Part II: Rank Aggregation via Nuclear Norm Minimization

David F. Gleich, Lek-Heng Lim

NIPS Workshop on Advances in Ranking

December 11, 2009

D. Gleich, L.-H. Lim (NIPS 2009)

Nuclear Norm Rank Aggregation

Noiseless Recovery Problem

Problem (Lowest rank skew-symmetric matrix recovery)

Given $\mathcal{A}: \mathbb{R}^{n \times n} \to \mathbb{R}^m$ linear operator and $b \in \mathbb{R}^m$.

$$\min\{\operatorname{rank}(X) \mid X^{\top} = -X, \ \mathcal{A}(X) = b\}.$$

• Convex relaxation along the lines of compressive sensing?

 $\|\cdot\|_1\approx\|\cdot\|_0,\qquad \|\cdot\|_*\approx {\rm rank}\,.$

• Ky Fan/nuclear/Schatten/trace norm,

$$\|A\|_* = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i(A).$$

Nuclear norm relaxation

$$\min\{\|X\|_*\mid X^ op=-X,\;\mathcal{A}(X)=b\}$$

[Recht-Fazel-Parrilo; 09], [Candès-Tao; 09], [Meka-Jain-Dhillon; 09]. • Problem: $\mathcal{A}(X) = b$ may not have a rank-2 solution.

Noisy Recovery Problem

• Replace $\mathcal{A}(X) = b$ by $\mathcal{A}(X) \approx b$.

r

Various formulations

BPDN:

$$\min\{\|X\|_*\mid X^ op=-X,\;\|\mathcal{A}(X)-b\|_2\leq\sigma\}$$

LASSO:

$$\min\{\|\mathcal{A}(X) - b\|_2 \mid X^{\top} = -X, \|X\|_* \le \tau\}$$

QP:

DS:

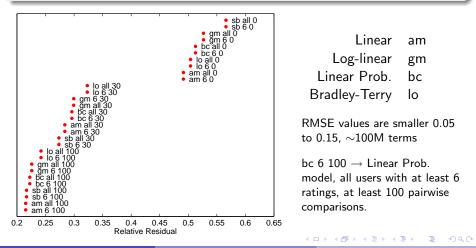
$$\min\{\|\mathcal{A}(X) - b\|_{2}^{2} + \lambda \|X\|_{*} \mid X^{\top} = -X\}$$

$$\min\{\|X\|_* \mid X^{\top} = -X, \ \|\mathcal{A}^*(\mathcal{A}(X) - b)\|_{2,2} \le \mu\}$$

- Want: simplest non-trivial skew-symmetric X, i.e. rank(X) = 2.
- So $X_{ij} = (s_i s_j)$ for i, j = 1, ..., n and $s = [s_1, ..., s_n]$ consistent aggregate score.

3

Netflix and MovieLens Pairwise


Usually the pairwise ranking matrices Y are almost dense. However, many of the entries only have a few comparisons. We remove entries with less than 30 comparisons.

Residual Results from Netflix Rankings

Experiment

Solve LASSO problem with the Meka, Jain, Dhillion SVP solver for rank-2 matrices with Y computed from all models.

Top Movies from Netflix

Linear Full	Linear 30 Pairwise	Bradley-Terry Full
Greatest Story Ever	LOTR III: Return	LOTR III: Return
Terminator 3	LOTR I: The Fellowship	LOTR II: The Two
Michael Flatley	LOTR II: The Two	LOTR I: The Fellowship
Hannibal [Bonus]	Star Wars VI: Return	Star Wars V: Empire
Donnie Darko [Bonus]	Star Wars V: Empire	Raiders of the Lost Arc
Timothy Leary's	Star Wars IV: A New Hope	Star Wars IV: A New Hope
In Country	LOTR III: Return	Shawshank Redemption
Bad Boys II [Bonus]	Raiders of the Lost Arc	Star Wars VI: Return
Cast Away [Bonus]	The Godfather	LOTR III: Return
Star Wars: Ewok	Saving Private Ryan	The Godfather

LOTR III shows up twice because of the two DVD editions. Full model has many "Bonus" discs that Netflix rents. These are items enjoyed by only a few people. The residual does not greatly change from rank 2 approximations to rank 4 approximations.

Model	Rank	RMSE
Linear (6,100)	2	0.174
Linear (6,100)	4	0.154

< 67 ▶

Preliminary Conclusions

Summary

- The initial results are promising ...
- It it sensitive to the choice of model for *Y*.

Future work

- Comparison against Hodge theory approach.
- Validating rank-2 assumption (Owen and Perry's bi-cross validation approach)
- Sensitivity to removing more entries.