Numerical Multilinear Algebra and Multiway Statistical Models

Lek-Heng Lim

SCCM Seminar, November 1, 2004

Thanks: NSF Grant DMS 01-01364, participants of the AIM Tensor Decomposition Workshop

Part of this talk is joint work with Vin de Silva

Overview

- Rudiments of tensors and multilinear algebra
- Multilinear data-fitting models
- Tensorial rank and Eckart-Young problem
- Nonexistence of optimal low-rank approximation
- Fixing the ill-posedness of Eckart-Young problem

Multilinearity

Consider multivariate vector-valued functions.
Linearity: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})
$$

Multilinearity: $f: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} \rightarrow \mathbb{R}^{m}$,

$$
\begin{aligned}
& f\left(\mathrm{x}^{1} ; \ldots ; \mathrm{x}^{k}\right)=f\left(x_{1}^{1}, \ldots, x_{d_{1}}^{1} ; \ldots ; x_{1}^{k}, \ldots, x_{d_{k}}^{k}\right) \\
& f\left(\mathrm{x}^{1} ; \ldots ; \alpha \mathrm{x}^{i}+\beta \mathrm{y}^{i} ; \ldots ; \mathrm{x}^{k}\right)= \\
& \alpha f\left(\mathrm{x}^{1} ; \ldots ; \mathrm{x}^{i} ; \ldots ; \mathrm{x}^{k}\right)+\beta f\left(\mathrm{x}^{1} ; \ldots ; \mathrm{y}^{i} ; \ldots ; \mathrm{x}^{k}\right)
\end{aligned}
$$

for $i=1, \ldots, k$.
"Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and nonbananas."

Nonlinear: too general. Multilinear: next natural step.

Matrices

$A \in \mathbb{R}^{m \times n}$ may be viewed as either:

Linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto A \mathbf{x}$
relevant decompositions are "one-sided": $A=L U, A=Q R$, etc

Bilinear functional $A: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(\mathbf{x} ; \mathbf{y}) \mapsto \mathbf{x}^{t} A \mathbf{y}$
relevant decompositions are "two-sided": $A=L D U, A=U \Sigma V^{t}$ (Singular value), $A=Q R Q^{t}$ (real Schur, aka Murnaghan-Wintner), $A=S J S^{-1}$ (real Jordan), etc

We will be interested in generalizations of the latter view: tensors are to multilinear functionals what matrices are to bilinear functionals

Matrices as order-2 tensor

Let $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}$. Write $\mathbf{x} \otimes \mathbf{y}=\mathbf{x y}^{t} \in \mathbb{R}^{m \times n}$.

$$
\mathbb{R}^{m} \otimes \mathbb{R}^{n}:=\operatorname{span}_{\mathbb{R}}\left\{\mathbf{x} \otimes \mathbf{y} \mid \mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

Then $\mathbb{R}^{m} \otimes \mathbb{R}^{n}=\mathbb{R}^{m \times n}$, ie. matrices are order-2 tensors.

Lemma. Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{rank}(A)=r$ if and only if there exists $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in \mathbb{R}^{m}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in \mathbb{R}^{n}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r}
$$

and r is minimal over all such decompositions (ie. A cannot be written as $\sum_{i=1}^{s} \mathbf{x}_{i}^{\prime} \otimes \mathbf{y}_{i}^{\prime}$ for any $\left.s<r\right)$.

Tensors

Tensor product of 3 or more vectors may be defined in the same fashion as the outer product of two vectors.

Order 2: $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n} ; \mathbf{x} \otimes \mathbf{y}:=\left[x_{i} y_{j}\right] \in \mathbb{R}^{m \times n}$
Order 3: $\mathbf{x} \in \mathbb{R}^{l}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{n} ; \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}:=\llbracket x_{i} y_{j} z_{k} \rrbracket \in \mathbb{R}^{l \times m \times n}$
Order $k: \mathbf{x}^{1} \in \mathbb{R}^{d_{1}}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{d_{k}} ; \mathbf{x}^{1} \otimes \cdots \otimes \mathbf{x}^{k}:=\llbracket x_{i_{1}}^{1} \ldots x_{i_{k}}^{k} \rrbracket \in$ $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$

Define $\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}:=\operatorname{span}_{\mathbb{R}}\left\{\mathbf{x}^{1} \otimes \cdots \otimes \mathbf{x}^{k} \mid \mathbf{x}^{1} \in \mathbb{R}^{d_{1}}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{d_{k}}\right\}$
Easy to see that $\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}=\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$

May think of order- k tensors as k-way arrays: order-0 tensors are scalars, order-1 tensors are vectors, order-2 tensors are matrices, order-3 tensors are "3-dimensional matrices", and so on.

\otimes distributes over +

For $\alpha, \beta \in \mathbb{R}, \mathbf{x}^{1} \in \mathbb{R}^{d_{1}}, \ldots, \mathbf{x}^{i}, \mathbf{y}^{i} \in \mathbb{R}^{d_{i}}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{d_{k}}$

$$
\begin{aligned}
& \mathbf{x}^{1} \otimes \cdots \otimes\left(\alpha \mathbf{x}^{i}+\beta \mathbf{y}^{i}\right) \otimes \cdots \otimes \mathbf{x}^{k}= \\
& \quad \alpha \mathbf{x}^{1} \otimes \cdots \otimes \mathbf{x}^{i} \otimes \cdots \otimes \mathbf{x}^{k}+\beta \mathbf{x}^{1} \otimes \cdots \otimes \mathbf{y}^{i} \otimes \cdots \otimes \mathbf{x}^{k}
\end{aligned}
$$

Observation: looks a lot like the definition of multilinear maps.

An alternative way of saying that \otimes distributes over + is to say the map

$$
\begin{aligned}
\theta: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} & \rightarrow \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}} \\
\left(\mathbf{x}_{1} ; \ldots ; \mathbf{x}_{k}\right) & \mapsto \mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{k}
\end{aligned}
$$

extends linearly to a multilinear map.

Algebraic structure of tensors

Vector space structure: the set of k-way arrays has a vector space structure - for $\llbracket t_{j_{1}, \ldots, j_{k}} \rrbracket, \llbracket s_{j_{1}, \ldots, j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$,

$$
\lambda \llbracket t_{j_{1}, \ldots, j_{k}} \rrbracket+\mu \llbracket s_{j_{1}, \ldots, j_{k}} \rrbracket=\llbracket \lambda t_{j_{1}, \ldots, j_{k}}+\mu s_{j_{1}, \ldots, j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} .
$$

$\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ is a vector space of dimension $d_{1} d_{2} \ldots d_{k}$.
However, $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ is more than just a vector space.
Tensor product structure: $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}=\mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}$ has an associated multilinear map $\theta: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} \rightarrow \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}$, $\left(\mathrm{x}_{1} ; \ldots ; \mathrm{x}_{k}\right) \mapsto \mathrm{x}_{1} \otimes \cdots \otimes \mathrm{x}_{k}$.

Tensor product structure lost when one 'unfolds’ or 'matricize':

$$
\mathbb{R}^{l} \otimes \mathbb{R}^{m} \otimes \mathbb{R}^{n} \xrightarrow{\text { unfold }} \mathbb{R}^{l} \otimes \mathbb{R}^{m n}
$$

Moral: one should not 'compress’ an order-3 tensor into a matrix (this is just like compressing a matrix into a vector - the bilinear pairing is lost in the process)

Tensors and multilinear functionals

Let $A \in \mathbb{R}^{m \times n}$. Then there are vectors $\mathbf{a}_{i} \in \mathbb{R}^{m}, \mathbf{b}_{j} \in \mathbb{R}^{n}$ so that $A=\mathbf{a}_{1} \otimes \mathbf{b}_{1}+\cdots+\mathbf{a}_{r} \otimes \mathbf{b}_{r}$. Thus the bilinear functional $A: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(\mathbf{x} ; \mathbf{y}) \mapsto \mathbf{x}^{t} A \mathbf{y}$ may be written as

$$
\mathbf{x}^{t} A \mathbf{y}=\left\langle\mathbf{a}_{1}, \mathbf{x}\right\rangle\left\langle\mathbf{b}_{1}, \mathbf{y}\right\rangle+\cdots+\left\langle\mathbf{a}_{r}, \mathbf{x}\right\rangle\left\langle\mathbf{b}_{r}, \mathbf{y}\right\rangle
$$

Likewise, $T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ may be expressed in the form

$$
T=\sum_{i=1}^{r} \mathbf{a}_{i}^{1} \otimes \cdots \otimes \mathbf{a}_{i}^{k}
$$

for some $\mathbf{a}_{i}^{j} \in \mathbb{R}^{d_{j}}$. It defines a multilinear functional $T: \mathbb{R}^{d_{1}} \times$ $\cdots \times \mathbb{R}^{d_{k}} \rightarrow \mathbb{R},\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right) \mapsto T\left(\mathrm{x}^{1} ; \ldots ; \mathrm{x}^{k}\right)$ in the same manner,

$$
T\left(\mathbf{x}^{1} ; \ldots ; \mathrm{x}^{k}\right):=\sum_{i=1}^{r}\left\langle\mathbf{a}_{i}^{1}, \mathbf{x}^{1}\right\rangle \cdots\left\langle\mathbf{a}_{i}^{k}, \mathbf{x}^{k}\right\rangle
$$

The multilinearity of T is embodied in the multilinear map θ : $\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} \rightarrow \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}, \quad\left(\mathbf{a}_{i}^{1} ; \ldots ; \mathbf{a}_{i}^{k}\right) \mapsto \mathbf{a}_{i}^{1} \otimes \cdots \otimes \mathbf{a}_{i}^{k}$ mentioned earlier.

Where do you find tensors?

Economics, Optimal Control: Taylor expansion of C^{r}-function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ about $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$,

$$
\begin{aligned}
f(\mathbf{x})=f(\mathbf{a})+\sum_{i} f_{i}(\mathbf{a})\left(x_{i}-a_{i}\right) & +\frac{1}{2} \sum_{i, j} f_{i j}(\mathbf{a})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right) \\
& +\frac{1}{3!} \sum_{i, j, k} f_{i j k}(\mathbf{a})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)\left(x_{k}-a_{k}\right)+\cdots
\end{aligned}
$$

where $f_{i}(\mathbf{a})=\frac{\partial f}{\partial x_{i}}(\mathbf{a}), f_{i j}(\mathbf{a})=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}), f_{i j k}(\mathbf{a})=\frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}(\mathbf{a})$, and so on.

- Gradient $\left[f_{1}(\mathbf{a}), \ldots, f_{n}(\mathbf{a})\right]$ is an order-1 tensor (vector);
- Hessian $\left[f_{i j}(\mathbf{a})\right]_{n \times n}$ is an order-2 tensor (matrix);
- $\llbracket f_{i j k}(\mathbf{a}) \rrbracket_{n \times n \times n}$ is an order-3 tensor (3-way array).

Geometry:

- metric tensor $g_{i j}$ (order 2);
- torsion tensor $T_{j k}^{i}$ (order 3);
- Riemann curvature tensor $R_{j k l}^{i}$ (order 4);
- Ricci tensor $R_{i k}=g^{j m} R_{i m k j}$ (order 2)

Physics:

- electromagnetic field tensor in Maxwell's equations, $d F=$ $0, d * F=\mu * \mathbf{j}$ where

$$
F=\left[\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right] ;
$$

- Einstein tensor and energy-momentum tensor in gravitational field equation, $G=8 \pi T$,

$$
G_{i j}=R_{i j}-\frac{1}{2} R g_{i j}
$$

Engineering:

- moment of inertia tensor (order 2 symmetric);
- stress tensor (order 2 symmetric);
- piezoelectric tensor (order 3);
- elasticity (order 4)

Note: All these are tensor fields - the entries in the array are variables. However, they are often referred to as tensors - a source of confusion to newcomers.

Computational statistics and data analysis

Examples of k-way (or k-mode) datas:

- Psychometrics: individual \times variable \times time (3-way); individual \times variable \times group (3-way); individual \times variable \times group \times time (4-way);
- Sensory analysis: sample \times attribute \times judge
- Batch data: batch \times time \times variable
- Time-series analysis: time \times variable \times lag
- Analytical chemistry: sample \times elution time \times wavelength
- Spectral data: sample \times emission \times excitation \times decay
- Facial image: people \times view \times illumination \times expression \times pixels
- Atmospheric science: location \times variable \times time \times observation

Model these datas as higher-order tensors

Two-way datas and bilinear models

sample \times variable: i th row $\longleftrightarrow i$ th sample, j th column $\longleftrightarrow j$ th variable. Get data matrix $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}, m=$ number of samples, $n=$ number of variables.

Example (Bro). $a_{i j}=$ fluorescence emission intensity at a specific wavelength $\lambda^{e m}$ of i th sample excited with light at wavelength $\lambda_{j}^{\mathrm{ex}}$.

Bilinear model:

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r}+E=X Y^{t}+E
$$

where E is the error/residual and r is known in advance. This is equivalent to the problem

$$
\underset{\operatorname{rank}(B) \leq r}{\operatorname{argmin}}\|A-B\|_{F} .
$$

Note: $\operatorname{argmin} \operatorname{rank}(B)=r\|A-B\|_{F}$ may not have a solution as the set $\left\{B \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(B)=r\right\}$ is not closed.

Multiway datas and multilinear models

Same example as previous slide but with emission intensity measured at several wavelengths instead of just one specific wavelength.

Example (Bro). $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{e m}$ of i th sample excited with light at wavelength $\lambda_{k}^{\mathrm{ex}}$. Get 3-way data $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{l \times m \times n}$.

Trilinear model:

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}+E
$$

where E is the error/residual and r is known in advance.

Likewise for multiway datas and multilinear models.

Eckart-Young theorem

Theorem. Let $A=U \Sigma V^{t}=\sum_{i=1}^{r a n k}(A) \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}$ be the singular value decomposition of $A \in \mathbb{R}^{m \times n}$. For $r \leq \operatorname{rank}(A)$, let

$$
A_{r}:=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}
$$

Then

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank}(B) \leq r}\|A-B\|_{F}
$$

May use $\mathbf{x}_{i}=\sigma_{i} \mathbf{u}_{i}, \mathbf{y}_{j}=\mathbf{v}_{j}$.
Even though SVD is (essentially) unique, bilinear models are not unique. E.g. take $Q \in O(r)$, then

$$
X Y^{t}=X Q Q^{t} Y^{t}=(X Q)(Y Q)^{t}
$$

Need additional information (impose additional contraints) to fix X and Y.

Rank of tensors

Tensorial rank may be defined by generalizing the earlier lemma:
Lemma. Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{rank}(A)=r$ if and only if there exists $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in \mathbb{R}^{n}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in \mathbb{R}^{m}$ such that

$$
A=\mathbf{x}_{1} \otimes \mathbf{y}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r}
$$

and r is minimal over all such decompositions (ie. A cannot be written as $\sum_{i=1}^{s} \mathbf{x}_{i}^{\prime} \otimes \mathbf{y}_{i}^{\prime}$ for any $s<r$).

Definition. If $T \neq 0$, the rank of $T \in \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}}=\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, denoted $\operatorname{rank}(T)$, is defined as the minimum $r \in \mathbb{N}$ such that T may be expressed as a sum of r rank-one tensors:

$$
T=\sum_{i=1}^{r} \mathbf{x}_{i}^{1} \otimes \cdots \otimes \mathbf{x}_{i}^{k}
$$

(Candecomp/Parafac)
with $\mathrm{x}_{i}^{j} \in \mathbb{R}^{d_{j}}, j=1, \ldots, k$. We set $\operatorname{rank}(0)=0$.
Well-defined: ie. there exists a unique $r=\operatorname{rank}(T)$ for every $T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.

Eckart-Young problem

Frobenius norm of $\llbracket t_{j_{1}, \ldots, j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ is defined by

$$
\left\|\llbracket t_{j_{1}, \ldots, j_{k}} \rrbracket\right\|_{F}^{2}:=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} t_{j_{1}, \ldots, j_{k}}^{2} .
$$

Definition. An optimal rank-r approximation to a tensor $T \in$ $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ is a tensor $S_{\text {min }}$ with

$$
\left\|S_{\text {min }}-T\right\|_{F}=\inf _{\operatorname{rank}(S) \leq r}\|S-T\|_{F}
$$

Eckart-Young problem: find an optimal rank-r approximation for tensors of order k.

Solving the Eckart-Young problem would allow us, at least in theory, to solve the problem of fitting k-way data with rank-r multilinear model (in practice, one still needs a workable algorithm).

Solvability of Eckart-Young problem

It has always been assumed that the Eckart-Young problem is solvable for tensors of any order and there has been continual interests in finding a satisfactory 'Eckart-Young theorem'-like result for tensors of higher order. The view expressed in the conclusion of the following paper is representative of such efforts:
"An Eckart-Young type of optimal rank-k approximation theorem for tensors continues to elude our investigations but can perhaps eventually be attained by using a different norm or yet other definitions of orthogonality and rank."

Source: T.G. Kolda, "Orthogonal tensor decompositions," SIAM J. Matrix Anal. Appl., 23 (1), 2001 , pp. 243-255.

Surprising fact

The Eckart-Young problem has no solution in general!

A simple fact that's often overlooked: in a norm space, the minimum distance of a point T to a non-closed set \mathcal{S} may not be attained by any point in \mathcal{S}.

For tensors of order $k \geq 3, r \geq 2$, the set

$$
\mathcal{S}(k, r):=\left\{T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \operatorname{rank}(T) \leq r\right\}
$$

is not closed.

An explicit example

\mathbf{x}, \mathbf{y} two linearly independent vectors in \mathbb{R}^{2}. Consider the order-3 tensor in $\mathbb{R}^{2 \times 2 \times 2}$,

$$
T:=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}
$$

T has rank 3: straight forward.
T has no optimal rank-2 approximation: consider sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{R}^{2 \times 2 \times 2}$,

$$
S_{n}:=\mathbf{x} \otimes \mathbf{x} \otimes(\mathbf{x}-n \mathbf{y})+\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right) \otimes\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right) \otimes n \mathbf{y}
$$

Clear that $\operatorname{rank}\left(S_{n}\right) \leq 2$ for all n. By multilinearity of \otimes,

$$
\begin{aligned}
S_{n}=\mathbf{x} & \otimes \mathbf{x} \otimes \mathbf{x}-n \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}+n \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y} \\
& \quad+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}+\frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}=T+\frac{1}{n} \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}
\end{aligned}
$$

For any choice of norm on $\mathbb{R}^{2 \times 2 \times 2}$,

$$
\left\|S_{n}-T\right\|=\frac{1}{n}\|\mathbf{y} \otimes \mathbf{y} \otimes \mathbf{y}\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Eckart-Young problem is ill-posed

An ill-posed problem is usually taken to mean one that doesn't have a unique solution.

The Eckart-Young problem is even worse in that for tensors of order 3 or higher, even the existence of a solution is in question.

In other words, the ill-posedness of Eckart-Young problem cannot be fixed by regularization (ie. imposing additional constraints to ensure uniqueness) alone.

Another example

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in \mathbb{R}^{4}$. Define in $\mathbb{R}^{4 \times 4 \times 4}$,
$T:=\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}+\mathbf{y} \otimes \mathbf{z} \otimes \mathbf{x}+\mathbf{y} \otimes \mathbf{w} \otimes \mathbf{z}+\mathbf{z} \otimes \mathbf{x} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{z} \otimes \mathbf{w}$ and the sequence

$$
\begin{aligned}
& S_{n}:=\left(\mathbf{y}+\frac{1}{n} \mathbf{x}\right) \otimes\left(\mathbf{y}+\frac{1}{n} \mathbf{w}\right) \otimes n \mathbf{z}+\left(\mathbf{y}+\frac{1}{n} \mathbf{x}\right) \otimes n \mathbf{x} \otimes\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right) \\
&-n \mathbf{y} \otimes \mathbf{y} \otimes\left(\mathbf{x}+\mathbf{z}+\frac{1}{n} \mathbf{w}\right)-n \mathbf{z} \otimes\left(\mathbf{x}+\mathbf{y}+\frac{1}{n} \mathbf{z}\right) \otimes \mathbf{x} \\
&+n(\mathbf{y}+\mathbf{z}) \otimes\left(\mathbf{y}+\frac{1}{n} \mathbf{z}\right) \otimes\left(\mathbf{x}+\frac{1}{n} \mathbf{w}\right)
\end{aligned}
$$

May check that: $\operatorname{rank}\left(S_{n}\right) \leq 5, \operatorname{rank}(T)=6$ and $\left\|S_{n}-T\right\| \rightarrow 0$.
T is a rank- 6 tensor that has no optimal rank-5 approximations.

Norm independence

The choice of norm in the above examples is inconsequential because of the following basic result.

Fact. All norms on finite-dimensional spaces are equivalent and thus induce the same topology (the Euclidean topology).

Since questions of convergence and whether a set is closed depend only on the topology of the space, the results here would all be independent of the choice of norm on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, which is finite-dimensional.

Exceptional cases: order-2 tensors and rank-1 tensors

Set of tensors of rank not more than r,

$$
\mathcal{S}(k, r)=\left\{T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \operatorname{rank}(T) \leq r\right\}
$$

When $k=2$ (matrices) and when $r=1$ (decomposable tensors), $\mathcal{S}(k, r)$ is closed - Eckart-Young problem solvable in these cases.

Proposition. For any $r \in \mathbb{N}$, the set $\mathcal{S}(2, r)=\left\{A \in \mathbb{R}^{m \times n} \mid\right.$ $\operatorname{rank}(\mathrm{s}) \leq r\}$ is closed in $\mathbb{R}^{m \times n}$ under any norm-induced topology.

Proposition. The set of decomposable tensors, $\mathcal{S}(k, 1)=\{S \in$ $\left.\mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \operatorname{rank}(S) \leq 1\right\}$, is closed in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ under any norminduced topology.

A classification theorem

Theorem (de Silva and L., 2004). Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $T \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ with $\operatorname{rank}(T)=3$. T is the limit of a sequence $S_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ with $\operatorname{rank}\left(S_{n}\right) \leq 2$ if and only if

$$
T=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}
$$

for some $\mathbf{x}_{i}, \mathbf{y}_{i}$ linearly independent vectors in $\mathbb{R}^{d_{i}}, i=1,2,3$.

Note that a rank-3 tensor of this form is defined by 6 linearly independent vectors. On the other hand, we would expect a rank-3 tensor chosen at random to be defined by 9 linearly independent vectors. T is an example of a tensor that has rank 3 but closed-rank 2 (to be defined).

Instead of fitting a 3-way data array with a rank-2 model, we fit a 3-way data array with a closed-rank-2 model.

Density of rank-r matrices

Set of tensors of rank exactly r,

$$
\mathcal{R}(k, r):=\left\{T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \operatorname{rank}(T)=r\right\}
$$

$\mathcal{R}(k, r)$ not closed even in the case where $k=2$ - higher-rank matrices converging to lower-rank ones easily constructed:

$$
\left[\begin{array}{cc}
1 & 1+\frac{1}{n} \\
1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
\frac{1}{n} & 0 \\
0 & \frac{1}{n}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

This is often a source of numerical instability: the problem of defining matrix rank in a finite-precision context [Golub-Van Loan 1996], the inherent difficulty of computing a Jordan canonical form [Golub-Wilkinson 1976], may all be viewed as consequences of the fact that $\mathcal{R}(2, r)$ is not closed.

However, closure of $\mathcal{R}(2, r)$ may be easily described (next slide).

Density of rank-r tensors

Proposition. With $\mathcal{R}(2, r)=\left\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A)=r\right\}$ and $\mathcal{S}(2, r)=\left\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) \leq r\right\}$, we have

$$
\overline{\mathcal{R}(2, r)}=\mathcal{S}(2, r)
$$

Here $\overline{\mathcal{R}}$ denotes the topological closure of a non-empty set \mathcal{R}.

Immediate Corollary. $\mathcal{S}(2, r)$ is closed.

Since $\mathcal{S}(k, r)$ is in general not closed for $k>2$ and $r>1$, the Proposition is not true for tensors of higher order, ie. $\overline{\mathcal{R}(k, r)} \neq$ $\mathcal{S}(k, r)$. Characterizing the closure of $\mathcal{S}(k, r)$ will be important for fixing the ill-posedness of the Eckart-Young problem.

Example. $\overline{\left\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T)=3\right\}} \neq \mathbb{R}^{2 \times 2 \times 2}$. In fact, both $\left\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T)=3\right\}$ and $\left\{T \in \mathbb{R}^{2 \times 2 \times 2} \mid \operatorname{rank}(T)=2\right\}$ have positive volumes in $\mathbb{R}^{2 \times 2 \times 2}$; thus neither of them can be dense. (Contrast with matrices $-\left\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A)<\right.$ $\min (m, n)\}$ always have measure 0$)$.

Fixing the ill-posedness of Eckart-Young problem

Definition. An order- k tensor $S \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ has closed-rank r if $S \in \overline{\mathcal{S}(k, r)}$ and $S \notin \overline{\mathcal{S}(k-1, r)}$.

Note that $\overline{\mathcal{S}(k, r)}=\left\{S \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \operatorname{closedrank}(S) \leq r\right\}$.

The problem

$$
\underset{\operatorname{rank}(S) \leq r}{\operatorname{argmin}}\|S-T\|
$$

may not have solutions when $r>1$.

Suppose we solve the problem

$$
S_{\mathrm{min}}=\underset{\operatorname{closedrank}(S) \leq r}{\operatorname{argmin}}\|S-T\|,
$$

which always have a solution, will we have fixed the ill-posedness Eckart-Young problem?

Question. How do we know that $S_{\text {min }}$ is meaningful?

Optimal rank-2 approximations

Order 3 tensor $T \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}, d_{i} \geq 2$.
Optimal rank-1 approximation:

$$
\min _{\mathbf{x}_{i} \in \mathbb{R}^{d_{i}}}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}\right\|
$$

Optimal solutions exist. Can always find $\mathrm{x}_{i}^{*} \in \mathbb{R}^{d_{i}}$ with

$$
\left\|T-\mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}\right\|=\min _{\mathbf{x}_{i} \in \mathbb{R}^{d}}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}\right\|
$$

Many ways to determine $\mathrm{x}_{1}^{*}, \mathrm{x}_{2}^{*}, \mathrm{x}_{3}^{*}$ explicitly.
Optimal rank-2 approximation:

$$
\min _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}\right\|
$$

Optimal solutions often don't exist, ie. no $\mathbf{x}_{i}^{*}, \mathbf{y}_{i}^{*} \in \mathbb{R}^{d_{i}}$ with

$$
\left\|T-\mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}-\mathbf{y}_{1}^{*} \otimes \mathbf{y}_{2}^{*} \otimes \mathbf{y}_{3}^{*}\right\|=\min _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d} i}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}\right\| .
$$

Quick but flawed fix

Current way to force a solution for the Eckart-Young problem: perturb the problem by small $\varepsilon>0$ and find approximate solution $\mathbf{x}_{i}^{*}(\varepsilon), \mathbf{y}_{i}^{*}(\varepsilon) \in \mathbb{R}^{d_{i}}(i=1,2,3)$ with

$$
\begin{aligned}
&\left\|T-\mathbf{x}_{1}^{*}(\varepsilon) \otimes \mathbf{x}_{2}^{*}(\varepsilon) \otimes \mathbf{x}_{3}^{*}(\varepsilon)-\mathbf{y}_{1}^{*}(\varepsilon) \otimes \mathbf{y}_{2}^{*}(\varepsilon) \otimes \mathbf{y}_{3}^{*}(\varepsilon)\right\| \\
&=\varepsilon+\min _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d} i}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}\right\| .
\end{aligned}
$$

Serious numerical problems due to ill-conditioning (a phenomenon often referred to as degeneracy or swamp in Chemometrics and Psychometrics).

Reason? Rule of thumb in Computational Math:
A well-posed problem near to an ill-posed one is ill-conditioned.
So, even if we may perturb an ill-posed problem slightly to get a well-posed one, the perturbed problem will more often than not be ill-conditioned.

Optimal closed-rank-2 approximations

For $T \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, we define the smooth functions
$f_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right):=\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}\right\|_{F}^{2}$,
$g_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right):=\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}-\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}\right\|_{F}^{2}$.

By the Theorem mentioned earlier, we have

Corollary. Let $d_{1}, d_{2}, d_{3} \geq 2$. The closure of the set $\{T \in$ $\left.\mathbb{R}^{d_{1} \times d_{2} \times d_{3}} \mid \operatorname{rank}(T) \leq 2\right\}$ is given by

$$
\begin{aligned}
& \left\{\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3} \mid \mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}\right\} \\
& \quad \cup\left\{\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3} \mid \mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}\right\}
\end{aligned}
$$

It then follows that
$\min _{\operatorname{closedrank}(S) \leq r}\|S-T\|_{F}^{2}=\min _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d} d_{i}} \min \left\{f_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right), g_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right)\right\}$.

Note that this always have a solution. So there exists

$$
S_{T}^{*}=\underset{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}}{\operatorname{argmin}} \min \left\{f_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right), g_{T}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{3}\right)\right\}
$$

for any $T \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$.

Computation. Finding S_{T}^{*} requires no more than a constant multiple of the computational cost in finding approximate soIution: two functional evaluations (f_{T} and g_{T}) per iteration instead of one functional evaluation (f_{T} only) per iteration. We do not need to be concerned about the nondifferentiability of $\min \left\{f_{T}, g_{T}\right\}$.

Interpretation. How do we know that S_{T}^{*} is meaningful? Note that S_{T}^{*} will take one of the following forms
$\mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}+\mathbf{y}_{1}^{*} \otimes \mathbf{y}_{2}^{*} \otimes \mathbf{y}_{3}^{*} \quad$ or $\quad \mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}+\mathbf{x}_{1}^{*} \otimes \mathbf{y}_{2}^{*} \otimes \mathbf{y}_{3}^{*}+\mathbf{y}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{y}_{3}^{*}$.
Both of them require exactly six vectors to define. So the 'information content' of S_{T}^{*} is the same whichever one of the two forms it takes.

Summary: cause of ill-posedness

Original problem: Given an order-3 tensor $T \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find the optimal rank-2 approximation, ie. find six vectors $\mathbf{x}_{i}^{*}, \mathbf{y}_{i}^{*} \in \mathbb{R}^{d_{i}}$ $(i=1,2,3)$ so that $\left\|T-\mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}-\mathbf{y}_{1}^{*} \otimes \mathbf{y}_{2}^{*} \otimes \mathbf{y}_{3}^{*}\right\|$ is minimal.

Claim: This is the wrong problem to solve (because there is no solution in general). We should not insist on fitting T with a model of the form $\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}$.

Question: What are we really looking for?

Answer: Six vectors $\mathbf{x}_{i}^{*}, \mathbf{y}_{i}^{*} \in \mathbb{R}^{d_{i}}(i=1,2,3)$ to fit the data T. There's no reason to require that these six vectors must be combined in the form $\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}$.

Summary: proposed fix

Observation: If the minimum of $\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathrm{y}_{2} \otimes \mathrm{y}_{3}\right\|$ cannot be attained by any $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}$, then there will instead be $\mathbf{x}_{i}^{*}, \mathbf{y}_{i}^{*} \in \mathbb{R}^{d_{i}}$ that attain the minimum of $\| T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{x}_{1} \otimes$ $\mathbf{y}_{2} \otimes \mathbf{y}_{3}-\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3} \|$. Moreover,

$$
\begin{aligned}
&\left\|T-\mathbf{x}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{x}_{3}^{*}-\mathbf{x}_{1}^{*} \otimes \mathbf{y}_{2}^{*} \otimes \mathbf{y}_{3}^{*}-\mathbf{y}_{1}^{*} \otimes \mathbf{x}_{2}^{*} \otimes \mathbf{y}_{3}^{*}\right\| \\
&=\min _{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d}}\left\|T-\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}-\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}\right\| .
\end{aligned}
$$

That is: T can always be optimally approximated by a six-vector model provided that we are willing to include the 'boundary points' $\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathrm{y}_{3}+\mathrm{y}_{1} \otimes \mathrm{x}_{2} \otimes \mathrm{y}_{3}$ on top of the usual $\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{y}_{3}$.

Natural fix: Minimize over a six-vector model that include both forms.

