Numerical Multilinear Algebra and Multiway Statistical Models

Lek-Heng Lim

SCCM Seminar, November 1, 2004

Thanks: NSF Grant DMS 01-01364, participants of the AIM Tensor Decomposition Workshop

Part of this talk is joint work with Vin de Silva

Overview

- Rudiments of tensors and multilinear algebra
- Multilinear data-fitting models
- Tensorial rank and Eckart-Young problem
- Nonexistence of optimal low-rank approximation
- Fixing the ill-posedness of Eckart-Young problem

Multilinearity

Consider multivariate vector-valued functions.

Linearity:
$$f : \mathbb{R}^n \to \mathbb{R}^m$$
, $f(\mathbf{x}) = f(x_1, \dots, x_n)$,
 $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$

Multilinearity: $f : \mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_k} \to \mathbb{R}^m$, $f(\mathbf{x}^1; \ldots; \mathbf{x}^k) = f(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^k, \ldots, x_{d_k}^k)$,

$$f(\mathbf{x}^{1};\ldots;\alpha\mathbf{x}^{i}+\beta\mathbf{y}^{i};\ldots;\mathbf{x}^{k}) = \alpha f(\mathbf{x}^{1};\ldots;\mathbf{x}^{i};\ldots;\mathbf{x}^{k}) + \beta f(\mathbf{x}^{1};\ldots;\mathbf{y}^{i};\ldots;\mathbf{x}^{k})$$

for i = 1, ..., k.

"Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and nonbananas."

Nonlinear: too general. Multilinear: next natural step.

Matrices

 $A \in \mathbb{R}^{m \times n}$ may be viewed as either:

Linear map $A: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto A\mathbf{x}$

relevant decompositions are "one-sided": A = LU, A = QR, etc

Bilinear functional $A : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$, $(\mathbf{x}; \mathbf{y}) \mapsto \mathbf{x}^t A \mathbf{y}$

relevant decompositions are "two-sided": A = LDU, $A = U\Sigma V^t$ (Singular value), $A = QRQ^t$ (real Schur, aka Murnaghan-Wintner), $A = SJS^{-1}$ (real Jordan), etc

We will be interested in generalizations of the latter view: tensors are to multilinear functionals what matrices are to bilinear functionals

Matrices as order-2 tensor

Let $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$. Write $\mathbf{x} \otimes \mathbf{y} = \mathbf{x}\mathbf{y}^t \in \mathbb{R}^{m \times n}$.

 $\mathbb{R}^m \otimes \mathbb{R}^n := \operatorname{span}_{\mathbb{R}} \{ \mathbf{x} \otimes \mathbf{y} \mid \mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n \}.$

Then $\mathbb{R}^m \otimes \mathbb{R}^n = \mathbb{R}^{m \times n}$, ie. matrices are order-2 tensors.

Lemma. Let $A \in \mathbb{R}^{m \times n}$. Then rank(A) = r if and only if there exists $\mathbf{x}_1, \ldots, \mathbf{x}_r \in \mathbb{R}^m$, $\mathbf{y}_1, \ldots, \mathbf{y}_r \in \mathbb{R}^n$ such that

$$A = \mathbf{x}_1 \otimes \mathbf{y}_1 + \dots + \mathbf{x}_r \otimes \mathbf{y}_r$$

and r is minimal over all such decompositions (ie. A cannot be written as $\sum_{i=1}^{s} \mathbf{x}'_i \otimes \mathbf{y}'_i$ for any s < r).

Tensors

Tensor product of 3 or more vectors may be defined in the same fashion as the outer product of two vectors.

Order 2: $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}$; $\mathbf{x} \otimes \mathbf{y} := [x_{i}y_{j}] \in \mathbb{R}^{m \times n}$ Order 3: $\mathbf{x} \in \mathbb{R}^{l}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{n}$; $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} := [x_{i}y_{j}z_{k}] \in \mathbb{R}^{l \times m \times n}$ Order k: $\mathbf{x}^{1} \in \mathbb{R}^{d_{1}}, \dots, \mathbf{x}^{k} \in \mathbb{R}^{d_{k}}$; $\mathbf{x}^{1} \otimes \dots \otimes \mathbf{x}^{k} := [x_{i_{1}}^{1} \dots x_{i_{k}}^{k}] \in \mathbb{R}^{d_{1} \times \dots \times d_{k}}$

Define $\mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k} := \operatorname{span}_{\mathbb{R}} \{ \mathbf{x}^1 \otimes \cdots \otimes \mathbf{x}^k \mid \mathbf{x}^1 \in \mathbb{R}^{d_1}, \dots, \mathbf{x}^k \in \mathbb{R}^{d_k} \}$

Easy to see that $\mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k} = \mathbb{R}^{d_1 \times \cdots \times d_k}$

May think of order-k tensors as k-way arrays: order-0 tensors are scalars, order-1 tensors are vectors, order-2 tensors are matrices, order-3 tensors are "3-dimensional matrices", and so on.

\otimes distributes over +

For
$$\alpha, \beta \in \mathbb{R}$$
, $\mathbf{x}^1 \in \mathbb{R}^{d_1}, \dots, \mathbf{x}^i, \mathbf{y}^i \in \mathbb{R}^{d_i}, \dots, \mathbf{x}^k \in \mathbb{R}^{d_k}$
 $\mathbf{x}^1 \otimes \dots \otimes (\alpha \mathbf{x}^i + \beta \mathbf{y}^i) \otimes \dots \otimes \mathbf{x}^k =$
 $\alpha \mathbf{x}^1 \otimes \dots \otimes \mathbf{x}^i \otimes \dots \otimes \mathbf{x}^k + \beta \mathbf{x}^1 \otimes \dots \otimes \mathbf{y}^i \otimes \dots \otimes \mathbf{x}^k.$

Observation: looks a lot like the definition of multilinear maps.

An alternative way of saying that \otimes distributes over + is to say the map

$$egin{aligned} & heta: \mathbb{R}^{d_1} imes \cdots imes \mathbb{R}^{d_k} o \mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k}, \ & (\mathbf{x}_1; \ldots; \mathbf{x}_k) \mapsto \mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_k \end{aligned}$$

extends linearly to a multilinear map.

Algebraic structure of tensors

Vector space structure: the set of k-way arrays has a vector space structure — for $[t_{j_1,...,j_k}], [s_{j_1,...,j_k}] \in \mathbb{R}^{d_1 \times \cdots \times d_k}$,

 $\lambda[\![t_{j_1,\ldots,j_k}]\!] + \mu[\![s_{j_1,\ldots,j_k}]\!] = [\![\lambda t_{j_1,\ldots,j_k} + \mu s_{j_1,\ldots,j_k}]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_k}.$ $\mathbb{R}^{d_1 \times \cdots \times d_k} \text{ is a vector space of dimension } d_1 d_2 \ldots d_k.$

However, $\mathbb{R}^{d_1 \times \cdots \times d_k}$ is more than just a vector space.

Tensor product structure: $\mathbb{R}^{d_1 \times \cdots \times d_k} = \mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k}$ has an associated multilinear map $\theta : \mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_k} \to \mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k}$, $(\mathbf{x}_1; \ldots; \mathbf{x}_k) \mapsto \mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_k$.

Tensor product structure lost when one 'unfolds' or 'matricize':

$$\mathbb{R}^l \otimes \mathbb{R}^m \otimes \mathbb{R}^n \xrightarrow{\text{unfold}} \mathbb{R}^l \otimes \mathbb{R}^{mn}.$$

Moral: one should not 'compress' an order-3 tensor into a matrix (this is just like compressing a matrix into a vector — the bilinear pairing is lost in the process)

Tensors and multilinear functionals

Let $A \in \mathbb{R}^{m \times n}$. Then there are vectors $\mathbf{a}_i \in \mathbb{R}^m$, $\mathbf{b}_j \in \mathbb{R}^n$ so that $A = \mathbf{a}_1 \otimes \mathbf{b}_1 + \cdots + \mathbf{a}_r \otimes \mathbf{b}_r$. Thus the bilinear functional $A : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}, (\mathbf{x}; \mathbf{y}) \mapsto \mathbf{x}^t A \mathbf{y}$ may be written as

$$\mathbf{x}^t A \mathbf{y} = \langle \mathbf{a}_1, \mathbf{x} \rangle \langle \mathbf{b}_1, \mathbf{y} \rangle + \dots + \langle \mathbf{a}_r, \mathbf{x} \rangle \langle \mathbf{b}_r, \mathbf{y} \rangle.$$

Likewise, $T \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ may be expressed in the form

$$T = \sum_{i=1}^{r} \mathbf{a}_{i}^{1} \otimes \cdots \otimes \mathbf{a}_{i}^{k}$$

for some $\mathbf{a}_i^j \in \mathbb{R}^{d_j}$. It defines a multilinear functional $T : \mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_k} \to \mathbb{R}, (\mathbf{x}^1, \dots, \mathbf{x}^k) \mapsto T(\mathbf{x}^1; \dots; \mathbf{x}^k)$ in the same manner,

$$T(\mathbf{x}^1;\ldots;\mathbf{x}^k) := \sum_{i=1}^r \langle \mathbf{a}_i^1,\mathbf{x}^1 \rangle \cdots \langle \mathbf{a}_i^k,\mathbf{x}^k \rangle.$$

The multilinearity of T is embodied in the multilinear map θ : $\mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_k} \to \mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k}$, $(\mathbf{a}_i^1; \ldots; \mathbf{a}_i^k) \mapsto \mathbf{a}_i^1 \otimes \cdots \otimes \mathbf{a}_i^k$ mentioned earlier.

Where do you find tensors?

Economics, Optimal Control: Taylor expansion of C^r -function $f : \mathbb{R}^n \to \mathbb{R}$ about $\mathbf{a} = (a_1, \dots, a_n)$,

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i} f_{i}(\mathbf{a})(x_{i} - a_{i}) + \frac{1}{2} \sum_{i,j} f_{ij}(\mathbf{a})(x_{i} - a_{i})(x_{j} - a_{j}) + \frac{1}{3!} \sum_{i,j,k} f_{ijk}(\mathbf{a})(x_{i} - a_{i})(x_{j} - a_{j})(x_{k} - a_{k}) + \cdots$$

where $f_i(\mathbf{a}) = \frac{\partial f}{\partial x_i}(\mathbf{a}), f_{ij}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}), f_{ijk}(\mathbf{a}) = \frac{\partial^3 f}{\partial x_i \partial x_j \partial x_k}(\mathbf{a}), \text{ and so on.}$

- Gradient $[f_1(\mathbf{a}), \ldots, f_n(\mathbf{a})]$ is an order-1 tensor (vector);
- Hessian $[f_{ij}(\mathbf{a})]_{n \times n}$ is an order-2 tensor (matrix);
- $[f_{ijk}(\mathbf{a})]_{n \times n \times n}$ is an order-3 tensor (3-way array).

Geometry:

- metric tensor g_{ij} (order 2);
- torsion tensor T_{ik}^i (order 3);
- Riemann curvature tensor R^i_{ikl} (order 4);
- Ricci tensor $R_{ik} = g^{jm}R_{imkj}$ (order 2)

Physics:

• electromagnetic field tensor in Maxwell's equations, $dF = 0, d * F = \mu * \mathbf{j}$ where

$$F = \begin{bmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{bmatrix};$$

• Einstein tensor and energy-momentum tensor in gravitational field equation, $G = 8\pi T$,

$$G_{ij} = R_{ij} - \frac{1}{2}Rg_{ij}.$$

Engineering:

- moment of inertia tensor (order 2 symmetric);
- stress tensor (order 2 symmetric);
- piezoelectric tensor (order 3);
- elasticity (order 4)

Note: All these are *tensor fields* — the entries in the array are variables. However, they are often referred to as *tensors* — a source of confusion to newcomers.

Computational statistics and data analysis

Examples of k-way (or k-mode) datas:

- Psychometrics: individual × variable × time (3-way); individual × variable × group (3-way); individual × variable × group × time (4-way);
- Sensory analysis: sample × attribute × judge
- Batch data: $batch \times time \times variable$
- Time-series analysis: time \times variable \times lag
- Analytical chemistry: sample × elution time × wavelength
- **Spectral data**: sample × emission × excitation × decay
- Facial image: $people \times view \times illumination \times expression \times pixels$
- Atmospheric science: $\textit{location} \times \textit{variable} \times \textit{time} \times \textit{observation}$

Model these datas as higher-order tensors

Two-way datas and bilinear models

sample \times variable: *i*th row \longleftrightarrow *i*th sample, *j*th column \longleftrightarrow *j*th variable. Get data matrix $A = [a_{ij}] \in \mathbb{R}^{m \times n}$, m = number of samples, n = number of variables.

Example (Bro). a_{ij} = fluorescence emission intensity at a specific wavelength λ^{em} of *i*th sample excited with light at wavelength λ_i^{ex} .

Bilinear model:

$$A = \mathbf{x}_1 \otimes \mathbf{y}_1 + \dots + \mathbf{x}_r \otimes \mathbf{y}_r + E = XY^t + E$$

where E is the error/residual and r is known in advance. This is equivalent to the problem

 $\underset{\mathsf{rank}(B) \leq r}{\operatorname{argmin}} \|A - B\|_F.$

Note: $\operatorname{argmin}_{\operatorname{rank}(B)=r} ||A - B||_F$ may not have a solution as the set $\{B \in \mathbb{R}^{m \times n} | \operatorname{rank}(B) = r\}$ is not *closed*.

Multiway datas and multilinear models

Same example as previous slide but with emission intensity measured at several wavelengths instead of just one specific wavelength.

Example (Bro). $a_{ijk} = \text{fluorescence emission intensity at wave$ $length <math>\lambda_j^{\text{em}}$ of *i*th sample excited with light at wavelength λ_k^{ex} . Get 3-way data $A = [\![a_{ijk}]\!] \in \mathbb{R}^{l \times m \times n}$.

Trilinear model:

$$A = \mathbf{x}_1 \otimes \mathbf{y}_1 \otimes \mathbf{z}_1 + \dots + \mathbf{x}_r \otimes \mathbf{y}_r \otimes \mathbf{z}_r + E$$

where E is the error/residual and r is known in advance.

Likewise for multiway datas and multilinear models.

Eckart-Young theorem

Theorem. Let $A = U\Sigma V^t = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i \mathbf{u}_i \mathbf{v}_i^t$ be the singular value decomposition of $A \in \mathbb{R}^{m \times n}$. For $r \leq \operatorname{rank}(A)$, let

$$A_r := \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^t.$$

Then

$$\|A - A_r\|_F = \min_{\operatorname{rank}(B) \le r} \|A - B\|_F.$$

May use $\mathbf{x}_i = \sigma_i \mathbf{u}_i, \mathbf{y}_j = \mathbf{v}_j$.

Even though SVD is (essentially) unique, bilinear models are not unique. E.g. take $Q \in O(r)$, then

$$XY^t = XQQ^tY^t = (XQ)(YQ)^t.$$

Need additional information (impose additional contraints) to fix X and Y.

Rank of tensors

Tensorial rank may be defined by generalizing the earlier lemma:

Lemma. Let $A \in \mathbb{R}^{m \times n}$. Then rank(A) = r if and only if there exists $\mathbf{x}_1, \ldots, \mathbf{x}_r \in \mathbb{R}^n$, $\mathbf{y}_1, \ldots, \mathbf{y}_r \in \mathbb{R}^m$ such that

$$A = \mathbf{x}_1 \otimes \mathbf{y}_1 + \dots + \mathbf{x}_r \otimes \mathbf{y}_r$$

and r is minimal over all such decompositions (ie. A cannot be written as $\sum_{i=1}^{s} \mathbf{x}'_i \otimes \mathbf{y}'_i$ for any s < r).

Definition. If $T \neq 0$, the **rank** of $T \in \mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_k} = \mathbb{R}^{d_1 \times \cdots \times d_k}$, denoted rank(T), is defined as the minimum $r \in \mathbb{N}$ such that T may be expressed as a sum of r rank-one tensors:

 $T = \sum_{i=1}^{r} \mathbf{x}_{i}^{1} \otimes \cdots \otimes \mathbf{x}_{i}^{k} \qquad (Candecomp/Parafac)$ with $\mathbf{x}_{i}^{j} \in \mathbb{R}^{d_{j}}, j = 1, \dots, k$. We set rank(0) = 0.

Well-defined: i.e. there exists a unique $r = \operatorname{rank}(T)$ for every $T \in \mathbb{R}^{d_1 \times \cdots \times d_k}$.

Eckart-Young problem

Frobenius norm of $[\![t_{j_1,\dots,j_k}]\!] \in \mathbb{R}^{d_1 \times \dots \times d_k}$ is defined by

$$\|[t_{j_1,\dots,j_k}]\|\|_F^2 := \sum_{j_1=1}^{d_1} \cdots \sum_{j_k=1}^{d_k} t_{j_1,\dots,j_k}^2$$

Definition. An optimal rank-r approximation to a tensor $T \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ is a tensor S_{\min} with

$$||S_{\min} - T||_F = \inf_{\operatorname{rank}(S) \le r} ||S - T||_F.$$

Eckart-Young problem: find an optimal rank-r approximation for tensors of order k.

Solving the Eckart-Young problem would allow us, at least in theory, to solve the problem of fitting k-way data with rank-r multilinear model (in practice, one still needs a workable algorithm).

Solvability of Eckart-Young problem

It has always been assumed that the Eckart-Young problem is solvable for tensors of any order and there has been continual interests in finding a satisfactory 'Eckart-Young theorem'-like result for tensors of higher order. The view expressed in the conclusion of the following paper is representative of such efforts:

"An Eckart-Young type of optimal rank-k approximation theorem for tensors continues to elude our investigations but can perhaps eventually be attained by using a different norm or yet other definitions of orthogonality and rank."

Source: T.G. Kolda, "Orthogonal tensor decompositions," *SIAM J. Matrix Anal. Appl.*, **23** (1), 2001 , pp. 243–255.

Surprising fact

The Eckart-Young problem has no solution in general!

A simple fact that's often overlooked: in a norm space, the minimum distance of a point T to a non-closed set S may not be attained by any point in S.

For tensors of order $k \geq 3$, $r \geq 2$, the set

$$\mathcal{S}(k,r) := \{T \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \mathsf{rank}(T) \le r\}$$

is not closed.

An explicit example

 \mathbf{x}, \mathbf{y} two linearly independent vectors in \mathbb{R}^2 . Consider the order-3 tensor in $\mathbb{R}^{2 \times 2 \times 2}$,

$$T := \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}.$$

T has rank 3: straight forward.

T has no optimal rank-2 approximation: consider sequence $\{S_n\}_{n=1}^{\infty}$ in $\mathbb{R}^{2 \times 2 \times 2}$,

$$S_n := \mathbf{x} \otimes \mathbf{x} \otimes (\mathbf{x} - n\mathbf{y}) + (\mathbf{x} + \frac{1}{n}\mathbf{y}) \otimes (\mathbf{x} + \frac{1}{n}\mathbf{y}) \otimes n\mathbf{y},$$

Clear that rank $(S_n) \leq 2$ for all n. By multilinearity of \otimes ,

$$S_n = \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x} - n\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y} + n\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y} \\ + \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y} + \frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y} = T + \frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}.$$

For any choice of norm on $\mathbb{R}^{2 \times 2 \times 2}$,

 $||S_n - T|| = \frac{1}{n} ||\mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}|| \to 0 \quad \text{as } n \to \infty.$

Eckart-Young problem is ill-posed

An ill-posed problem is usually taken to mean one that doesn't have a *unique* solution.

The Eckart-Young problem is even worse in that for tensors of order 3 or higher, even the *existence* of a solution is in question.

In other words, the ill-posedness of Eckart-Young problem cannot be fixed by *regularization* (ie. imposing additional constraints to ensure uniqueness) alone.

Another example

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in \mathbb{R}^4$. Define in $\mathbb{R}^{4 \times 4 \times 4}$,

 $T := \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} + \mathbf{y} \otimes \mathbf{z} \otimes \mathbf{x} + \mathbf{y} \otimes \mathbf{w} \otimes \mathbf{z} + \mathbf{z} \otimes \mathbf{x} \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{z} \otimes \mathbf{w}$ and the sequence

$$S_n := \left(\mathbf{y} + \frac{1}{n}\mathbf{x}\right) \otimes \left(\mathbf{y} + \frac{1}{n}\mathbf{w}\right) \otimes n\mathbf{z} + \left(\mathbf{y} + \frac{1}{n}\mathbf{x}\right) \otimes n\mathbf{x} \otimes \left(\mathbf{x} + \frac{1}{n}\mathbf{y}\right)$$
$$- n\mathbf{y} \otimes \mathbf{y} \otimes \left(\mathbf{x} + \mathbf{z} + \frac{1}{n}\mathbf{w}\right) - n\mathbf{z} \otimes \left(\mathbf{x} + \mathbf{y} + \frac{1}{n}\mathbf{z}\right) \otimes \mathbf{x}$$
$$+ n(\mathbf{y} + \mathbf{z}) \otimes \left(\mathbf{y} + \frac{1}{n}\mathbf{z}\right) \otimes \left(\mathbf{x} + \frac{1}{n}\mathbf{w}\right)$$

May check that: rank $(S_n) \leq 5$, rank(T) = 6 and $||S_n - T|| \rightarrow 0$.

T is a rank-6 tensor that has no optimal rank-5 approximations.

Norm independence

The choice of norm in the above examples is inconsequential because of the following basic result.

Fact. All norms on finite-dimensional spaces are equivalent and thus induce the same topology (the Euclidean topology).

Since questions of convergence and whether a set is closed depend only on the topology of the space, the results here would all be independent of the choice of norm on $\mathbb{R}^{d_1 \times \cdots \times d_k}$, which is finite-dimensional.

Exceptional cases: order-2 tensors and rank-1 tensors

Set of tensors of rank not more than r,

$$\mathcal{S}(k,r) = \{T \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \mathsf{rank}(T) \le r\}.$$

When k = 2 (matrices) and when r = 1 (decomposable tensors), S(k,r) is closed — Eckart-Young problem solvable in these cases.

Proposition. For any $r \in \mathbb{N}$, the set $S(2,r) = \{A \in \mathbb{R}^{m \times n} | rank(s) \leq r\}$ is closed in $\mathbb{R}^{m \times n}$ under any norm-induced topology.

Proposition. The set of decomposable tensors, $S(k, 1) = \{S \in \mathbb{R}^{d_1 \times \cdots \times d_k} | \operatorname{rank}(S) \leq 1\}$, is closed in $\mathbb{R}^{d_1 \times \cdots \times d_k}$ under any norm-induced topology.

A classification theorem

Theorem (de Silva and L., 2004). Let $d_1, d_2, d_3 \ge 2$. Let $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ with rank(T) = 3. T is the limit of a sequence $S_n \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ with rank $(S_n) \le 2$ if and only if

 $T = \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3$

for some $\mathbf{x}_i, \mathbf{y}_i$ linearly independent vectors in \mathbb{R}^{d_i} , i = 1, 2, 3.

Note that a rank-3 tensor of this form is defined by 6 linearly independent vectors. On the other hand, we would expect a rank-3 tensor chosen at random to be defined by 9 linearly independent vectors. T is an example of a tensor that has rank 3 but *closed-rank* 2 (to be defined).

Instead of fitting a 3-way data array with a rank-2 model, we fit a 3-way data array with a closed-rank-2 model.

Density of rank-r matrices

Set of tensors of rank exactly r,

$$\mathcal{R}(k,r) := \{T \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \mathsf{rank}(T) = r\}.$$

 $\mathcal{R}(k,r)$ not closed even in the case where k = 2 — higher-rank matrices converging to lower-rank ones easily constructed:

$$\begin{bmatrix} 1 & 1 + \frac{1}{n} \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \begin{bmatrix} \frac{1}{n} & 0 \\ 0 & \frac{1}{n} \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

This is often a source of numerical instability: the problem of defining matrix rank in a finite-precision context [Golub-Van Loan 1996], the inherent difficulty of computing a Jordan canonical form [Golub-Wilkinson 1976], may all be viewed as consequences of the fact that $\mathcal{R}(2, r)$ is not closed.

However, closure of $\mathcal{R}(2,r)$ may be easily described (next slide).

Density of rank-r tensors

Proposition. With $\mathcal{R}(2,r) = \{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) = r\}$ and $\mathcal{S}(2,r) = \{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) \leq r\}$, we have

$$\overline{\mathcal{R}(2,r)} = \mathcal{S}(2,r).$$

Here $\overline{\mathcal{R}}$ denotes the topological closure of a non-empty set \mathcal{R} .

Immediate Corollary. S(2,r) is closed.

Since S(k,r) is in general not closed for k > 2 and r > 1, the Proposition is not true for tensors of higher order, i.e. $\overline{\mathcal{R}(k,r)} \neq S(k,r)$. Characterizing the closure of S(k,r) will be important for fixing the ill-posedness of the Eckart-Young problem.

Example. $\overline{\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T) = 3\}} \neq \mathbb{R}^{2 \times 2 \times 2}$. In fact, both $\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T) = 3\}$ and $\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T) = 2\}$ have positive volumes in $\mathbb{R}^{2 \times 2 \times 2}$; thus neither of them can be dense. (Contrast with matrices — $\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) < \min(m, n)\}$ always have measure 0).

Fixing the ill-posedness of Eckart-Young problem

Definition. An order-k tensor $S \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ has **closed-rank** r if $S \in \overline{S(k,r)}$ and $S \notin \overline{S(k-1,r)}$.

Note that $\overline{\mathcal{S}(k,r)} = \{S \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \text{closedrank}(S) \leq r\}.$

The problem

 $\underset{\mathsf{rank}(S) \leq r}{\operatorname{argmin}} \|S - T\|$

may not have solutions when r > 1.

Suppose we solve the problem

$$S_{\min} = \underset{\text{closedrank}(S) \le r}{\operatorname{argmin}} \|S - T\|,$$

which always have a solution, will we have fixed the ill-posedness Eckart-Young problem?

Question. How do we know that S_{\min} is meaningful?

Optimal rank-2 approximations

Order 3 tensor $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, $d_i \geq 2$.

Optimal rank-1 approximation:

$$\min_{\mathbf{x}_i \in \mathbb{R}^{d_i}} \|T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3\|$$

Optimal solutions exist. Can always find $\mathbf{x}^*_i \in \mathbb{R}^{d_i}$ with

$$||T - \mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^*|| = \min_{\mathbf{x}_i \in \mathbb{R}^{d_i}} ||T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3||.$$

Many ways to determine $\mathbf{x}_1^*, \mathbf{x}_2^*, \mathbf{x}_3^*$ explicitly.

Optimal rank-2 approximation:

$$\min_{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}} \| T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 \|$$

Optimal solutions often don't exist, ie. no $\mathbf{x}_i^*, \mathbf{y}_i^* \in \mathbb{R}^{d_i}$ with

$$\|T - \mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^* - \mathbf{y}_1^* \otimes \mathbf{y}_2^* \otimes \mathbf{y}_3^*\| = \min_{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}} \|T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3\|.$$

Quick but flawed fix

Current way to force a solution for the Eckart-Young problem: perturb the problem by small $\varepsilon > 0$ and find approximate solution $\mathbf{x}_i^*(\varepsilon), \mathbf{y}_i^*(\varepsilon) \in \mathbb{R}^{d_i}$ (i = 1, 2, 3) with

$$|T - \mathbf{x}_1^*(\varepsilon) \otimes \mathbf{x}_2^*(\varepsilon) \otimes \mathbf{x}_3^*(\varepsilon) - \mathbf{y}_1^*(\varepsilon) \otimes \mathbf{y}_2^*(\varepsilon) \otimes \mathbf{y}_3^*(\varepsilon)|| \\ = \varepsilon + \min_{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}} ||T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3||.$$

Serious numerical problems due to ill-conditioning (a phenomenon often referred to as *degeneracy* or *swamp* in Chemometrics and Psychometrics).

Reason? Rule of thumb in Computational Math:

A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a well-posed one, the perturbed problem will more often than not be ill-conditioned.

Optimal closed-rank-2 approximations

For $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, we define the smooth functions $f_T(\mathbf{x}_1, \dots, \mathbf{y}_3) := \|T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3\|_F^2,$ $g_T(\mathbf{x}_1, \dots, \mathbf{y}_3) := \|T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 - \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3\|_F^2.$

By the Theorem mentioned earlier, we have

Corollary. Let $d_1, d_2, d_3 \ge 2$. The closure of the set $\{T \in \mathbb{R}^{d_1 \times d_2 \times d_3} | \operatorname{rank}(T) \le 2\}$ is given by

 $\{\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 \mid \mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}\} \\ \cup \{\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 \mid \mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}\}.$

It then follows that

 $\min_{\text{closedrank}(S) \leq r} \|S - T\|_F^2 = \min_{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}} \min\{f_T(\mathbf{x}_1, \dots, \mathbf{y}_3), g_T(\mathbf{x}_1, \dots, \mathbf{y}_3)\}.$

Note that this always have a solution. So there exists

$$S_T^* = \underset{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}}{\operatorname{argmin}} \min\{f_T(\mathbf{x}_1, \dots, \mathbf{y}_3), g_T(\mathbf{x}_1, \dots, \mathbf{y}_3)\}$$

for any $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$.

Computation. Finding S_T^* requires no more than a constant multiple of the computational cost in finding approximate solution: two functional evaluations $(f_T \text{ and } g_T)$ per iteration instead of one functional evaluation $(f_T \text{ only})$ per iteration. We do not need to be concerned about the nondifferentiability of $\min\{f_T, g_T\}$.

Interpretation. How do we know that S_T^* is meaningful? Note that S_T^* will take one of the following forms

 $\mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^* + \mathbf{y}_1^* \otimes \mathbf{y}_2^* \otimes \mathbf{y}_3^*$ or $\mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^* + \mathbf{x}_1^* \otimes \mathbf{y}_2^* \otimes \mathbf{y}_3^* + \mathbf{y}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{y}_3^*$. Both of them require exactly *six* vectors to define. So the 'information content' of S_T^* is the same whichever one of the two forms it takes.

Summary: cause of ill-posedness

Original problem: Given an order-3 tensor $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, find the optimal rank-2 approximation, i.e. find six vectors $\mathbf{x}_i^*, \mathbf{y}_i^* \in \mathbb{R}^{d_i}$ (i = 1, 2, 3) so that $||T - \mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^* - \mathbf{y}_1^* \otimes \mathbf{y}_2^* \otimes \mathbf{y}_3^*||$ is minimal.

Claim: This is the wrong problem to solve (because there is no solution in general). We should not insist on fitting T with a model of the form $\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3$.

Question: What are we really looking for?

Answer: Six vectors $\mathbf{x}_i^*, \mathbf{y}_i^* \in \mathbb{R}^{d_i}$ (i = 1, 2, 3) to fit the data *T*. There's no reason to require that these six vectors must be combined in the form $\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3$.

Summary: proposed fix

Observation: If the minimum of $||T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3||$ cannot be attained by any $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}$, then there will instead be $\mathbf{x}_i^*, \mathbf{y}_i^* \in \mathbb{R}^{d_i}$ that attain the minimum of $||T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 - \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3||$. Moreover,

$$\|T - \mathbf{x}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{x}_3^* - \mathbf{x}_1^* \otimes \mathbf{y}_2^* \otimes \mathbf{y}_3^* - \mathbf{y}_1^* \otimes \mathbf{x}_2^* \otimes \mathbf{y}_3^*\|$$

= $\min_{\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}} \|T - \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 - \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3\|.$

That is: *T* can always be optimally approximated by a six-vector model provided that we are willing to include the 'boundary points' $\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3$ on top of the usual $\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{y}_2 \otimes \mathbf{y}_3$.

Natural fix: Minimize over a six-vector model that include both forms.