1 −→ Tk+1

Hk+1 = Hk −
Hksks>k Hk

s>k Hksk
+

yky>k
y>k yk
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Limited memory BFGS

Compact representation of BFGS in Euclidean space:

Hk = H0 +
[
Sk H0Yk

] [R−>k (Dk + Y>k H0Yk)R−1
k −R−>k

−R−1
k 0

] [
S>k

Y>k H0

]
where

Sk = [s0, . . . , sk−1] ,

Yk = [y0, . . . , yk−1] ,

Dk = diag
[
s>0 y0, . . . , s

>
k−1yk−1

]
,

Rk =


s>0 y0 s>0 y1 · · · s>0 yk−1

0 s>1 y1 · · · s>1 yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
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Limited memory BFGS
Limited memory BFGS [Byrd et al; 1994]. Replace H0 by γk I and keep the
m most resent sj and yj ,

Hk = γk I +
[
Sk γkYk

] [R−>k (Dk + γkY>k Yk)R−1
k −R−>k

−R−1
k 0

] [
S>k
γkY>k

]
where

Sk = [sk−m, . . . , sk−1] ,

Yk = [yk−m, . . . , yk−1] ,

Dk = diag
[
s>k−myk−m, . . . , s

>
k−1yk−1

]
,

Rk =


s>k−myk−m s>k−myk−m+1 · · · s>k−myk−1

0 s>k−m+1yk−m+1 · · · s>k−m+1yk−1
...

. . .
...

0 · · · 0 s>k−1yk−1

 .
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L-BFGS on the Grassmann manifold

In each iteration, parallel transport vectors in Sk and Yk to Tk , ie.
perform

S̄k = TSk , Ȳk = TYk

where T is the transport matrix.

No need to modify Rk or Dk

〈u, v〉 = 〈Tu,Tv〉

where u, v ∈ Tk and Tu,Tv ∈ Tk+1.

Hk nonsingular, Hessian is singular. No problem Tk at xk is invariant
subspace of Hk , ie. if v ∈ Tk then Hkv ∈ Tk .

[Savas, L.; 2008]
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