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Abstract We show that deciding whether a convex function is self-concordant is in general
an intractable problem.
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1 Introduction

Nesterov and Nemirovskii [15] famously showed that the optimal solution of a conic pro-
gramming problem can be computed to e-accuracy in polynomial time if the cone has a
self-concordant barrier function whose gradient and Hessian are both computable in poly-
nomial time. Their work established self-concordance as a singularly important notion in
modern optimization theory.

We show in this article that deciding whether a convex function is self-concordant at a point
is nonetheless an NP-hard problem. In fact we will prove that deciding the self-concordance
of a convex function defined locally by a cubic polynomial (which cannot be convex on all of
R™), arguably the simplest non-trivial instance, is already an NP-hard problem. In addition
to the NP-hardness of self-concordance, we will see that, unless P = NP, there is no fully
polynomial time approximation scheme for the optimal self-concordant parameter and that
deciding second-order self-concordance [10] of a quartic polynomial is also an NP-hard
problem.

These hardness results are intended only to add to our understanding of self-concordance.
They do not in anyway detract from the usefulness of the notion since in practice self-
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concordant barriers are constructed at the outset to have the requisite property (see [15,
Chapter 5] and [3, Section 9.6]). We deduce the NP-hardness of self-concordance using a
well-known result of Nesterov himself, namely, minimizing a cubic form over a sphere is in
general NP-hard [14].

2 Self-concordance in terms of tensors

Let 2 C R"beopenand f : 2 — Rbein C?(£2), i.e., has continuous partials up to at least
order d. Recall that the dth order derivative of f at x € £2, denoted V¥ f(x), is a tensor of
order d [11]. To be more precise, this simply means that V¢ £ (x) is a multilinear functional
on T, (£2), the tangent space of £2 at x, that is,

V() : Te(R2) x -+ x Te(22) — R,

d copies
where
V) (hy, ..., ahi + BRL, ... hy)
=aVe ) ht, .o hiy e hy) F BV (R, R k) fori=1,... 0.
With respect to the standard basis %, ey %’X of Ty (£2), we may identify T, (§£2) = R" and

V4 f(x) may be regarded as a ‘d-dimensional matrix’ or d-hypermatrix,

Indeed, we must have

9 f (x)

- a4
axj, -+ 0xjy

Ajyiy =
and since f € Cl(£2), we get that g;,...;, = Qi (1) i) for all permutations 7 on the

indices, i.e., V¥ f(x) is a symmetric d-hypermatrix. Every symmetric d-hypermatrix A =
[ai, ... d];’l i=1 € R"**" defines a homogeneous polynomial of degree d, denoted

,,,,,

d-hypermatrices are coordinate representations of d-tensors, just as matrices are coordinate
representations of linear operators and bilinear forms (both are 2-tensors). We refer the reader
to [12] for more information.

The usual definition of self-concordance requires that f € C 3(£2) and in which case
it is given by a condition involving the matrix V2 f(x) € R"*" and the 3-hypermatrix
V3f(x) € RrXnxn

Definition 1 (Nesterov—Nemirovskii) Let £2 C R" be a convex open set. Then f : 2 — R
is said to be self-concordant with parameter o > 0 at x € £ if

V2 f(x)(h, h) = 0 (1

and
[V3 £ (x)(h, h, ))]* < 40[V? £ (x)(h, h)]? )

for all h € R"; f is self-concordant on §2 if (1) and (2) hold for all x € 2. The set of
self-concordant functions on §2 with parameter o is denoted by S, (§2).
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By (1), a function self-concordant on £2 is necessarily convex on £2. A minor deviation
from [15] is that o above is really the reciprocal of the self-concordance parameter as defined
in [15, Definition 2.1.1]. Our hardness results would be independent of the choice of 0. Note
that

n 2 n 3
0% f () 3 0> f (x)
v? h,h) = ———hihj, V h,h,h) = ————hihjh.
F@)(h. by ,»,2=1 amae i V@) ij;:l Ty

So forafixed x € 2, V2 f(x)(h, h) isa quadratic form in 4 and V3 f(x)(h, h, k) is a cubic
form in A. It is well-known that deciding (1) at any fixed x is a polynomial-time problem
(but not so for deciding it over all x € £2, see [1]). Hence given a 0 > 0, deciding self-
concordance at x essentially boils down to (2): Is the square of a given cubic form globally
bounded above by the cube of a given quadratic form? We shall see in the next sections that
this decision problem is NP-hard.

While we will think of V2 f(x) as a matrix and V3 f(x) as a hypermatrix, we wish to
highlight that (2) is really a condition on V2 f (x) regarded as a 2-tensor and V3 f (x) regarded
as a 3-tensor, i.e., (2) is independent of the choice of coordinates, a property that follows
from the affine invariance of self-concordance [15, Proposition 2.1.1]. Self-concordance on
£2 is therefore a global condition about the tensor fields V3 f and V2 f.

3 Maximizing a cubic form over a sphere

We include a proof that the clique and stability numbers of a graph with n vertices and m
edges may be expressed as the maximum values of cubic forms (in n + m variables) over the
unit sphere sntm=1 This, or at least the stability number version, is known but the reference
usually cited [14, Theorem 4] contains some typos that have been reproduced elsewhere!. We
take the opportunity to provide a corrected version below. Our proof follows Motzkin—Straus
Theorem [13] and the similar result of Nesterov [14, Theorem 4] for stability number.

Let G = (V, E) be an undirected graph with n vertices and m edges. We shall require
that E # o throughout,son > 2 andm > 1.Recall that S C Visacliqguein Gif {i, j} € E
foralli,j € Sand S C V is stable in G if {i, j} ¢ E forall i, j € S. The cligue number
and stability number of G are respectively:

o(G) = max{|S|: § € Visclique}, «(G)=max{|S|: S C V is stable}.

Motzkin and Straus [13] showed that w(G) may be expressed in terms of the maximum
value of a simple quadratic polynomial over the unit simplex. Although not in [13], it is
straightforward to see that essentially the same proof also yields a similar expression for
a(G).

Theorem 1 (Motzkin—Straus) Let A" = {x e R" : x; +--- 4+ x, = 1, x; > 0} denote
the unit simplex in R". Then the clique number w(G) and stability number o (G) may be
determined via quadratic optimization over simplices:

! 1
e T Z{i,j}eE g, 1= oGy T 2 ma Z{i.j}éE xixj. (3

! For example, [4, Theorem 3.4]. To see that the expression is incorrect, take a graph with three vertices and
one edge, the left-hand side gives 1/+/2 and the right-hand side gives 1.
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Since deciding if a clique of a given size exists is an NP-complete problem [9], an imme-
diate consequence is that computing the clique number of a given graph is NP-hard, and by
the Motzkin—Straus theorem so is the maximization of a quadratic form on a simplex.

In an unpublished manuscript [14, Theorem 4], Nesterov used Motzkin—Straus Theorem
to obtain an alternate expression (5) for stability number involving the maximum value of a
cubic form over a sphere. In the following we derive a similar expression (4) for the clique
number, which yields slightly simpler expressions for our discussions in Sects. 4 and 6, and
may perhaps be of independent interest.

Theorem 2 (Nesterov) Let G = (V, E) be an undirected graph with n vertices and m edges.
Let S41 = {x € R? : ||x|| = 1} denote the unit £2- -sphere in RY. The clique number w(G)
and stability number a(G) may be determined via cubic optimization over spheres:

CRER i @
- U.v .w<. s
w(G) 2 (v, w)egm—m 1 i j1ee T
127 ,
a(G) 2 (y,w)egzim—] IZZ{MME Ulvlwlj] 5)

Proof This follows from Motzkin—Straus Theorem and the equalities

et Z{i,j}eE Yixp = mex, z{,-,j}eg viv} (6)
- vesnfrﬁawism*l [Z{i,j}eE vivy wij]z ™
27 2
T4 (o wegrimet [Z[i,j}eE vi U-’wi"] : ®)
(6) comes from substituting x; = viz, i=1,...,n. As for (7), Cauchy—Schwarz yields

1

)y 202 212
Z{i,j}eE Vivjwij = I:Z{ZJ}EE i J] [Z{i,_i}eE w”]

and so
1 1
2,2 > |7
max Z . vjvjw;; < max Z ViV max Z Wi
lvll=llwl=14—={i,j}eE lvl=1 ijyeE T jwi=1 {i.jtee Y
2.2
= max = . )
|\v||:1|:Z{1J}EE vi J]

Let the maximum value « be attained at 7 € S"~!. We set w;j = v;vj/aforall {i, j} € E
(note that @ > 0 if E # @). Observe that

1
Z SR Z P72
Viviw;i = =,
{ijyee Y o {i.j}eE Vit

and w € "~ ! since
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Hence equality is attained in (9) and we have (7). We deduce (8) from

max E . vivjwji = max E o viviwi;
lwwli=1 =G, jteE Y T ey w)2=1 S=ti jleE Y

= sup max L vivjw;;
ﬂewJ>[nvP=ﬂ,zm2=1—ﬂ:E:“J}EE v ”:

= sup [ max o
Be(0,1) Hv/¢EW=1muvv7iBW=l:E:%JKE

Vi Uj w,-j X,B /;1_/3]

VBVBVT—P
= max viviw;i | X su 1-—
hwéLm%ﬂz%ﬂ@’]’J ﬂa&fJﬁgﬁ

ViV Wjj.

2
=—F max
3Jﬂwﬂwﬂ§;me

The maximum value of Z{i,j}eE v;v;jw;j, whether over "1 x §"=1 or over "1 can
always be attained with v > 0 and w > 0, thereby allowing one to take square in (7) and
(8). The same proof works for stability number with the replacement of index of summation
1. jye E'by (i, j} ¢ E”. o

4 Complexity of deciding self-concordance

The recent resolution of Shor’s conjecture by Ahmadi, Olshevsky, Parrilo, and Tsitsiklis [1]
shows that deciding the convexity of a quartic polynomial globally over R” is NP-hard. So
the self-concordance of a function that is not a priori known to be convex is NP-hard since
deciding whether (1) holds for all x € £2 in Definition 1 is already an NP-hard problem.
Our complexity result assumes more stringent conditions: (i) Our functions are smooth and
convex in £2 and so (1) is always satisfied and self-concordance reduces to checking (2). (ii)
We show that (2) is already NP-hard to check at a single point x € £2.

Throughout the following we will require the inputs to our problems to take values in an
algebraic number field?, e.g., A € Q"*"*", ¢ € Q, to ensure a finite bit-length input. Since
an NP-hard problem need not be in the class NP, an NP-hard decision problem can be posed
over the reals (e.g. is there an 4 € R” such that [A(h, h, m? < q[hTh]3 holds?) without any
issue as it is not required to have a polynomial-time checkable certificate.

We will now formulate a decision problem that will lead us to the NP-hardness of self-
concordance. Let G = (V, E) be an undirected graph with n vertices and m edges where
n > 2 and m > 1. We order the n vertices arbitrarily so that V = {1, ..., n}. We also order
the m edges arbitrarily so that

E={{ix, ju} :k=1,....m).

2 We will only encounter simple quadratic and cubic extensions of Q, see (18) and (11). For ¢ € Q, elements

of Q(/9) and Q(J/q) may be written as a + b,/q and a + b /g + c(g/(j)z respectively with a, b, ¢ € Q,
thus representable by pairs and triples of rational numbers.
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Define BG — [bijk]ﬁj'_,r]’(lzl = Q(ner)x(ner)x(ner) by

1 ifi=ireV, j=jreV, liv, s} € E,
bijr = .
0  otherwise.

B is not a symmetric hypermatrix. Let Ag = [aijk]l’.’;f.',:‘zl e QUtmyx(ntm)x(ntm) pe the
symmetrization of Bg, i.e.,

1
aijk = 3 (bijk + bikj + bjik + bjki + beij + biji)

forall i, j,k € {1,...,n+ m}. So Ag is symmetric, i.e., a;jk = ajxj = ajix = aji =
agij = aiji, and furthermore Ag(h, h, h) = Bg(h, h, h). Let us denote the coordinates of
h e R11+m by

h= U1, .o U, Wiy jys ey Wiy )

In which case,

m—+n

AU b, ) = BG(hh by =3 " bijehihjh

m
— ViV Wi, = z Vi Wi
Zk:l ik Vi Wik jk (i jyeg JUTYi

By Theorem 2,
Aa(h,h,h)T , 2 ( 1 )
max | —————| = max[Ag(h,h, )] " = —=|1— ——— ). 10
h0 [ E max [Aa =% o(G) (10)

The CLIQUE problem asks if for a given graph G and a given k € N, whether G has a
clique of size k. CLIQUE is well-known to be NP-complete [9]. So deciding if w(G) > k, or
equivalently, w(G) > k — 1, is an NP-complete problem; by (10), so is deciding if

Agh,h,)]? 2 1
max | ———| > —=(1———).
h#0 A3 27 k—1
Hence deciding if there exists an & € R"™" for which
1
[AG(h, h, W > — (1 - —) [Ty’
is an NP-hard problem. As ¢ = %[1 — (k —1)~"] € Q, this problem is of the form:

Problem 1 Given a symmetric A € QU+ (n+m)x(n+m) and 3 positive ¢ € Q, does there
exists an o € R"*" for which [A(h, h, h))? > q[hTh]??

Leto € Q, 0 > 0, be a self-concordance parameter and let

171 1 13

We follow the notation in Sect. 2. Let £2 be the g-ball B,(0) = {x € R"™ : || x| < &} where
& > 0 is to be chosen later. We are interested in deciding self-concordance at x = 0 of the
cubic polynomial f : £2 — R defined by

4 4 n+m n+m
fx) = ExTx + Ag(x,x,x) = 5 Zi:l xi2 + zi,j,k:l QjjkXiX jX.
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We have V2 £ (0) = y I where I is the (n+m) x (n+m) identity matrix. Since y > 0, V2 f (x)
is strictly positive definite in a neighborhood of x = 0 and so there is some B, (0) on which
f is convex, giving us our &. Also, V3 £(0) = Ag.

Hence V2 £(0)(h, h) = yh"h = y|h|3, V3 f(0)(h, h, h) = AG(h, h, h), and f is self-
concordant at the origin with parameter o € Q if and only if

2 3T 2 (] T, 3
[Ag(h, h, h)]” <4oy’[h' h] =57 (l k—l)[h h]

for all h € R"*_ This problem is of the form:

Problem 2 Given a symmetric A € QUM xHmx(tm) ang 3 positive g € Q, is it true
that for every h € R**™, we have [A(h, h, h)]2 < q[hTh]3?

Problems 1 and 2 are mathematically equivalent, being logical complements of each
other. However they may or may not have the same computational complexity depending on
our choice of reduction [16]. Using Cook reduction, also know as polynomial-time Turing
reduction [16], Problems 1 and 2 have equivalent computational complexity, i.e., deciding
self-concordance is NP-hard. However, using Karp reduction, also know as polynomial-
time many-one reduction [16], the NP-hardness of Problem 1 implies the co-NP-hardness of
Problem 2. In either case, our conclusion is that self-concordance is intractable.

Theorem 3 Deciding whether a cubic polynomial is self-concordant at the origin is NP-hard
under Cook reduction and co-NP-hard under Karp reduction.

Deciding self-concordance on the whole of £2 is of course at least as hard as deciding self-
concordance at a point in £2 and we obtain the following.

Corollary 1 For any $2 and any o > 0, membership in Sy (§2) is NP-hard.

The argument in this section clearly works not just for cubic polynomials but for any
feC3(R2)aslongas0 € 2, V2f(0) = yI,and V3 f(0) = Ag — other derivatives and
the remainder term in the Taylor expansion of f at x = 0 may be chosen arbitrarily as long as
f stays convex in §2. This flexibility allows one to extend the construction above to functions
with other desired properties. For instance, we may want an example where £2 = R” and
since cubic polynomials cannot be convex on the whole of R”, we will need a quartic f and
therefore need to choose V* f (0) accordingly; or we may want an example where f is a barrier
function, which is equivalent to f having an epigraph {(x, ?) € R i x e 2, fx) <t)
that is closed. One may trivially replace 0 by any point @ € R”" by considering the function
fa®) = f(x —a) on 2 = By(a).

While we have proved our hardness result for functions on £2 € R”", itis easy to extend this
to any R-vector space, for example, symmetric matrices S”*” or polynomials R[x1, ..., x,],
or even Riemannian manifolds with a non-trivial class of geodesically convex functions (i.e.,
not just the constant functions). Since self-concordance at a point is a local property, a choice
of coordinate patch would transform the problem to one in R”; and by our remark at the end
of Sect. 2, it will in fact be independent of our choice of coordinates.

The reason our conclusion in Theorem 3 is given as NP- and co-NP-hardness as opposed
to NP- and co-NP-completeness is that checking a condition like [A (%, h, mn? < q[hTh]3,
even if the certificate 4 is in Q”, could well require exponential time when time complexity
is measured in units of bit operations.
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S Inapproximability of optimal self-concordance parameter

Let A € Q"™ be symmetric and f : £2 — R be defined by the cubic polynomial
fx) = %xTx + A(x, x, x). Asin Sect. 4, §2 is chosen to be a neighborhood of the origin so
that f is convex on §2. The condition (2) for self-concordance of f at x = 0 with parameter
o > 0 may be written as

|A(h, h, h)| < 2J/5 |3 (12)

for all & € R". This is equivalent to requiring

A(h,h, h)
max ——————— < ZJE, (13)
W0 |3

as A(—h, —h, —h) = —A(h, h, h) and we may drop the absolute value in (12).
Since A € R is a symmetric 3-hypermatrix, the spectral norm [6] of A may be
expressed as follows:
A(hy, ha, h3) A(h, h, h)
=max —————

|All222:= max ————"—— = X
hihohs20 |hillallhall2llkslly — h#0 |13

where the second equality follows from Banach’s result on the polarization constant of Hilbert
spaces (see [2] and [17]). Hence the optimal self-concordance parameter of f atx =0, i.e.,
the smallest value of ¢ so that (13) holds, is given by

1
Topt = Z”A”%,z,z- (14)

The spectral norm of a 3-hypermatrix is NP-hard to approximate to within a certain
constant factor by [6, Theorem 1.11], which we state here for easy reference.

Theorem 4 (Hillar—Lim) Let A € Q"*"*" and N be the input size of A in bits. Then it is
NP-hard to approximate ||A||2,2,2 to within a factor of 1 — & where

—1/2 1 1
=i-(xw=s)  ~mma=p+o(w)

By (14) and Theorem 4, o is NP-hard to approximate to within a factor of i(l —¢)?
and consequently we have the following inapproximability result.

Corollary 2 There is no polynomial time approximation scheme for determining the optimal
self-concordance parameter oopy unless P = NP.

See [5] and [7] for more extensive approximability results and approximation algorithms

(that are not PTAS). The results in [7] for quartic polynomials would apply to the optimal
second-order self-concordance parameter in the next section.

6 Complexity of deciding second-order self-concordance
There is also an interesting notion of second-order self-concordance due to Jarre [10]. This

requires that f € C*(£2) and is given by a condition involving the matrix V2 f (x) € R"*"
and the 4-hypermatrix v4 f(x) e Rxnxnxn,
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Definition 2 (Jarre) If 2 < R” is a convex open set, then f : 2 — R is said to be
second-order self-concordant with parameter T > 0 at x € §2 if

V2f(x)(h h) =0 (15)
and
4 2 2
VAF@)(h, h h h) < 6T[V7 f(x)(h, h)] (16)
for all h € R"; f is second-order self-concordant on £2 if it is so for all x € £2.

Note that

4
VB ) =D 9 f(x)

ijki=1 9x;0x;0x50% <

is a quartic polynomial in % for any fixed x € £2.

We follow the same argument in Sect. 4 to show that deciding (16) is NP-hard. This time the
result would be deduced from Motzkin—Straus Theorem except that for better parallelism with
Sect. 4, we will use the quartic-maximization-over-sphere form (6) instead of the quadratic-
maximization-over-simplex form (3).

Given a graph G = (V, E) with n vertices and m edges where n > 2 and m > 1, we
define BG c annxnxn by

1 i=k j=Lland{i,j}€E,
bijr = .
0  otherwise.

Let Ag = [a;ju] € Q""" be the symmetrization of Bg, i.e.,
1
aijkt = 7 (bijkr + bijic + -+ Digi).

where the indices run over all 24 possible permutations. So A = [a;j]} jki=1 € Qrrxnxnxn
is symmetric and Ag (h, h, h, h) = Bg(h, h, h, h). As in (6),

1 1
Ag(h, h, b, h) = 22— (1 o
i, At )= max, 2 e "M 2( a)(G))

by Motzkin—Straus Theorem. As in Sect. 4, for k > 2, deciding if a k-clique exists in G is
equivalent to deciding if w(G) > k — 1. So deciding if

k—1

for some i € R" is NP-hard. Given self-concordance parameter t € Q, > 0, let

1 1 1/2

We may now define f : £2 — R accordingly as the quartic polynomial

_Z T _Z n 2
fx) = 7% x+Ag(x,x,x,x) = > Zi:lxi +z

1( 1 ) T, 2
Agh ) = 5 (1= = ) (47h] (17)

n

Aiik] XiXjXEX].
i jdd=1 ijklXiX jXkA]

Hence V2 f(0)(h,h) = yh"h = y|h|3 and V* f(0)(h, h, h, h) = Ag(h, h, h,h). Again
we choose §2 to be a neighborhood of the origin so that f is convex on £2. So f is second-order
self-concordant at x = 0 with parameter t if and only if

1 1
Ag(h, h,h,h) < 6Ty [h h)? = 3 (1 - kj) [hTh]? (19)
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is satisfied for all & € R". Since the problem of deciding if there exists an 7 € R” satisfying
(17) and the problem of deciding if (19) is satisfied for all # € R" are logical complements
and the former is NP-hard, we have the following.

Theorem 5 Deciding if a quartic polynomial is second-order self-concordant at the origin
is NP-hard under Cook reduction and co-NP-hard under Karp reduction.

Self-concordance and second-order self-concordance are conditions involving high-order
tensors (orders 3 and 4 respectively), their NP-hardness serves as yet another reminder of the
complexity of tensor problems [6].

Acknowledgements We would like to thank the anonymous referees for their careful reading and helpful
suggestions.
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