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Abstract We show that deciding whether a convex function is self-concordant is in general
an intractable problem.

Keywords Self-concordance · Second-order self-concordance · NP-hard · Co-NP-hard

1 Introduction

Nesterov and Nemirovskii [15] famously showed that the optimal solution of a conic pro-
gramming problem can be computed to ε-accuracy in polynomial time if the cone has a
self-concordant barrier function whose gradient and Hessian are both computable in poly-
nomial time. Their work established self-concordance as a singularly important notion in
modern optimization theory.

We show in this article that decidingwhether a convex function is self-concordant at a point
is nonetheless an NP-hard problem. In fact we will prove that deciding the self-concordance
of a convex function defined locally by a cubic polynomial (which cannot be convex on all of
R

n), arguably the simplest non-trivial instance, is already an NP-hard problem. In addition
to the NP-hardness of self-concordance, we will see that, unless P = NP, there is no fully
polynomial time approximation scheme for the optimal self-concordant parameter and that
deciding second-order self-concordance [10] of a quartic polynomial is also an NP-hard
problem.

These hardness results are intended only to add to our understanding of self-concordance.
They do not in anyway detract from the usefulness of the notion since in practice self-
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concordant barriers are constructed at the outset to have the requisite property (see [15,
Chapter 5] and [3, Section 9.6]). We deduce the NP-hardness of self-concordance using a
well-known result of Nesterov himself, namely, minimizing a cubic form over a sphere is in
general NP-hard [14].

2 Self-concordance in terms of tensors

Let Ω ⊆ R
n be open and f : Ω → R be in Cd(Ω), i.e., has continuous partials up to at least

order d . Recall that the dth order derivative of f at x ∈ Ω , denoted ∇d f (x), is a tensor of
order d [11]. To be more precise, this simply means that ∇d f (x) is a multilinear functional
on Tx (Ω), the tangent space of Ω at x , that is,

∇d f (x) : Tx (Ω) × · · · × Tx (Ω)
︸ ︷︷ ︸

d copies

→ R,

where

∇d f (x)(h1, . . . , αhi + βh′
i , . . . , hn)

= α∇d f (x)(h1, . . . , hi , . . . , hn) + β∇d f (x)(h1, . . . , h′
i , . . . , hn) for i = 1, . . . , n.

With respect to the standard basis ∂
∂x1

, . . . , ∂
∂xn

of Tx (Ω), we may identify Tx (Ω) ∼= R
n and

∇d f (x) may be regarded as a ‘d-dimensional matrix’ or d-hypermatrix,

∇d f (x) = [ai1···id ]n
i1,...,id=1 ∈ R

n×···×n .

Indeed, we must have

ai1···id = ∂d f (x)

∂xi1 · · · ∂xid

,

and since f ∈ Cd(Ω), we get that ai1···id = aiπ(1)···iπ(d)
for all permutations π on the

indices, i.e., ∇d f (x) is a symmetric d-hypermatrix. Every symmetric d-hypermatrix A =
[ai1···id ]n

i1,...,id=1 ∈ R
n×···×n defines a homogeneous polynomial of degree d , denoted

A(h, . . . , h) :=
∑n

i1,...,id=1
ai1···id hi1 · · · hid ∈ R[h1, . . . , hn]d .

d-hypermatrices are coordinate representations of d-tensors, just as matrices are coordinate
representations of linear operators and bilinear forms (both are 2-tensors).We refer the reader
to [12] for more information.

The usual definition of self-concordance requires that f ∈ C3(Ω) and in which case
it is given by a condition involving the matrix ∇2 f (x) ∈ R

n×n and the 3-hypermatrix
∇3 f (x) ∈ R

n×n×n .

Definition 1 (Nesterov–Nemirovskii) Let Ω ⊆ R
n be a convex open set. Then f : Ω → R

is said to be self-concordant with parameter σ > 0 at x ∈ Ω if

∇2 f (x)(h, h) ≥ 0 (1)

and
[∇3 f (x)(h, h, h)]2 ≤ 4σ [∇2 f (x)(h, h)]3 (2)

for all h ∈ R
n ; f is self-concordant on Ω if (1) and (2) hold for all x ∈ Ω . The set of

self-concordant functions on Ω with parameter σ is denoted by Sσ (Ω).
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By (1), a function self-concordant on Ω is necessarily convex on Ω . A minor deviation
from [15] is that σ above is really the reciprocal of the self-concordance parameter as defined
in [15, Definition 2.1.1]. Our hardness results would be independent of the choice of σ . Note
that

∇2 f (x)(h, h) =
n

∑

i, j=1

∂2 f (x)

∂xi∂x j
hi h j , ∇3 f (x)(h, h, h) =

n
∑

i, j,k=1

∂3 f (x)

∂xi∂x j∂xk
hi h j hk .

So for a fixed x ∈ Ω,∇2 f (x)(h, h) is a quadratic form in h and ∇3 f (x)(h, h, h) is a cubic
form in h. It is well-known that deciding (1) at any fixed x is a polynomial-time problem
(but not so for deciding it over all x ∈ Ω , see [1]). Hence given a σ > 0, deciding self-
concordance at x essentially boils down to (2): Is the square of a given cubic form globally
bounded above by the cube of a given quadratic form? We shall see in the next sections that
this decision problem is NP-hard.

While we will think of ∇2 f (x) as a matrix and ∇3 f (x) as a hypermatrix, we wish to
highlight that (2) is really a condition on∇2 f (x) regarded as a 2-tensor and∇3 f (x) regarded
as a 3-tensor, i.e., (2) is independent of the choice of coordinates, a property that follows
from the affine invariance of self-concordance [15, Proposition 2.1.1]. Self-concordance on
Ω is therefore a global condition about the tensor fields ∇3 f and ∇2 f .

3 Maximizing a cubic form over a sphere

We include a proof that the clique and stability numbers of a graph with n vertices and m
edges may be expressed as the maximum values of cubic forms (in n + m variables) over the
unit sphere S

n+m−1. This, or at least the stability number version, is known but the reference
usually cited [14, Theorem 4] contains some typos that have been reproduced elsewhere1.We
take the opportunity to provide a corrected version below. Our proof followsMotzkin–Straus
Theorem [13] and the similar result of Nesterov [14, Theorem 4] for stability number.

Let G = (V, E) be an undirected graph with n vertices and m edges. We shall require
that E 
= ∅ throughout, so n ≥ 2 and m ≥ 1. Recall that S ⊆ V is a clique in G if {i, j} ∈ E
for all i, j ∈ S and S ⊆ V is stable in G if {i, j} /∈ E for all i, j ∈ S. The clique number
and stability number of G are respectively:

ω(G) = max{|S| : S ⊆ V is clique}, α(G) = max{|S| : S ⊆ V is stable}.
Motzkin and Straus [13] showed that ω(G) may be expressed in terms of the maximum
value of a simple quadratic polynomial over the unit simplex. Although not in [13], it is
straightforward to see that essentially the same proof also yields a similar expression for
α(G).

Theorem 1 (Motzkin–Straus) Let Δn = {x ∈ R
n : x1 + · · · + xn = 1, xi ≥ 0} denote

the unit simplex in R
n. Then the clique number ω(G) and stability number α(G) may be

determined via quadratic optimization over simplices:

1 − 1

ω(G)
= 2 max

x∈Δn

∑

{i, j}∈E
xi x j , 1 − 1

α(G)
= 2 max

x∈Δn

∑

{i, j}/∈E
xi x j . (3)

1 For example, [4, Theorem 3.4]. To see that the expression is incorrect, take a graph with three vertices and
one edge, the left-hand side gives 1/

√
2 and the right-hand side gives 1.
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Since deciding if a clique of a given size exists is an NP-complete problem [9], an imme-
diate consequence is that computing the clique number of a given graph is NP-hard, and by
the Motzkin–Straus theorem so is the maximization of a quadratic form on a simplex.

In an unpublished manuscript [14, Theorem 4], Nesterov used Motzkin–Straus Theorem
to obtain an alternate expression (5) for stability number involving the maximum value of a
cubic form over a sphere. In the following we derive a similar expression (4) for the clique
number, which yields slightly simpler expressions for our discussions in Sects. 4 and 6, and
may perhaps be of independent interest.

Theorem 2 (Nesterov) Let G = (V, E) be an undirected graph with n vertices and m edges.
Let S

d−1 = {x ∈ R
d : ‖x‖ = 1} denote the unit �2-sphere in R

d . The clique number ω(G)

and stability number α(G) may be determined via cubic optimization over spheres:

1 − 1

ω(G)
= 27

2
max

(v,w)∈Sn+m−1

[
∑

{i, j}∈E
viv jwi j

]2
, (4)

1 − 1

α(G)
= 27

2
max

(v,w)∈Sn+m−1

[
∑

{i, j}/∈E
viv jwi j

]2
. (5)

Proof This follows from Motzkin–Straus Theorem and the equalities

max
x∈Δn

∑

{i, j}∈E
xi x j = max

v∈Sn−1

∑

{i, j}∈E
v2i v2j (6)

= max
v∈Sn−1,w∈Sm−1

[
∑

{i, j}∈E
viv jwi j

]2
(7)

= 27

4
max

(v,w)∈Sn+m−1

[
∑

{i, j}∈E
viv jwi j

]2
. (8)

(6) comes from substituting xi = v2i , i = 1, . . . , n. As for (7), Cauchy–Schwarz yields

∑

{i, j}∈E
viv jwi j ≤

[
∑

{i, j}∈E
v2i v2j

] 1
2
[
∑

{i, j}∈E
w2

i j

] 1
2

and so

max‖v‖=‖w‖=1

∑

{i, j}∈E
viv jwi j ≤ max‖v‖=1

[

∑

{i, j}∈E
v2i v2j

]
1
2

max‖w‖=1

[

∑

{i, j}∈E
w2

i j

]
1
2

= max‖v‖=1

[

∑

{i, j}∈E
v2i v2j

]
1
2

=: α. (9)

Let the maximum value α be attained at v ∈ S
n−1. We set wi j = viv j/α for all {i, j} ∈ E

(note that α > 0 if E 
= ∅). Observe that

∑

{i, j}∈E
viv jwi j = 1

α

∑

{i, j}∈E
v2i v

2
j = α,

and w ∈ S
m−1 since

∑

{i, j}∈E
w2

i j = 1

α2

∑

{i, j}∈E
v2i v

2
j = 1.
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Hence equality is attained in (9) and we have (7). We deduce (8) from

max‖(v,w)‖=1

∑

{i, j}∈E
viv jwi j = max

‖v‖2+‖w‖2=1

∑

{i, j}∈E
viv jwi j

= sup
β∈(0,1)

[

max
‖v‖2=β, ‖w‖2=1−β

∑

{i, j}∈E
viv jwi j

]

= sup
β∈(0,1)

[

max
‖v/

√
β‖2=1,‖w/

√
1−β‖2=1

∑

{i, j}∈E

vi√
β

v j√
β

wi j√
1 − β

× β
√

1 − β

]

=
[

max
‖v‖2=1, ‖w‖2=1

∑

{i, j}∈E
viv jwi j

]

× sup
β∈(0,1)

β
√

1 − β

= 2

3
√
3

max‖v‖=‖w‖=1

∑

{i, j}∈E
viv jwi j .

The maximum value of
∑

{i, j}∈E viv jwi j , whether over S
n−1 × S

m−1 or over S
n+m−1, can

always be attained with v ≥ 0 and w ≥ 0, thereby allowing one to take square in (7) and
(8). The same proof works for stability number with the replacement of index of summation
‘{i, j} ∈ E’ by ‘{i, j} /∈ E’. 
�

4 Complexity of deciding self-concordance

The recent resolution of Shor’s conjecture by Ahmadi, Olshevsky, Parrilo, and Tsitsiklis [1]
shows that deciding the convexity of a quartic polynomial globally over R

n is NP-hard. So
the self-concordance of a function that is not a priori known to be convex is NP-hard since
deciding whether (1) holds for all x ∈ Ω in Definition 1 is already an NP-hard problem.
Our complexity result assumes more stringent conditions: (i) Our functions are smooth and
convex in Ω and so (1) is always satisfied and self-concordance reduces to checking (2). (ii)
We show that (2) is already NP-hard to check at a single point x ∈ Ω .

Throughout the following we will require the inputs to our problems to take values in an
algebraic number field2, e.g., A ∈ Q

n×n×n, q ∈ Q, to ensure a finite bit-length input. Since
an NP-hard problem need not be in the class NP, an NP-hard decision problem can be posed
over the reals (e.g. is there an h ∈ R

n such that [A(h, h, h)]2 ≤ q[hTh]3 holds?) without any
issue as it is not required to have a polynomial-time checkable certificate.

We will now formulate a decision problem that will lead us to the NP-hardness of self-
concordance. Let G = (V, E) be an undirected graph with n vertices and m edges where
n ≥ 2 and m ≥ 1. We order the n vertices arbitrarily so that V = {1, . . . , n}. We also order
the m edges arbitrarily so that

E = {{ik, jk} : k = 1, . . . , m}.

2 We will only encounter simple quadratic and cubic extensions ofQ, see (18) and (11). For q ∈ Q, elements
of Q(

√
q) and Q( 3√q) may be written as a + b

√
q and a + b 3√q + c( 3√q)2 respectively with a, b, c ∈ Q,

thus representable by pairs and triples of rational numbers.
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Define BG = [bi jk]n+m
i, j,k=1 ∈ Q

(n+m)×(n+m)×(n+m) by

bi jk =
{

1 if i = ik ∈ V, j = jk ∈ V, {ik, jk} ∈ E,

0 otherwise.

BG is not a symmetric hypermatrix. Let AG = [ai jk]n+m
i, j,k=1 ∈ Q

(n+m)×(n+m)×(n+m) be the
symmetrization of BG , i.e.,

ai jk = 1

3! (bi jk + bik j + b jik + b jki + bki j + bkji )

for all i, j, k ∈ {1, . . . , n + m}. So AG is symmetric, i.e., ai jk = aik j = a jik = a jki =
aki j = akji , and furthermore AG(h, h, h) = BG(h, h, h). Let us denote the coordinates of
h ∈ R

n+m by

h = (v1, . . . , vn, wi1 j1 , . . . , wim jm ).

In which case,

AG(h, h, h) = BG(h, h, h) =
∑m+n

i, j,k=1
bi jkhi h j hk

=
∑m

k=1
vik v jk wik jk =

∑

{i, j}∈E
viv jwi j .

By Theorem 2,

max
h 
=0

[

AG(h, h, h)

‖h‖3
]2

= max‖h‖=1
[AG(h, h, h)]2 = 2

27

(

1 − 1

ω(G)

)

. (10)

The clique problem asks if for a given graph G and a given k ∈ N, whether G has a
clique of size k. clique is well-known to be NP-complete [9]. So deciding if ω(G) ≥ k, or
equivalently, ω(G) > k − 1, is an NP-complete problem; by (10), so is deciding if

max
h 
=0

[

AG(h, h, h)

‖h‖3
]2

>
2

27

(

1 − 1

k − 1

)

.

Hence deciding if there exists an h ∈ R
n+m for which

[AG(h, h, h)]2 >
2

27

(

1 − 1

k − 1

)

[hTh]3

is an NP-hard problem. As q = 2
27 [1 − (k − 1)−1] ∈ Q, this problem is of the form:

Problem 1 Given a symmetric A ∈ Q
(n+m)×(n+m)×(n+m) and a positive q ∈ Q, does there

exists an h ∈ R
n+m for which [A(h, h, h)]2 > q[hTh]3?

Let σ ∈ Q, σ > 0, be a self-concordance parameter and let

γ := 1

3

[

1

2σ

(

1 − 1

k − 1

)]1/3

. (11)

We follow the notation in Sect. 2. Let Ω be the ε-ball Bε(0) = {x ∈ R
n+m : ‖x‖ < ε} where

ε > 0 is to be chosen later. We are interested in deciding self-concordance at x = 0 of the
cubic polynomial f : Ω → R defined by

f (x) = γ

2
xTx + AG(x, x, x) = γ

2

∑n+m

i=1
x2i +

∑n+m

i, j,k=1
ai jk xi x j xk .

123



J Glob Optim (2017) 68:357–366 363

Wehave∇2 f (0) = γ I where I is the (n+m)×(n+m) identitymatrix. Since γ > 0,∇2 f (x)

is strictly positive definite in a neighborhood of x = 0 and so there is some Bε(0) on which
f is convex, giving us our ε. Also, ∇3 f (0) = AG .
Hence ∇2 f (0)(h, h) = γ hTh = γ ‖h‖22,∇3 f (0)(h, h, h) = AG(h, h, h), and f is self-

concordant at the origin with parameter σ ∈ Q if and only if

[AG(h, h, h)]2 ≤ 4σγ 3[hTh]3 = 2

27

(

1 − 1

k − 1

)

[hTh]3

for all h ∈ R
n+m . This problem is of the form:

Problem 2 Given a symmetric A ∈ Q
(n+m)×(n+m)×(n+m) and a positive q ∈ Q, is it true

that for every h ∈ R
n+m , we have [A(h, h, h)]2 ≤ q[hTh]3?

Problems 1 and 2 are mathematically equivalent, being logical complements of each
other. However they may or may not have the same computational complexity depending on
our choice of reduction [16]. Using Cook reduction, also know as polynomial-time Turing
reduction [16], Problems 1 and 2 have equivalent computational complexity, i.e., deciding
self-concordance is NP-hard. However, using Karp reduction, also know as polynomial-
time many-one reduction [16], the NP-hardness of Problem 1 implies the co-NP-hardness of
Problem 2. In either case, our conclusion is that self-concordance is intractable.

Theorem 3 Deciding whether a cubic polynomial is self-concordant at the origin is NP-hard
under Cook reduction and co-NP-hard under Karp reduction.

Deciding self-concordance on the whole of Ω is of course at least as hard as deciding self-
concordance at a point in Ω and we obtain the following.

Corollary 1 For any Ω and any σ > 0, membership in Sσ (Ω) is NP-hard.

The argument in this section clearly works not just for cubic polynomials but for any
f ∈ C3(Ω) as long as 0 ∈ Ω,∇2 f (0) = γ I , and ∇3 f (0) = AG — other derivatives and
the remainder term in the Taylor expansion of f at x = 0 may be chosen arbitrarily as long as
f stays convex inΩ . This flexibility allows one to extend the construction above to functions
with other desired properties. For instance, we may want an example where Ω = R

n and
since cubic polynomials cannot be convex on the whole of R

n , we will need a quartic f and
therefore need to choose∇4 f (0) accordingly; orwemaywant an examplewhere f is a barrier
function, which is equivalent to f having an epigraph {(x, t) ∈ R

n+1 : x ∈ Ω, f (x) ≤ t}
that is closed. One may trivially replace 0 by any point a ∈ R

n by considering the function
fa(x) = f (x − a) on Ω = Bε(a).
Whilewe have proved our hardness result for functions onΩ ⊆ R

n , it is easy to extend this
to any R-vector space, for example, symmetric matrices S

n×n or polynomials R[x1, . . . , xn],
or even Riemannian manifolds with a non-trivial class of geodesically convex functions (i.e.,
not just the constant functions). Since self-concordance at a point is a local property, a choice
of coordinate patch would transform the problem to one in R

n ; and by our remark at the end
of Sect. 2, it will in fact be independent of our choice of coordinates.

The reason our conclusion in Theorem 3 is given as NP- and co-NP-hardness as opposed
to NP- and co-NP-completeness is that checking a condition like [A(h, h, h)]2 ≤ q[hTh]3,
even if the certificate h is in Q

n , could well require exponential time when time complexity
is measured in units of bit operations.
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5 Inapproximability of optimal self-concordance parameter

Let A ∈ Q
n×n×n be symmetric and f : Ω → R be defined by the cubic polynomial

f (x) = 1
2 xTx + A(x, x, x). As in Sect. 4, Ω is chosen to be a neighborhood of the origin so

that f is convex on Ω . The condition (2) for self-concordance of f at x = 0 with parameter
σ > 0 may be written as

|A(h, h, h)| ≤ 2
√

σ‖h‖32 (12)

for all h ∈ R
n . This is equivalent to requiring

max
h 
=0

A(h, h, h)

‖h‖32
≤ 2

√
σ, (13)

as A(−h,−h,−h) = −A(h, h, h) and we may drop the absolute value in (12).
Since A ∈ R

n×n×n is a symmetric 3-hypermatrix, the spectral norm [6] of A may be
expressed as follows:

‖A‖2,2,2 := max
h1,h2,h3 
=0

A(h1, h2, h3)

‖h1‖2‖h2‖2‖h3‖2 = max
h 
=0

A(h, h, h)

‖h‖32
,

where the second equality follows fromBanach’s result on the polarization constant ofHilbert
spaces (see [2] and [17]). Hence the optimal self-concordance parameter of f at x = 0, i.e.,
the smallest value of σ so that (13) holds, is given by

σopt = 1

4
‖A‖22,2,2. (14)

The spectral norm of a 3-hypermatrix is NP-hard to approximate to within a certain
constant factor by [6, Theorem 1.11], which we state here for easy reference.

Theorem 4 (Hillar–Lim) Let A ∈ Q
n×n×n and N be the input size of A in bits. Then it is

NP-hard to approximate ‖A‖2,2,2 to within a factor of 1 − ε where

ε = 1 −
(

1 + 1

N (N − 1)

)−1/2

= 1

2N (N − 1)
+ O

(

1

N 4

)

.

By (14) and Theorem 4, σopt is NP-hard to approximate to within a factor of 1
4 (1 − ε)2

and consequently we have the following inapproximability result.

Corollary 2 There is no polynomial time approximation scheme for determining the optimal
self-concordance parameter σopt unless P = NP.

See [5] and [7] for more extensive approximability results and approximation algorithms
(that are not ptas). The results in [7] for quartic polynomials would apply to the optimal
second-order self-concordance parameter in the next section.

6 Complexity of deciding second-order self-concordance

There is also an interesting notion of second-order self-concordance due to Jarre [10]. This
requires that f ∈ C4(Ω) and is given by a condition involving the matrix ∇2 f (x) ∈ R

n×n

and the 4-hypermatrix ∇4 f (x) ∈ R
n×n×n×n .
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Definition 2 (Jarre) If Ω ⊆ R
n is a convex open set, then f : Ω → R is said to be

second-order self-concordant with parameter τ > 0 at x ∈ Ω if

∇2 f (x)(h, h) ≥ 0 (15)

and
∇4 f (x)(h, h, h, h) ≤ 6τ

[∇2 f (x)(h, h)
]2 (16)

for all h ∈ R
n ; f is second-order self-concordant on Ω if it is so for all x ∈ Ω .

Note that

∇4 f (x)(h, h, h, h) =
∑n

i, j,k,l=1

∂4 f (x)

∂xi∂x j∂xk∂xl
hi h j hkhl ,

is a quartic polynomial in h for any fixed x ∈ Ω .
We follow the same argument in Sect. 4 to show that deciding (16) isNP-hard. This time the

resultwould be deduced fromMotzkin–StrausTheoremexcept that for better parallelismwith
Sect. 4, we will use the quartic-maximization-over-sphere form (6) instead of the quadratic-
maximization-over-simplex form (3).

Given a graph G = (V, E) with n vertices and m edges where n ≥ 2 and m ≥ 1, we
define BG ∈ Q

n×n×n×n by

bi jkl =
{

1 i = k, j = l, and {i, j} ∈ E,

0 otherwise.

Let AG = [ai jkl ] ∈ Q
n×n×n×n be the symmetrization of BG , i.e.,

ai jkl = 1

4! (bi jkl + bi jlk + · · · + blk ji ),

where the indices run over all 24 possible permutations. So A = [ai jkl ]n
i, j,k,l=1 ∈ Q

n×n×n×n

is symmetric and AG(h, h, h, h) = BG(h, h, h, h). As in (6),

max‖h‖=1
AG(h, h, h, h) = max

h∈Sn−1

∑

{i, j}∈E
h2

i h2
j = 1

2

(

1 − 1

ω(G)

)

by Motzkin–Straus Theorem. As in Sect. 4, for k ≥ 2, deciding if a k-clique exists in G is
equivalent to deciding if ω(G) > k − 1. So deciding if

AG(h, h, h, h) >
1

2

(

1 − 1

k − 1

)

[hTh]2 (17)

for some h ∈ R
n is NP-hard. Given self-concordance parameter τ ∈ Q, τ > 0, let

γ :=
[

1

12τ

(

1 − 1

k − 1

)]1/2

. (18)

We may now define f : Ω → R accordingly as the quartic polynomial

f (x) = γ

2
xTx + AG(x, x, x, x) = γ

2

∑n

i=1
x2i +

∑n

i, j,k,l=1
ai jkl xi x j xk xl .

Hence ∇2 f (0)(h, h) = γ hTh = γ ‖h‖22 and ∇4 f (0)(h, h, h, h) = AG(h, h, h, h). Again
we chooseΩ to be a neighborhood of the origin so that f is convex onΩ . So f is second-order
self-concordant at x = 0 with parameter τ if and only if

AG(h, h, h, h) ≤ 6τγ 2[hTh]2 = 1

2

(

1 − 1

k − 1

)

[hTh]2 (19)
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is satisfied for all h ∈ R
n . Since the problem of deciding if there exists an h ∈ R

n satisfying
(17) and the problem of deciding if (19) is satisfied for all h ∈ R

n are logical complements
and the former is NP-hard, we have the following.

Theorem 5 Deciding if a quartic polynomial is second-order self-concordant at the origin
is NP-hard under Cook reduction and co-NP-hard under Karp reduction.

Self-concordance and second-order self-concordance are conditions involving high-order
tensors (orders 3 and 4 respectively), their NP-hardness serves as yet another reminder of the
complexity of tensor problems [6].

Acknowledgements We would like to thank the anonymous referees for their careful reading and helpful
suggestions.

References

1. Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic
polynomials and related problems. Math. Progr. Ser. A 137(1–2), 453–476 (2013)

2. Banach, S.: Über homogene polynome in (L2). Stud. Math. 7(1), 36–44 (1938)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
4. De Klerk, E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. Cent.

Eur. J. Oper. Res. 16(2), 111–125 (2008)
5. He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with

quadratic constraints. Math. Progr. Ser. B 125(2), 353–383 (2010)
6. Hillar, C. J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 39 (Art. 45) (2013)
7. Hou, K., So, A.M.-C.: Hardness and approximation results for L p-ball constrained homogeneous poly-

nomial optimization problems. Math. Oper. Res. 39(4), 1084–1108 (2014)
8. Jiang, B., Li, Z., Zhang, S.: On cones of nonnegative quartic forms. Found. Comput. Math. (2016). doi:10.

1007/s10208-015-9286-4
9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-

plexity of Computer Computations, pp. 85–103. Plenum, New York (1972)
10. Jarre, F.: A new line-search step based on theWeierstrass℘-function for minimizing a class of logarithmic

barrier functions. Numer. Math. 68(1), 81–94 (1994)
11. Lang, S.: Differential and Riemannian Manifolds, 3rd edn., Graduate Texts in Mathematics, vol. 160.

Springer, New York (1995)
12. Lim, L.-H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear Algebra, 2nd edn. CRC

Press, Boca Raton (2013)
13. Motzkin, T., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17,

533–540 (1965)
14. Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. Preprint

(2003). http://edoc.bib.ucl.ac.be:83/archive/00000238/01/dp2003-71
15. Nesterov, Yu., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM

Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)
16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
17. Pappas, A., Sarantopoulos, Y., Tonge, A.: Norm attaining polynomials. Bull. Lond. Math. Soc. 39(2),

255–264 (2007)

123

http://dx.doi.org/10.1007/s10208-015-9286-4
http://dx.doi.org/10.1007/s10208-015-9286-4
http://edoc.bib.ucl.ac.be:83/archive/00000238/01/dp2003-71

	Self-concordance is NP-hard
	Abstract
	1 Introduction
	2 Self-concordance in terms of tensors
	3 Maximizing a cubic form over a sphere
	4 Complexity of deciding self-concordance
	5 Inapproximability of optimal self-concordance parameter
	6 Complexity of deciding second-order self-concordance
	Acknowledgements
	References




