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Abstract. We study the semialgebraic structure of Dr, the set of nonnegative tensors of non-
negative rank not more than r, and use the results to infer various properties of nonnegative tensor
rank. We determine all nonnegative typical ranks for cubical nonnegative tensors and show that
the direct sum conjecture is true for nonnegative tensor rank. We show that nonnegative, real, and
complex ranks are all equal for a general nonnegative tensor of nonnegative rank strictly less than the
complex generic rank. In addition, such nonnegative tensors always have unique nonnegative rank-r
decompositions if the real tensor space is r-identifiable. We determine conditions under which a best
nonnegative rank-r approximation has a unique nonnegative rank-r decomposition: For r ≤ 3, this
is always the case; for general r, this is the case when the best nonnegative rank-r approximation
does not lie on the boundary of Dr. Many of our general identifiability results also apply to real
tensors and real symmetric tensors.
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1. Introduction. In many applications, notably algebraic statistics [34, 33, 5,
4, 49, 30, 3], one frequently needs to find (i) the nonnegative rank, (ii) a nonnegative
rank-r decomposition, or (iii) a best nonnegative rank-r approximation, of a nonneg-
ative third order tensor. Such problems also arise, for instance, in chemometrics [45]
and hyperspectral imaging [58], where quantities like concentration and intensity can
only take on nonnegative values. This article addresses questions pertaining to these
three problems using tools from semialgebraic geometry.

Questions regarding nonnegative decompositions of a nonnegative tensor are often
regarded as being more difficult than the corresponding questions over the complex
numbers. One reason is that the tools of classical algebraic geometry are often at one’s
disposal in the latter case but not the former. In this article we study nonnegative
tensors under the light of semialgebraic geometry. The first main result of our article
(cf. Theorem 24) is that for a general nonnegative tensor with nonnegative rank strictly
less than the complex generic rank, its rank over complex numbers, real numbers, and
nonnegative real numbers, are all equal. Furthermore, for such a nonnegative tensor,
its nonnegative rank-r decomposition is unique if the real tensor space is r-identifiable.
We determine the nonnegative typical ranks in Propositions 39 and 40 and show in
Lemma 14 that the nonnegative direct sum conjecture is true, i.e., the nonnegative
rank of the direct sum of two nonnegative tensors equals the sum of the respective
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nonnegative ranks. In our earlier work [50], we showed that a general nonnegative
tensor has a unique best nonnegative rank-r approximation. But it remains to be seen
whether this approximation itself has a unique nonnegative rank-r decomposition; we
show that this is the case for r ≤ 3 in Theorem 48 and, for general r, we show in
Corollary 46 that uniqueness holds for an open subset of nonnegative tensors under
some conditions on the tensor space.

The paper is organized as follows. Section 2 lists some preliminary facts in semi-
algebraic geometry. The definition of X-rank and its basic properties are introduced
in section 3. Lemma 10 is necessary to determine nonnegative typical ranks in Propo-
sitions 39 and 40. Our main contributions are then presented in sections 5, 6, 7.
Although we focus on nonnegative tensors, some of our techniques apply almost ver-
batim to real tensors and real symmetric tensors, and thus we will also derive a few
identifiability results for such tensors.

We begin with a short list of standard definitions. Let V1, . . . , Vd be vector spaces
over a field K, and denote the dual of Vi by V ∗i . The tensor space V ∗1 ⊗ · · · ⊗ V ∗d is
the space of multilinear K-valued functions on V1 × · · · × Vd. Its elements are called
order-d tensors or d-tensors or just tensors if the order is implicit. We will write
Kn1×···×nd = Kn1⊗· · ·⊗Knd and regard the elements as d-dimensional hypermatrices.

A nonzero tensor in V1 ⊗ · · · ⊗ Vd is said to have rank-one if it is of the form
v1 ⊗ · · · ⊗ vd, where vi ∈ Vi and v1 ⊗ · · · ⊗ vd is defined by

v1 ⊗ · · · ⊗ vd(u1, . . . , ud) = v1(u1) · · · vd(ud)

for all ui ∈ V ∗i . The rank of a nonzero tensor T , denoted by rank(T ), is the minimum
number r such that T is a sum of r rank-one tensors. In addition, rank(T ) = 0 iff
T = 0. An expression of T as a sum of r = rank(T ) rank-one tensors is called a rank-r
decomposition.1 A rank-r decomposition

(1.1) T =

r∑
i=1

Ti, Ti = u
(1)
i ⊗ · · · ⊗ u

(d)
i ,

is said to be (essentially) unique if the unordered set {Ti : i = 1, . . . , r} is unique

[22], i.e., each u
(k)
i is unique up to permutation and scaling [40, 36, 41, 27, 44]. The

tensor space V1 ⊗ · · · ⊗ Vd is said to be r-identifiable if a general rank-r tensor has a
unique rank-r decomposition [19]. There has been intense research on tensor ranks
and uniqueness of rank-r decompositions. See [22] for a review.

We note that the names parafac, candecomp, canonical polyadic, or cp de-
composition have often been used in the literature for (1.1). However (1.1) and the
corresponding notion of rank were originally proposed by Hitchcock [39], and it was
followed by many subsequent works in mathematics long before the psychometricians
[15, 37] coined the names candecomp and parafac. Hitchcock had used “polyadic”
in a different sense and the terms cp rank and cp decompositions are better known as
something entirely different [7, 14, 46, 51]. As such we think it is fair to use a neutral
and unambiguous term like “rank-r decomposition” to describe (1.1).

In this article, the field K will be either the field of real numbers R or complex
numbers C. We will also extend the above to a semiring, denoted by R. Of particular
interest to us is the semiring of nonnegative real numbers R+ := [0,∞). It is possible
that R = R or C, i.e., a result stated for a semiring would also apply to a field unless

1An expression of T as a sum of s rank-one tensors where s is not necessarily rank(T ) will just
be called an s-term decomposition.
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stated otherwise. For convenience of notation, all our results are stated for 3-tensors,
i.e., d = 3, although most of them can be generalized to tensors of arbitrary order
without difficulties.

2. Semialgebraic geometry. In this section we briefly review some well-known
facts in semialgebraic geometry, providing, in particular, a summary of the relevant
portions of [13, 24, 48, 31, 25] for our later use.

A semialgebraic subset of Rn is the union of finitely many subsets of the form

{x ∈ Rn : P (x) = 0, Q1(x) > 0, . . . , Qm(x) > 0},

where P,Q1, . . . , Qm ∈ R[X1, . . . , Xn] are polynomials in n variables with real coeffi-
cients. Let S and T be semialgebraic sets. A map f : S → T is called semialgebraic
if its graph G(f) := {(s, t) ∈ S × T : f(s) = t} is semialgebraic. A semialgebraic set
is called nonsingular if it is an open subset of the set of nonsingular points of some
algebraic set. A Nash manifold is a semialgebraic analytic submanifold of Rn and a
Nash mapping between Nash manifolds is an analytic mapping with a semialgebraic
graph.

A point p in a semialgebraic set S is said to be general with respect to some
property P if the points in S that do not have the property P are all contained
in a semialgebraic subset C of S with dimC < dimS and p /∈ C. To aid read-
ers unacquainted with the notion, we give familiar measure theoretic and topological
interpretations of a general point but note that these cannot replace its formal defini-
tion. Given the Lebesgue measure µ on S, if a point p ∈ S is general with respect to a
property P, then (i) C := {q ∈ S : q does not satisfy P} is a measure-zero subset of
S and (ii) p /∈ C. Hence in the sense of measure theory, the statement that a general
point satisfies P is equivalent to the statement that almost every point satisfies P.
On the other hand, in the sense of topology, the statement that a general point satis-
fies P has a stronger connotation—it implies that the subset C lies in a hypersurface
of S. Take S = R, for example; that a general point satisfies P implies that at most
finitely many points in R do not satisfy P. Note that this is a stronger conclusion
than “almost every point in S satisfies P” in the measure theoretic sense.

Let f : M → N be a Nash mapping between Nash manifolds M and N . The usual
semialgebraic version of Sard’s theorem [13] says that the set of critical values of f
is a semialgebraic subset of N with smaller dimension. As we focus on polynomial
maps in this article, we have the following stronger version of Sard’s theorem about
critical points of f .

Lemma 1. Let f : Rm → Rn be a nonconstant polynomial map. Then the set of
critical points of f is a subvariety of Rm, with dimension strictly less than m.

Proof. Let d := dim Im f and ∇f be the Jacobian of f (i.e., the matrix of first
order partial derivatives if we choose coordinates). Then every d × d minor of ∇f
must vanish on the points x ∈ Rm, where ∇f(x) has rank strictly less than d. At
least one of these minors is not identically zero since there are points x ∈ Rm where
∇f(x) has rank exactly d . Thus these minors define a subvariety whose dimension
is strictly less than m.

Aside from Sard’s theorem, we also quote a few selected results and definitions
from [13, 31] for the reader’s easy reference. These results are somewhat technical and
although they logically belong to this section, we will not need them until section 7.
In particular, sections 3 through 6 do not require any of the following.
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Theorem 2 (Nash tubular neighborhood). Let N ⊂ Rn be a Nash submanifold.
Then there is an open semialgebraic neighborhood U ⊂ Rn and a Nash retraction
f : U → N such that dist(p,N) = ‖p − f(p)‖ for each p ∈ U . Here ‖ · ‖ denotes the
Euclidean norm in Rn.

Definition 3. A Whitney stratification of a semialgebraic set S ⊆ Rn is a finite
partition of S into semialgebraically connected submanifolds S =

⋃
i Si satisfying the

following two conditions, known, respectively, as the “frontier condition” and “Whit-
ney condition (a).”

(i) For i 6= j, if Si ∩ cl(Sj) 6= ∅, then Si ⊆ cl(Sj) \ Sj.
(ii) For any sequence of points (xk) in a stratum Sj, if xk converges to a point y in

a stratum Si, and the sequence of tangent (dimSj)-dimensional planes Txk
Sj

converges to a (dimSj)-dimensional plane T , then T contains the tangent
(dimSi)-dimensional plane TySi.

Given two finite families {Bi} and {Cj} of subsets of Rn, {Bi} is said to be
compatible with {Cj} if Bi ∩ Cj = ∅ or Bi ⊆ Cj for all i and j.

Theorem 4. For semialgebraic subsets S,C1, . . . , Cm of Rn, S admits a Whitney
stratification compatible with C1, . . . , Cm.

Proposition 5. Let f : S → Rn be a semialgebraic function on a semialgebraic
set. Then S admits a Whitney stratification S =

⋃
i Si such that each graph of f |Si

is a nonsingular semialgebraic set.

Proposition 6. Let S be a nonsingular semialgebraic set, and f : S → Rn be a
function such that G(f) is nonsingular and semialgebraic. Then the set of points of S
where f is not differentiable is contained in a closed lower-dimensional semialgebraic
subset of S.

3. X-ranks. There has been several attempts to describe tensor ranks in differ-
ent settings in a unified and general way, e.g. [10, 57] but they do not usually include
nonnegative rank as a special case. Here we introduce a generalization of X-rank [60]
to the setting of an arbitrary cone X and coefficients in a semiring R in order to treat
nonnegative, real, and complex tensor ranks in a unified setting.

Definition 7. Let K be a field and R ⊆ K be a semiring. Given a vector space
V over K and a subset X ⊆ V , an R-span of X, denoted by spanR(X), is the set of
all finite R-linear combinations of elements of X, that is,

spanR(X) :=

{
k∑
i=1

αixi : k > 0, αi ∈ R, xi ∈ X

}
.

When R = K, an R-span is a subspace. When K = R and R = R+, an R-span
is a convex cone. We will denote the R+-cone of nonnegative vectors in a vector
space V by either2 V + or V+. Note that in order to specify V+, we will need to first
specify a choice of basis on V . See [50] for further discussions. With this notation,
V +

1 ⊗ · · · ⊗ V
+
d is the cone of nonnegative tensors as defined in [50, Definition 2].

Definition 8. We say X is an R-cone, if for x ∈ X we always have λx ∈ X for
any λ ∈ R. Given an R-cone X, for any p ∈ spanR(X), the X-rank of p, rankX(p),
is defined to be

rankX(p) := min{r : p = x1 + · · ·+ xr; x1, . . . , xr ∈ X}.
2Allowing both superscript and subscript provides notational flexibility when indices or powers

are involved.
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Recall that in algebraic geometry, the affine cone X ⊆ Kn over a projective vari-
ety Y ⊆ KPn−1 is defined as X := π−1(Y ) ∪ {0}, where π : Kn \ {0} → KPn−1,
(x1, . . . , xn) 7→ [x1 : · · · : xn] is the canonical projection. Note that an affine cone is a
K-cone in the sense of Definition 8.

(i) Let R = K = R, V = V1⊗ · · · ⊗Vd, and X be the cone of tensors of rank ≤ 1
(i.e., affine cone over the real projective Segre variety). Then rankX(p) is the
real rank of p, usually denoted rankR(p). Real tensor rank is invariant under
the action of GL(V1)×· · ·×GL(Vd), where GL(V ) denotes the general linear
group of V .

(ii) Let R = R+, K = R, V = V1⊗· · ·⊗Vd, and X be the R+-cone of nonnegative
tensors of rank ≤ 1. Then rankX(p) is the nonnegative rank of p, usually
denoted rank+(p). Nonnegative tensor rank is invariant under the action of

{(g1, . . . , gd) ∈ GL(V1)× · · · ×GL(Vd) : gi(V
+
i ) ⊆ V +

i , i = 1, . . . , d}.

Note that this set is just a monoid—it does not necessarily contain the inverses
of its elements.

(iii) Let R = K be an algebraically closed field and X be the affine cone over an
irreducible nondegenerate projective variety. Then rankX(p) is the X-rank
as defined in [60, 41, 10]. X-rank is invariant under the automorphism group
of X, a subgroup of GL(V ).

The discussions above are purely algebraic but subsequent discussions will require
topological structures on our vector space and field. Recall that a topological vector
space over a topological field is one where the vector addition and scalar multiplication
are continuous. We will not require any results regarding topological vector space
beyond its definition.

Definition 9. Let V be a finite-dimensional topological vector space over a topo-
logical field K of characteristic zero, and R ⊆ K be a semiring. Let X ⊆ V be
an R-cone such that spanR(X) contains a nonempty open subset of V . If the set
{p ∈ spanR(X) : rankX(p) = r} contains a nonempty open subset of V , then r is called
a typical X-rank. In particular, when K = C and V is endowed with the Zariski topol-
ogy, r is called a complex generic X-rank whenever {p ∈ spanC(X) : rankX(p) = r}
contains a nonempty Zariski open subset of V . The maximum typical X-rank is

max{r : r is a typical X-rank of spanR(X)},

whereas the maximum X-rank is

max{rankX(p) : p ∈ spanR(X)}.

To provide a more familiar perspective, when K = R or C and V is endowed
with the Euclidean topology and the Lebesgue measure, then r is a typical X-rank
whenever {p ∈ spanR(X) : rankX(p) = r} has positive measure.

Recall that a variety is called irreducible if it is not the union of two nonempty
proper subvarieties. If the ideal of an affine variety X ⊆ Cn is generated by polynomi-
als with real coefficients f1, . . . , fk, we will denote by X(R) the set of real points of X,
i.e., X(R) = X ∩ Rn. In fact X(R) equals the zero locus of f1, . . . , fk in Rn. On the
other hand, if Y ⊆ Rn is a real variety defined by real polynomials f1, . . . , fk, we will
denote by Y (C) the complexification of Y , the complex variety defined by f1, . . . , fk
in Cn. For an irreducible real affine variety Y ⊆ Rn, its complexification Y (C) is also
irreducible [10]. Furthermore Y is Zariski dense in Y (C) if and only if Y (C) has a
nonsingular real point [10, 53].
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A (projective) variety X ⊆ V (X ⊆ PV ) is said to be nondegenerate if X is
not contained in any hyperplane. It is shown in [10, Theorem 2] that when X is an
irreducible nondegenerate real projective variety whose complexification X(C) has a
real smooth point, there is a unique complex generic X-rank, and it is equal to the
minimum real typical X-rank. For example, the space of 2 × 2 × 2 tensors has the
complex generic rank 2 and the real typical ranks 2 and 3 [26].

We deduce the following lemma using an argument in [32], where it is proved for
the case K = R, V = V1 ⊗ V2 ⊗ V3, and X = {A ∈ V : rankR(A) ≤ 1}. See also [8,
Theorem 1.1] for the case where X is the affine cone of a nondegenerate irreducible
real projective variety.

Lemma 10. Let K = R and X be a nonempty semialgebraic R-cone whose Zariski
closure X is a nondegenerate irreducible real variety that is Zariski dense in X(C).
If m and M are two typical X-ranks, then any integer between m and M is also a
typical X-rank.

Proof. Let dimV = n. For each k ∈ N, define the polynomial map ϕk by

ϕk : X × · · · ×X → spanR(X), (x1, . . . , xk) 7→ x1 + · · ·+ xk.

Assume without loss of generality that m ≤ M and suppose that r ∈ {m, . . . ,M} is
the minimum integer which is not a typical X-rank. For any fixed k ∈ N and for any
open subsetW ⊆ V , ϕ−1

k (W) is open in X×· · ·×X; thus it is a union of open subsets
of the form U1 × · · · × Uk, where each Ui is open in X. Since X is irreducible, the
dimension of each Ui equals dimX. By [38, Exercise II.3.22], the dimension of each
ϕr(U1×· · ·×Ur) equals n. So every nonempty open subset of Imϕr has dimension n.
Since r is not a typical rank, Imϕr \ Imϕr−1 does not contain a subset of dimension
n, and thus Imϕr \ Imϕr−1 does not contain an open subset of Imϕr, which implies
that a general p = x1 + · · ·+ xr ∈ Imϕr is within Imϕr−1, i.e., p = x̃1 + · · ·+ x̃r−1.
Hence a general q = x1 + · · · + xr+1 ∈ Imϕr+1 can be written with r summands as
q = x̃1 + · · ·+ x̃r−1 +xr+1, which is in Imϕr. But we may repeat the same argument
to conclude that q is in Imϕr−1. So by induction, a general point in ImϕM is in
Imϕr−1, i.e., dim ImϕM \ Imϕr−1 < dimV , contradicting our assumption that M is
a typical X-rank.

We will require the use of Lemma 10 in Propositions 39 and 40. This simple
lemma is surprisingly potent. As an illustration we provide a short proof for the main
result in [9] (see also [8]), that every integer between b(d + 2)/2c and d is a typical
rank of Sd(R2), originally conjectured in [23].

Corollary 11 (Blekherman). Every m with b(d + 2)/2c ≤ m ≤ d is a typical
rank of Sd(R2).

Proof. The complex generic rank b(d+ 2)/2c is necessarily the minimum typical
rank by [10]. It has been shown in [16] that f ∈ Sd(R2) has real rank d if and only if
f has d distinct real roots when regarded as a degree-d homogeneous polynomial in
two variables. Since d is the maximum real rank [23], and having d distinct real roots
imposes an open condition on Sd(R2), d is therefore the maximum typical rank. The
required result then follows from Lemma 10.

We now introduce a semialgebraic version of Terracini’s lemma. First observe
that for semialgebraic sets X,Y ⊆ V , if we define the semialgebraic map ϕ by

ϕ : X × Y → V, (x, y) 7→ x+ y,

then Im(ϕ) is semialgebraic by the Tarski–Seidenberg theorem.
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Lemma 12 (semialgebraic Terracini’s lemma). Let X and Y be nonempty semi-
algebraic subsets. Suppose their Zariski closures X, Y are irreducible real varieties
and that X(C), Y (C) have real smooth points. Then for general points x ∈ X and
y ∈ Y , the tangent space of ϕ(X × Y ) at x+ y is the span of the tangent spaces TxX
and TyY , i.e.,

Tx+yϕ(X × Y ) = span{TxX,TyY }.

Proof. Since X and Y are irreducible and have real smooth points, ϕ(X × Y ) is
irreducible and its complexification ϕ(X × Y )(C) has real smooth points. Thus the
set of smooth points of ϕ(X × Y ) is open dense in ϕ(X × Y ). Then for a general
(x, y) ∈ X × Y , ϕ(x, y) = x+ y is smooth in ϕ(X × Y ). Hence

Tx+yϕ(X × Y ) = ϕ∗(T(x,y)X × Y ) = ϕ∗(TxX ⊕ TyY )

= TxX + TyY = span{TxX,TyY }.

The following is also immediate from Tarski–Seidenberg theorem and our earlier
work.

Proposition 13. Dr := {A ∈ Rn1×···×nd
+ : rank+(A) ≤ r} is a closed semi-

algebraic set, i.e., there exists a finite number of polynomials P1, . . . , Pm with real
coefficients that cuts out Dr as a set, i.e.,

Dr = {A ∈ Rn1×···×nd : P1(A) ≥ 0, . . . , Pm(A) ≥ 0}.

Furthermore, Cr := {A ∈ Rn1×···×nd
+ : rank+(A) = r} is also a semialgebraic set but

not closed in general.

Proof. By the Tarski–Seidenberg theorem [13], Dr is a semialgebraic set and thus
so is Cr = Dr \Dr−1. By [45, Proposition 6.2], Dr is closed.

4. Direct sum conjecture for nonnegative rank. We now show that the
direct sum conjecture is true for nonnegative rank. Given vector spaces V1, . . . , Vd,
and W1, . . . ,Wd over K, for any A ∈ V1 ⊗ · · · ⊗ Vd and B ∈ W1 ⊗ · · · ⊗Wd, we have
the direct sum A⊕B ∈ (V1⊕W1)⊗ · · ·⊗ (Vd⊕Wd). For d = 2, it is obvious that the
rank of a block diagonal matrix is the sum of the ranks of the diagonal blocks, i.e., if
A and B are matrices, then

rank(A⊕B) = rank

([
A 0
0 B

])
= rank(A) + rank(B).

Strassen [55] has conjectured that the same is true for d > 2, i.e., rank(A ⊕ B) =
rank(A) + rank(B) for any d-tensors. This has been a long-standing open problem
in algebraic computational complexity. We show here that the analogous statement
for nonnegative rank is true. The next two results are true for nonnegative tensors of
arbitrary order d but we will state and prove them for d = 3 for notational simplicity.

In the following, let U1, V1, W1, U2, V2, W2 be real vector spaces of dimensions
m1, n1, p1, m2, n2, p2, respectively. Fix a basis for each vector space and choose
the bases for U1 ⊕ U2, V1 ⊕ V2, and W1 ⊕ W2 so that for a = (a1, . . . , am1

) ∈ U1

and b = (b1, . . . , bm2
) ∈ U2, a⊕ b has coordinates a⊕ b = (a1, . . . , am1

, b1, . . . , bm2
) in

U1 ⊕ U2; likewise, for V1 ⊕ V2 and W1 ⊕W2.

Lemma 14 (nonnegative direct sum conjecture). For A ∈ U+
1 ⊗ V

+
1 ⊗W

+
1 and

B ∈ U+
2 ⊗ V

+
2 ⊗W

+
2 ,

rank+(A⊕B) = rank+(A) + rank+(B).
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Proof. Fix a basis for each vector space and let aijk and bi′j′k′ denote the co-
ordinates of A and B. Note that (A ⊕ B)ijk = aijk, (A ⊕ B)i′j′k′ = bi′j′k′ , and
other terms are zero. Suppose that r := rank+(A⊕B) < rank+(A) + rank+(B). Let
A⊕B =

∑r
i=1 ui⊗ vi⊗wi. Then at least one of the summands ui⊗ vi⊗wi is neither

in U+
1 ⊗ V

+
1 ⊗W

+
1 nor in U+

2 ⊗ V
+
2 ⊗W

+
2 . So without loss of generality we may

assume that u1 ∈ (U1 ⊕ U2)+ \ (U+
1 ⊕ {0} ∪ {0} ⊕ U

+
2 ). Thus at least one of the

following indices

(i, j′, k), (i, j, k′), (i, j′, k′), (i′, j, k′), (i′, j′, k), (i′, j, k),

which we denote by (α, β, γ), will be such that (A ⊕ B)αβγ is positive, a
contradiction.

We may also deduce the following, clearly also true for d > 3, from the above proof.

Corollary 15. If A and B have unique nonnegative rank decompositions in
U+

1 ⊗ V
+
1 ⊗W

+
1 and U+

2 ⊗ V
+
2 ⊗W

+
2 , respectively, then A ⊕ B also has a unique

nonnegative rank decomposition.

For a real tensor A ∈ Rm1×···×md ⊆ Rn1×···×nd , the real rank of A regarded as
a tensor in Rm1×···×md equals the real rank of A regarded as a tensor in Rn1×···×nd

[26, Proposition 3.1]. As a corollary of Lemma 14, we see that this also holds for
nonnegative rank.

In the following, let U1 ⊆ U2, V1 ⊆ V2, and W1 ⊆ W2 be inclusions of real
vector spaces. Choose bases for U2, V2, and W2 such that u ∈ U1 has coordinates
u = (u1, . . . , um1

, 0, . . . , 0) as a vector in U2; likewise, for V2 and W2. Then we have
the following corollary, which is stated for d = 3, but can be easily generalized to
arbitrary d > 3.

Corollary 16. Let A ∈ U+
1 ⊗V

+
1 ⊗W

+
1 ⊆ U

+
2 ⊗V

+
2 ⊗W

+
2 . Then the nonnegative

rank of A regarded as a nonnegative tensor in U+
1 ⊗ V

+
1 ⊗W

+
1 is the same as the

nonnegative rank of A regarded as a nonnegative tensor in U+
2 ⊗ V

+
2 ⊗W

+
2 .

Proof. Let U ′1 ⊆ U2 be a complementary subspace of U1, i.e., U2 = U1 ⊕ U ′1. So
u′ ∈ U ′1 has coordinates u′ = (0, . . . , 0, u′m1+1, . . . , u

′
m2

) as a vector in U2. Likewise, we
let V ′1 ⊆ V2 and W ′1 ⊆ W2 be complementary subspaces of V1 and W1. The required
statement then follows from applying Lemma 14 to the case A ∈ U+

1 ⊗V
+
1 ⊗W

+
1 and

B := 0 ∈ U ′+1 ⊗ V
′+
1 ⊗W ′+1 .

The following simple observation is a nonnegative analogue of [26, Corollary 3.3]. We
assume that we fix a basis for each Vi so that V +

i is defined, i = 1, . . . , d.

Proposition 17. For any k ∈ {2, . . . , d− 1}, let A ∈ V +
1 ⊗ · · ·⊗V

+
k be arbitrary

and let uk+1 ∈ V +
k+1, . . . , ud ∈ V

+
d be nonzero. Then

rank+(A) = rank+(A⊗ uk+1 ⊗ · · · ⊗ ud).

Proof. The isomorphism of R+-cones,

V +
1 ⊗ · · · ⊗ V

+
k
∼= V +

1 ⊗ · · · ⊗ V
+
k ⊗ spanR+

(uk+1)⊗ · · · ⊗ spanR+
(ud),

given by A 7→ A⊗ uk+1 ⊗ · · · ⊗ ud implies the required equality.

5. General equivalence of complex, real, and nonnegative ranks. It is
well known that a real tensor may have different real and complex ranks. Likewise a
nonnegative tensor may also have different nonnegative and real ranks. In fact, strict
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inequality can also occur for the nonnegative and real ranks of a nonnegative matrix,
a well-known example was provided by Robbins in [22].

For the case of 3-tensors, two explicit examples are as follows. Let e1, e2 ∈ R2 be
the standard basis vectors, i.e., e1 = [1, 0]T, e2 = [0, 1]T. Let

A = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2,(5.1)

B = e1 ⊗ e1 ⊗ e1 − e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1.

Then A ∈ R2×2×2
+ ⊆ R2×2×2 and B ∈ R2×2×2 ⊆ C2×2×2. We have

rankC(A) = rankR(A) = 2 < 4 = rank+(A),

rankC(B) = 2 < 3 = rankR(B).

See section 6 for the nonnegative, real, and complex ranks of A and [26] for the real
and complex ranks of B. We will show in this section that this does not happen for a
general nonnegative tensor of nonnegative rank strictly less than the complex generic
rank—its nonnegative, real, and complex ranks will all be equal.

For notational simplicity we focus on 3-tensors, although many of the statements
and proofs in this section can be generalized without difficulty to d-tensors for any
d > 3. Let U , V , and W be real vector spaces of dimensions nU , nV , and nW ,
respectively. Denote by VC the complexification of V , i.e., VC = V ⊗R C.

We define the polynomial map

(5.2)

ΣC
r : (UC × VC ×WC)r → UC ⊗ VC ⊗WC,

(u1, v1, w1, . . . , ur, vr, wr) 7→
r∑
i=1

ui ⊗ vi ⊗ wi,

and denote the restriction of ΣC
r to (U × V × W )r by ΣR

r , and the restriction to

(U+ × V+ ×W+)r by Σ
R+
r . We have the following commutative diagram:

(5.3)

(U+ × V+ ×W+)r U+ ⊗ V+ ⊗W+

(U × V ×W )r U ⊗ V ⊗W

(UC × VC ×WC)r UC ⊗ VC ⊗WC

Σ
R+
r

ΣR
r

ΣC
r

Henceforth, we will use the following abbreviated notation when specifying an
element of (U × V ×W )r,

(5.4) (u1, . . . , wr) := (u1, v1, w1, . . . , ur, vr, wr).

Then we have

Im ΣR+
r = Dr := {A ∈ U+ ⊗ V+ ⊗W+ : rank+(A) ≤ r}.

The notation is consistent with Proposition 13, which also implies that Im Σ
R+
r is

closed. Note that Im ΣR
r and Im ΣC

r are usually not closed.
As in Definition 9, if rg is the complex generic rank of UC ⊗ VC ⊗ WC, then

the set of rank-rg tensors contains a Zariski open subset. Put in another way, the
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complex generic rank is the minimum r such that the morphism ΣC
r is dominant. As

we mentioned earlier, the result [10, Theorem 2] shows that the complex generic rank
equals the minimum real typical rank.

The expected dimension of Im ΣR
r is min{r(nU + nV + nW − 2), nUnV nW } and

thus the expected complex generic rank is⌈
nUnV nW

nU + nV + nW − 2

⌉
,

which is at least rg.

Definition 18. If dim(Im ΣR
r ) < min{r(nU + nV + nW − 2), nUnV nW }, then

U ⊗ V ⊗W is called r-defective over R.

The definition of defectivity over C, i.e., identical to Definition 18 but with U, V,W
being complex vector spaces, is classical in algebraic geometry [59]. More generally,
a complex projective variety X is called r-defective [17] if the rth secant variety
of X does not have the expected dimension. In our context this is equivalent to
dimC(Im ΣC

r ) < min{r(nU + nV + nW − 2), nUnV nW }. Note that if U ⊗ V ⊗W is
r-identifiable, then U ⊗ V ⊗W is not r-defective.

Lemma 19. Let r < rg. Then a general A ∈ Dr has real rank r.

Proof. Let the Jacobian of ΣR
r be ∇ΣR

r . If rank(∇ΣR
r−1) = rank(∇ΣR

r ) at general
points, then inductively,

rank(∇ΣR
r−1) = rank(∇ΣR

r ) = rank(∇ΣR
r+1) = · · ·

at general points, which implies that

dim(Im ΣR
r−1) = dim(Im ΣR

r ) = · · · = nUnV nW .

Hence if r < rg, rank(∇ΣR
r−1) < rank(∇ΣR

r ) at general points, implying that

dim(Im ΣR
r−1) < dim(Im ΣR

r ).

On the other hand, since (U+×V+×W+)r contains an open subset of (U ×V ×W )r,

by Lemma 1, ∇Σ
R+
r = ∇ΣR

r at a general point, Im Σ
R+
r contains an open subset of

Im ΣR
r , i.e.,

dim(Dr−1) = dim(Im Σ
R+

r−1) = dim(Im ΣR
r−1)

< dim(Im ΣR
r ) = dim(Im ΣR+

r ) = dim(Dr).

Thus a general A ∈ Dr has nonnegative rank r, and the real rank of A is also r.

We now relate real rank to complex rank (and later to nonnegative rank) via
general relations between real algebraic varieties and their complexifications. For a
field of characteristic zero K, we write KPn for the projective space of dimension n
over K. As we briefly mentioned after Definition 8, the affine cone of a projective
variety X ⊆ KPn is the affine variety

X̂ := {x ∈ Kn+1 : π(x) ∈ X} ∪ {0} = π−1(X) ∪ {0},

where π : Kn+1 → KPn is the natural projection that takes a point x ∈ Kn+1 to the
equivalence class π(x) = {λx ∈ Kn+1 : λ ∈ K×} ∈ KPn.
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Definition 20. Let X,Y ⊆ KPn be projective varieties. Let ϕ : X̂ × Ŷ → Kn+1,
(x, y) 7→ x+ y. The join of X and Y is the projective variety J(X,Y ) ⊆ KPn whose

affine cone is the Zariski closure of the image ϕ(X̂× Ŷ ) ⊆ Kn. The kth secant variety
of X is the projective variety defined by

σK
k (X) :=

{
J(X,X) if k = 2,

J
(
X,σK

k−1(X)
)

if k > 2.

We define

Var(RPn) := {X ⊆ RPn : X a real projective variety that is

(i) irreducible, (ii) nondegenerate, (iii) Zariski dense in X(C)}.

Let I(X) ⊆ R[x0, . . . , xn] be the homogeneous ideal of X and rg(X) be the com-
plex generic X-rank. Standard elimination theory (see [52, section 2.1] and [10, sec-
tion 2.2]) yields the following relation between a real secant variety and its complexi-
fication.

Lemma 21. Let X ∈ Var(RPn) and r < rg(X). Then there exists a set of ho-
mogeneous generators f1, . . . , fm of the ideal I

(
σR
r (X)

)
that also generates the ideal

I
(
σC
r (X(C))

)
. In particular, σC

r (X(C)) is the complexification of σR
r (X).

It is also not difficult to see the following relation between smooth points on a
real secant variety and general points on its complexification.

Lemma 22. Let X ∈ Var(RPn) and r < rg(X). Then σR
r (X) ∈ Var(RPn).

Proof. It suffices to show that at least one point in σR
r (X) is a smooth point in

σC
r (X(C)). Suppose not. Then σR

r (X) is in the singular locus of σC
r (X(C)). Let

k = dimσC
r (X(C)). Then σR

r (X) satisfies the equations given by the vanishing of the
(n− k)× (n− k) minors of∂f1/∂x0 · · · ∂f1/∂xn

...
. . .

...
∂fm/∂x0 · · · ∂fm/∂xn

 ,
which are defined over R. On the other hand, these minors are not all in I

(
σR
r (X)

)
as σR

r (X) itself has at least one real smooth point—a contradiction. Hence at least
one point in σR

r (X) is a smooth point of σC
r (X(C)).

By [2, Corollary 1.8], σC
r−1(X(C)) is in the singular locus of σC

r (X(C)). Applying
this to X = Seg(PU × PV × PW ), the Segre variety of rank-one tensors, we obtain
the following from Lemma 22.

Lemma 23. Let r < rg. Then a general real tensor A of real rank r has complex
rank r.

Theorem 24. Let r < rg. Then a general A ∈ Dr has both real rank and complex
rank equal to r. If U⊗V ⊗W is r-identifiable, then A has a unique nonnegative rank-r
decomposition.

Proof. The claims about ranks are just Lemmas 19 and 23. Since Dr contains an
open subset of Im ΣR

r , a general point in Dr has a unique rank-r decomposition.
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There has been a significant amount of work on both defectivity [56, 43, 1] and
identifiability [40, 54, 19, 27, 28, 12, 21, 29]. While these focus mainly on complex
tensors, some of these methods can also be adapted to real tensors. Two notable
examples are [19, Theorem 1.1] and [29, Proposition 1.6], stated below for real tensors.

Theorem 25 (Chiantini–Ottaviani). Let U, V , and W be real vector spaces with
dimensions dimU ≤ dimV ≤ dimW . Let α, β be minimum integers such that 2α ≤
dimU and 2β ≤ dimV . Then U ⊗ V ⊗W is r-identifiable if r ≤ 2α+β−2.

Theorem 26 (Domanov–De Lathauwer). Let U, V , and W be real vector spaces
with dimensions dimU = m, dimV = n, and dimW = p. If

2 ≤ m ≤ n ≤ p ≤ r and 2r ≤ m+ n+ 2p− 2−
√

(m− n)2 + 4p,

then U ⊗ V ⊗W is r-identifiable.

Applying Theorem 25 to Theorem 24, we obtain explicit examples.

Corollary 27. Let n ≥ 4 and r ≤ bn2/16c. A general A ∈ Rn×n×n+ with
rank+(A) = r has complex rank r (and therefore real rank r) and a unique nonnegative
rank-r decomposition.

In fact we may also derive identifiability results for real tensors from the identifi-
ability results for complex tensors.

Lemma 28. Let X ∈ Var(RPn) and r < rg(X). If a general point in σC
r (X(C))

has a unique rank-r decomposition, then a general point in σR
r (X) has a unique com-

plex rank-r decomposition.

Proof. Suppose not, then there is some nonempty Euclidean open subset U of
σR
r (X) such that any point in U does not have a unique complex rank-r decomposi-

tion. By assumption, the set of points in σC
r (X(C)) that do not have unique rank-r

decompositions is contained in a subvariety Y ⊆ σC
r (X(C)). Then U ⊂ Y , and so

the Zariski closure of U , i.e., σR
r (X), is contained in Y . But by Lemma 22, σR

r (X) is
Zariski dense in σC

r (X(C)), a contradiction.

Lemma 28 does not guarantee that a general point in σR
r (X) has a unique real

rank-r decomposition as there may be a Euclidean open subset in σR
r (X) where every

point has real rank greater than r. We now apply Lemma 28 to the case X =
Seg(PU × PV × PW ).

Theorem 29. Let U, V , and W be real vector spaces and let r < rg. If UC⊗VC⊗
WC is r-identifiable, then U ⊗ V ⊗W is r-identifiable.

Proof. If we have that UC ⊗ VC ⊗WC is r-identifiable, then a general point in
σC
r (Seg(PUC×PVC×PWC)) has a unique complex rank-r decomposition. By Lemma 28,

a general point in σR
r (Seg(PU × PV × PW )) has a unique complex rank-r decompo-

sition. Since Im ΣR
r contains a Euclidean open subset of σR

r (Seg(PU × PV × PW )), a
general point A ∈ Im ΣR

r has real rank r and a unique complex rank-r decomposition.
By Lemma 23, A has complex rank r; and so the unique complex rank-r decompo-
sition of A is in fact its unique real rank-r decomposition. Therefore U ⊗ V ⊗W is
r-identifiable.

A consequence of Theorem 29 is the following corollary of [21, Theorem 1.1].
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Corollary 30. Let n1 ≥ · · · ≥ nd and

r0 =


d∏
i=1

ni

1 +
d∑
i=1

(ni − 1)

 .
Then Rn1×···×nd is r-identifiable for r < r0 if

∏d
i=1 ni ≤ 15000 and (n1, . . . , nd, r) is

not one of the following cases:

(n1, . . . , nd) r

(4, 4, 3) 5
(4, 4, 4) 6
(6, 6, 3) 8

(n, n, 2, 2) 2n− 1
(2, 2, 2, 2, 2) 5

n1 >
∏d
i=2 ni −

∑d
i=2(ni − 1) r ≥

∏d
i=2 ni −

∑d
i=2(ni − 1)

By Lemma 22, we may also apply the algorithm proposed in [21] for complex
tensors to directly test if a general real tensor of real rank-r or a general nonnega-
tive tensor of nonnegative rank-r has a unique complex rank-r decomposition. The
sufficient condition to ensure the smoothness of a specific complex tensor in [21,
Lemma 5.1] may also be adapted to real tensors.

This discussion would not be complete without examples of nonidentifiability
cases. As most of the nonidentifiability cases in the literature are for the complex
case, we provide a result that allows us to translate them to the real case.

Lemma 31. Let V1, . . . , Vd be real vector spaces of dimensions n1, . . . , nd, respec-
tively. Let U1, . . . , Ud be their complexifications, i.e., Ui = Vi ⊗R C, i = 1, . . . , d. If
U1 ⊗ · · · ⊗ Ud is r-defective and r < rg, then V1 ⊗ · · · ⊗ Vd is also r-defective.

Proof. Let A =
∑r
i=1 v

(1)
i ⊗ · · · ⊗ v

(d)
i ∈ V1 ⊗ · · · ⊗ Vd be a general real rank-r

tensor. Let

X := Seg(PV1 × · · · × PVd) and X(C) := Seg(PU1 × · · · × PUd).

By our semialgebraic Terracini’s lemma, i.e., Lemma 12,

TAσ̂
R
r (X) = spanR{V1 ⊗ v(2)

1 ⊗ · · · ⊗ v(d)
1 , . . . , v(1)

r ⊗ · · · ⊗ v(d−1)
r ⊗ Vd}.

By Lemma 22, A is a smooth point of σC
r (X(C)), and thus by the usual complex

Terracini’s lemma,

TAσ̂
C
r (X(C)) = spanC{U1 ⊗ v(2)

1 ⊗ · · · ⊗ v(d)
1 , . . . , v(1)

r ⊗ · · · ⊗ v(d−1)
r ⊗ Ud}.

By assumption,

dimC TAσ̂
C
r (X(C)) < r(n1 + · · ·+ nd − d+ 1),

i.e., there exist u
(k)
1 , . . . , u

(k)
r ∈ Ui with [u

(k)
i ] 6= [v

(k)
i ] ∈ PUi for k = 1, . . . , d, i =

1, . . . , r, and

u
(1)
1 ⊗ v

(2)
1 ⊗ · · · ⊗ v(d)

1 + · · ·+ v(1)
r ⊗ · · · ⊗ v(d−1)

r ⊗ u(d)
r = 0.
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By taking the real part or the imaginary part of each u
(k)
i , we have dimR TAσ̂

R
r (X) <

r(n1 + · · ·+ nd − d+ 1), i.e., V1 ⊗ · · · ⊗ Vd is r-defective.

Using the corresponding results for complex tensors in [1, 12] and Lemma 31, we
deduce the following nonuniqueness result for real tensors.

Theorem 32.
(i) R4×4×3 is 5-defective. So a general 4 × 4 × 3 real tensor of real rank 5 does

not have a unique rank-5 decomposition over R.
(ii) For any n ≥ 2, Rn×n×2×2 is (2n−1)-defective. So a general n×n×n×2 real

tensor of real rank 2n−1 does not have a unique rank-(2n−1) decomposition
over R.

(iii) For n1 ≥ · · · ≥ nd ≥ 2, Rn1×···×nd is r-defective if

n1 >
d∏
i=2

ni −
d∑
i=2

(ni − 1) and r ≥
d∏
i=2

ni −
d∑
i=2

(ni − 1).

So a general (n1 × · · · × nd)-real tensor of real rank r < rg does not have a
unique rank-r decomposition over R.

A complex analogue of Theorem 32 may be found in [21, Theorem 1.1].
We may also apply the techniques in this section to obtain analogous results

for real symmetric tensors. We will denote the set of real or complex symmetric d-
tensors by Sd(Rn) or Sd(Cn), respectively. We say Sd(Cn) is r-identifiable if a general
symmetric rank-r tensor in Sd(Cn) has a unique symmetric rank decomposition (also
known as Waring decomposition). Applying Lemma 28 to X = νd(RPn), the Veronese
variety of symmetric rank-one symmetric tensors, we deduce the following.

Theorem 33. Let r < rg(νd(RPn)). If Sd(Cn+1) is r-identifiable, then Sd(Rn+1)
is r-identifiable.

When r < rg(νd(RPn)), the r-identifiability of Sd(Cn+1) has been completely
determined for all values of r, d, n [20, Theorem 1.1]; this together with Lemma 28
gives us the following.

Corollary 34. Sd(Rn+1) is r-identifiable when

r <

⌈(n+d
d

)
n+ 1

⌉
and if (d, n, r) /∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)}.

Proof. This follows from [18], [6, Theorem 1.1], [47, Theorem 4.1], and [20, The-
orem 1.1].

6. Typical and maximum nonnegative ranks. In this section, we investi-
gate typical, maximum, and maximum nonnegative typical ranks, as defined in Def-
inition 9. The following rephrases [45, Proposition 6.2] in the context of this article
and may be viewed as a generalization of [11, Theorem 3.1].

Proposition 35. Let A ∈ U+ ⊗ V+ ⊗W+ with rank+(A) = r. Then there is an
open ball B(A, ε) ⊆ U ⊗ V ⊗W such that

rank+(A′) ≥ r

for all A′ ∈ B(A, ε) ∩ U+ ⊗ V+ ⊗W+.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1570 YANG QI, PIERRE COMON, AND LEK-HENG LIM

It follows immediately that the maximum nonnegative typical rank and the max-
imum nonnegative rank always coincide.

Lemma 36. If r is the maximum nonnegative rank of U+ ⊗ V+ ⊗W+, then r is
the maximum nonnegative typical rank.

What about the minimum nonnegative typical rank then? It turns out that it is
always equal to the (complex) generic rank.

Lemma 37. The minimum nonnegative typical rank of U+⊗V+⊗W+ is the com-
plex generic rank rg of UC ⊗ VC ⊗WC.

Proof. Since (U+ × V+ × W+)r contains an open subset of (U × V × W )r, by

Lemma 1, rank(∇Σ
R+
r ) = rank(∇ΣR

r ) at general points. Hence dim Im(Σ
R+
r ) =

dim Im(ΣR
r ), which implies that rg is the minimum nonnegative typical rank.

We will illustrate these with a 2 × 2 × 2 example. In this case, the complex
generic rank of C2×2×2 is 2 and the real typical ranks of R2×2×2 are 2 and 3 [26].
By Lemmas 10, 36, and 37, to completely determine the nonnegative typical ranks
of R2×2×2

+ , it remains to find the maximum nonnegative rank. We will construct a
nonnegative tensor with maximum nonnegative rank explicitly. Consider the tensor

(6.1) A = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2

that we saw earlier in (5.1). A may be represented by a nonnegative hypermatrix

A =

[
1 0 0 1
0 1 1 0

]
∈ R2×2×2

+ .

Now let A =
∑r
k=1 xk ⊗ yk ⊗ zk be a nonnegative rank-r decomposition. Then we

must be able to write A =
∑r′

k=1Xk ⊗ zk, where each Xk is a nonnegative matrix.
Observe that zk cannot be of the form αe1 + βe2, where α, β > 0. Otherwise by the
nonnegativity of each zk and Xk, there is some i, j ∈ {1, 2} such that the (i, j, 1)th
coordinate and the (i, j, 2)th coordinate of A are both positive, which contradicts the
construction of A. Hence we must have zk = e1 or e2 for all k = 1, . . . , r′. So without
loss of generality we may assume that z1 = e1 and z2 = e2. Then X1 = e1⊗e1+e2⊗e2

and X2 = e1 ⊗ e2 + e2 ⊗ e1. By the uniqueness of the nonnegative decompositions
of X1 and X2, the nonnegative rank-r decomposition of A in (6.1) is unique. Hence
rank+(A) = 4. Since any T ∈ R2×2×2

+ has the form T = Y1⊗e1 +Y2⊗e2, where Y1, Y2

are nonnegative matrices, and the nonnegative rank of a nonnegative 2× 2 matrix is
at most 2, we may conclude that the nonnegative rank of T is at most 4. Thus the
nonnegative typical ranks of R2×2×2

+ are 2, 3, and 4.
Both the real and complex ranks of A are 2 [26]. In fact for any A′ in a sufficiently

small open ball B(A, ε), both the real and complex ranks of A′ are also 2. If in
addition, A′ ∈ B(A, ε)∩(R2×2×2

+ ), then the nonnegative rank of A′ is 4. This example
can be generalized as follows.

Lemma 38. Let P1, . . . , Pn ∈ Rn×n+
∼= Rn+ ⊗ Rn+ be n permutation matrices such

that for each (i, j) ∈ {1, . . . , n} × {1, . . . , n}, there is one and only one Pk whose
(i, j)th entry is one. Let e1, . . . , en ∈ Rn+ be the standard basis of Rn. Define

A = P1 ⊗ e1 + · · ·+ Pn ⊗ en ∈ Rn×n×n+ .

Then rank+(A) = n2 and A has a unique nonnegative rank-n2 decomposition.
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Proof. It suffices to show that A has a unique nonnegative rank-n2 decomposition.
Suppose

A =
n2∑
i=1

[
n∑
j=1

αji ej

]
⊗

[
n∑
j=1

βji ej

]
⊗

[
n∑
j=1

γji ej

]

for nonnegative αji , β
j
i , γ

j
i . Without loss of generality, we may assume α1

1, β
1
1 , γ

1
1 6= 0.

Since there is only one Pk whose (1, 1)th entry is nonzero, this Pk must be P1 and
γj1 = 0 for all j > 1. Repeating this procedure we may show that when we regard

A as a nonnegative matrix in Rn
2×n

+
∼= Rn×n+ ⊗ Rn+, it has a unique nonnegative

matrix factorization given by A = P1 ⊗ e1 + · · · + Pn ⊗ en. Since each Pk has a
unique nonnegative matrix factorization [42], A has a unique nonnegative rank-n2

decomposition.

A d-tensor in V1 ⊗ · · · ⊗ Vd is said to be cubical if dimV1 = · · · = dimVd. By [43,
Theorem 4.4], [56, Theorem 4.6], Lemmas 10, 37, 36, and 38, we completely determine
the nonnegative typical ranks of cubical nonnegative tensors.

Proposition 39. For n = 2, the nonnegative typical ranks of R2×2×2
+ are given

by all integers m where

2 ≤ m ≤ 4.

For n = 3, the nonnegative typical ranks of R3×3×3
+ are given by all integers m where

5 ≤ m ≤ 9.

For n ≥ 4, the nonnegative typical ranks of Rn×n×n+ are given by all integers m where⌈
n3

3n− 2

⌉
≤ m ≤ n2.

For nonnegative tensors that are not cubical, we may determine the maximum
nonnegative typical ranks but since the complex generic ranks for 3-tensors are still
not known in some instances, we do not have a complete list of nonnegative typical
ranks.

Proposition 40. Write maxrank+(m,n, p) for the maximum nonnegative typical
rank of Rm×n×p+ and suppose without loss of generality that m ≥ n ≥ p. Then

maxrank+(m,n, p) =


np if m = n ≥ p,
n2 if m ≥ n = p,

np if m > n > p.

Proof. The required arguments are as in the proof of Lemma 38 but “padded
with the appropriate number of zeros,” i.e., applied to matrices of the form[

Pk
0

]
or

[
Pk 0

]
,

where Pk is a permutation matrix.

7. General uniqueness of decompositions of approximations. In our
previous work [50], we established that a general nonnegative tensor has a unique
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best nonnegative rank-r approximation. Here we investigate whether this best non-
negative rank-r approximation has a unique nonnegative rank-r decomposition.

Let U, V,W be real vector spaces of dimensions nU , nV , nW , respectively. We will
assume a choice of basis on these vector spaces, so that U ∼= RnU , V ∼= RnV , and
W ∼= RnW . For a vector ui ∈ U , we let ui,j denote the jth coordinate of ui. Likewise
for V and W . For any smooth curve γ(t), t ∈ [0, 1], the right derivative at 0 is denoted
by

γ′(0) := lim
t→0+

γ(t)− γ(0)

t− 0
.

Recall the map Σ
R+
r : (U+ × V+ ×W+)r → U+ ⊗ V+ ⊗W+ defined in (5.2) and (5.3).

The pushforward of Σ
R+
r at γ′(0) is denoted by

Σ
R+
r∗
(
γ′(0)

)
:= lim

t→0+

Σ
R+
r

(
γ(t)

)
− Σ

R+
r

(
γ(0)

)
t− 0

.

Let Sr ⊆ U+ ⊗ V+ ⊗ W+ denote the set of nonnegative tensors on which the
distance function dist(·, Dr) is not smooth. Then Sr contains the nonnegative ten-
sors with nonunique best nonnegative rank-r approximations and is a nowhere dense
semialgebraic subset [35]. Let πr : U+ ⊗ V+ ⊗W+ \ Sr → Dr be the map sending a
nonnegative tensor to its unique best nonnegative rank-r approximation. Since the
distance function dist(·, Dr) is semialgebraic [24, 35], the graph of πr,

G(πr) = {(p, q) ∈ (U+ ⊗ V+ ⊗W+ \ Sr)×Dr : dist(p,Dr) = ‖p− q‖},

is also semialgebraic. By Proposition 6, the subset of points in U+⊗V+⊗W+ \Sr at
which πr is not smooth is contained in a hypersurface Hr. Henceforth we will focus
on the restriction of πr (also denoted πr with a slight abuse of notation) to a subset
of smooth points in U+ ⊗ V+ ⊗W+,

πr : U+ ⊗ V+ ⊗W+ \ (Sr ∪Hr)→ Dr.

In the following the support of a vector u ∈ U is defined to be

supp(u) := {i ∈ {1, . . . , nU} : ui 6= 0}.

The next lemma is a slight rephrase of [50, Lemma 13]. We will use it to partition
Dr into a union of semialgebraic sets later.

Lemma 41. Let p ∈ U+ ⊗ V+ ⊗W+ \ (Sr ∪Hr), where πr(p) has a nonnegative
rank-r decomposition

(7.1) πr(p) =
r∑
i=1

ui ⊗ vi ⊗ wi.

Then for any xi ∈ U+, i = 1, . . . , r, we have

(7.2) 〈p, xi ⊗ vi ⊗ wi〉 ≤ 〈πr(p), xi ⊗ vi ⊗ wi〉 ,

where 〈·, ·〉 denotes the Euclidean inner product. With respect to the nonnegative
vectors u1, . . . , ur in (7.1), define the subspaces

(7.3) Ũi := {u ∈ U : supp(u) ⊆ supp(ui)}
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for i = 1, . . . , r, and define Ṽi and W̃i similarly. Then for xi ∈ Ũi, i = 1, . . . , r, we
have

(7.4) 〈p, xi ⊗ vi ⊗ wi〉 = 〈πr(p), xi ⊗ vi ⊗ wi〉 .

The analogous statement for Ṽi or W̃i in place of Ũi holds true as well.

We first remind the reader of our abbreviated notation in (5.4). Let

Tπr(p)(u1, . . . , wr) := spanR

(⋃r

i=1
Ũi ⊗ vi ⊗ wi ∪ ui ⊗ Ṽi ⊗ wi ∪ ui ⊗ vi ⊗ W̃i

)
.

By Lemma 12, this is the tangent space of Dr at πr(p) when πr(p) is a smooth point
of Dr. Then (7.4) implies that3

(7.5) 〈Tπr(p)(u1, . . . , wr), p− πr(p)〉 = 0,

i.e., p− πr(p) is orthogonal to the subspace Tπr(p)(u1, . . . , wr).

Let σr denote the Euclidean closure of Im ΣR
r . Then Dr ⊆ σr. By the Tarski–

Seidenberg theorem, σr is semialgebraic. By [35, Theorem 3.7], a general A ∈ U ⊗
V ⊗W \σr has a unique best approximation π̃r(A) in σr. Note that for a nonnegative
A, π̃r(A) ∈ σr may be different from πr(A) ∈ Dr.

In order to study the best nonnegative rank approximations, i.e., the image of πr,
we first partition Dr into a union of special semialgebraic subsets. For any index set
Ii ⊆ {1, . . . , nU}, let

U+(Ii) := {u ∈ U+ : supp(u) = Ici }

and likewise for V+(Ji) and W+(Ki) with index sets Ji ⊆ {1, . . . , nV } and Ki ⊆
{1, . . . , nW }. Here Ici := {1, . . . , nU}\ Ii denotes the set-theoretic complement. Given
tuples of index sets

I = (I1, . . . , Ir), J = (J1, . . . , Jr), K = (K1, . . . ,Kr)

with Ii ⊆ {1, . . . , nU}, Ji ⊆ {1, . . . , nV }, Ki ⊆ {1, . . . , nW }, i = 1, . . . , r, we define a
cell of Dr corresponding to these index sets by

Dr(I, J,K) :=

{
A ∈ Dr : A =

r∑
i=1

ui ⊗ vi ⊗ wi,

ui ∈ U+(Ii), vi ∈ V+(Ji), wi ∈W+(Ki), i = 1, . . . , r

}
.

The notion of a cell is important for our study of uniqueness because of the following
easy observation.

Lemma 42. Let A ∈ Dr. If A belongs to distinct cells, then the nonnegative
r-term decomposition of A is not unique.

Clearly, if Ii = Ji = Ki = ∅ for all i = 1, . . . , r, then dimDr(I, J,K) = dimDr

and we call this the trivial cell. The union of all nontrivial cells is called the boundary
of Dr, and denoted by ∂Dr.

Lemma 43. If r < rg and U ⊗V ⊗W is not r-defective, then dim ∂Dr < dimDr.

3Our convention: 〈S, u〉 = 〈u, S〉 = 0 for S ⊆ U means that every vector in S is orthogonal to u;
〈S, T 〉 = 0 for S, T ⊆ U means that any vector in S is orthogonal to any vector in T .
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Proof. We first describe ∂Dr explicitly. Let α ∈ {1, . . . , nU} and i ∈ {1, . . . , r}.
Let Ũ+(α) = {u ∈ U+ : α /∈ supp(u)}. Define

∂D
(i,α)
r,U := ΣR+

r

(
(U+ × V+ ×W+)i−1 × (Ũ+(α)× V+ ×W+)× (U+ × V+ ×W+)r−i

)
.

We write

∂Dr,U :=
r⋃
i=1

nU⋃
α=1

∂D
(i,α)
r,U

and likewise define ∂Dr,V and ∂Dr,W . The boundary is then the union of these three
semialgebraic subsets,

∂Dr = ∂Dr,U ∪ ∂Dr,V ∪ ∂Dr,W .

From this description of ∂Dr, the required result is evident.

We caution our reader that our notion of boundary of Dr differs from both its
topological boundary and its algebraic boundary as defined in [3].

Let A ∈ U+ ⊗ V+ ⊗W+, where πr(A) has a nonnegative rank-r decomposition
πr(A) =

∑r
i=1 ui ⊗ vi ⊗ wi. If there is some i ∈ {1, . . . , r} such that strict inequality

holds in (7.2), i.e., there is some xi ∈ U+ with

〈A, xi ⊗ vi ⊗ wi〉 < 〈πr(A), xi ⊗ vi ⊗ wi〉 ,(7.6)

then π̃r(A) 6= πr(A) and πr(A) ∈ ∂Dr by Lemma 41. Similarly, if

〈A, ui ⊗ yi ⊗ wi〉 < 〈πr(A), ui ⊗ yi ⊗ wi〉(7.7)

or 〈A, ui ⊗ vi ⊗ zi〉 < 〈πr(A), ui ⊗ vi ⊗ zi〉(7.8)

for some yi ∈ V+ or zi ∈ W+, then π̃r(A) 6= πr(A) and πr(A) ∈ ∂Dr. We define the
following sets:

L = {πr(A) ∈ ∂Dr : πr(A) satisfies (7.6), (7.7), or (7.8)},(7.9)

N = {A ∈ U+ ⊗ V+ ⊗W+ \ (Sr ∪Hr) : πr(A) ∈ L}.(7.10)

We will next show that every positive tensor (i.e., a tensor whose coordinates are
positive) in N is an interior point.

Proposition 44. If A ∈ N is positive, then A has an open neighborhood V such
that V ⊆ N .

Proof. We first describe the structure of an open neighborhood B(A, η) of a pos-
itive A ∈ U+ ⊗ V+ ⊗W+ and its image πr(B(A, η)). By [50, Proposition 15], πr(A)
always has nonnegative rank-r. Since πr is smooth, for any δ > 0, there is some η > 0

such that πr(B(A, η)) ⊆ B(πr(A), δ) ∩Dr. Observe that
(
Σ

R+
r

)−1
(B(πr(A), δ) ∩Dr)

is a union of at most a countable number of products of open balls, say,⋃s

j=1

(
B(u

(j)
1 , δ

(j)
1 ) ∩ U+

)
× · · · ×

(
B(w(j)

r , δ(j)
r ) ∩W+

)
⊆ (U+ × V+ ×W+)r,

where s ∈ N ∪ {∞}, u(j)
i ∈ U+, v

(j)
i ∈ V+, w

(j)
i ∈ W+, and δ

(j)
i > 0 for i = 1, . . . , r,

and j = 1, . . . , s. By dimension count, there exists some j such that the image of

U := (B(u
(j)
1 , δ

(j)
1 ) ∩ U+)× · · · × (B(w(j)

r , δ(j)
r ) ∩W+)
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under Σ
R+
r contains an open subset of B(πr(A), δ) ∩Dr. For notational convenience,

we drop the superscript on u
(j)
i , v

(j)
i , w

(j)
i and write ui, vi, wi below. By decreasing δ

we may choose δ
(j)
1 = · · · = δ

(j)
r = ε for some ε > 0 small enough. Furthermore, we

may assume that πr(A) =
∑r
i=1 ui ⊗ vi ⊗ wi is a nonnegative rank-r decomposition.

So for any p ∈ B(A, η), πr(p) =
∑r
i=1 ui(p) ⊗ vi(p) ⊗ wi(p) is a nonnegative rank-r

decomposition of πr(p), where

‖ui − ui(p)‖ ≤ ε, ‖vi − vi(p)‖ ≤ ε, ‖wi − wi(p)‖ ≤ ε,

for i = 1, . . . , r. Thus

supp(ui) ⊆ supp(ui(p)), supp(vi) ⊆ supp(vi(p)), supp(wi) ⊆ supp(wi(p))(7.11)

for i = 1, . . . , r, and all ui(p), vi(p) and wi(p) depend continuously on p. The function
defined by

g(p) := 〈p− πr(p), xi ⊗ vi(p)⊗ wi(p)〉
is therefore continuous on B(A, η) for any fixed xi ∈ U+. If there is some xi ∈ U+

such that 〈A− πr(A), xi ⊗ vi ⊗wi〉 < 0, then by the continuity of g, there is an open
neighborhood V ⊆ B(A, η) such g(p) < 0 for all p ∈ V. Therefore V ⊆ N .

The following theorem is the main result of this section. It characterizes the
relation between the image of πr and the cells of Dr. Its implication on nonnegative
tensor decomposition and approximation will be given in Corollary 46.

Theorem 45. Let πr(A) ∈ Dr(I, J,K) for some cell Dr(I, J,K) 6= {0}. Let V
be an open neighborhood of A. Then πr(V) contains an open subset of Dr(I, J,K).

Proof. We consider two cases: If πr(V) is zero dimensional, then we are led to a
contradiction and so this case cannot occur. If πr(V) is positive dimensional, then we
show that it must have full dimension in Dr(I, J,K) and therefore the required result
follows.

Case 1. πr(V) = πr(A) is a point.

Let γ(t) be a curve in V with γ(0) = A. Then πr(γ(t)) = πr(A) for any t. By
(7.5) we have

〈Tπr(A)(u1, . . . , wr), γ(t)− πr(A)〉 = 0, 〈Tπr(A)(u1, . . . , wr), A− πr(A)〉 = 0,

implying that
〈Tπr(A)(u1, . . . , wr), γ(t)−A〉 = 0.

Since the curve γ(t) is arbitrary, we are led to the conclusion that

〈Tπr(A)(u1, . . . , wr), U ⊗ V ⊗W 〉 = 0,

contradicting the definition of Tπr(A)(u1, . . . , wr).

Case 2. πr(V) is of positive dimension.

We will show that dimπr(V) = dimDr(I, J,K). By (7.11), we may assume that
πr(A) is a smooth point of πr(V) without loss of generality. By giving πr(V) a finer
stratification, we may furthermore assume that πr(V) is a Nash manifold. Suppose
that dimπr(V) < dimDr(I, J,K). Then by Theorem 2 there is an open semialgebraic
neighborhood R of πr(V) in Dr(I, J,K) and a Nash retraction f : R → πr(V) such
that

dist(p, πr(V)) = ‖p− f(p)‖
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for any p ∈ R. So there is a smooth curve γ(t) ⊆ R such that γ(0) = πr(A) and
f(γ(t)) = πr(A). Let A(t) := A − πr(A) + γ(t) and X(t) := πr(A(t)) ⊆ πr(V). Note
that

γ(t), X(t) ⊆ Dr(I, J,K), A′(0), X ′(0) ∈ Tπr(A)(u1, . . . , wr).

By Lemma 41,

lim
t→0+

d

dt
〈A(t)−X(t), A(t)−X(t)〉 = 2〈A′(0)−X ′(0), A−X(0)〉 = 0.

In fact, for any s > 0 small enough, we have

d

dt
〈A(t)−X(t), A(t)−X(t)〉

∣∣∣
t=s

= 2〈A′(s)−X ′(s), A(s)−X(s)〉 = 0,

implying that ‖A(t)−X(t)‖ is constant around t = 0. On the other hand,

‖A(t)− γ(t)‖ = ‖A− πr(A)‖.

So by the uniqueness of πr(A(t)), X(t) = γ(t), contradicting γ(t) ⊆ R \ πr(V) for
t > 0. Therefore we must have dimπr(V) = dimDr(I, J,K).

Corollary 46. Let r < rg, U ⊗V ⊗W be r-identifiable, and A ∈ U+⊗V+⊗W+

be general. If the unique best nonnegative rank-r approximation πr(A) of A is not in
the boundary ∂Dr, then πr(A) has a unique nonnegative rank-r decomposition.

Proof. Since r < rg and U ⊗ V ⊗W is not r-defective, by Lemma 43,

dim ∂Dr < dimDr < dimU ⊗ V ⊗W.

For any smooth point q ∈ Dr, there is an open neighborhood Q ⊆ Dr of q such
that any point in Q is also smooth. By Theorem 2, there is an open semialgebraic
neighborhood R of Q in U+ ⊗ V+ ⊗W+ and a Nash retraction f : R → Q such that
dist(p,Q) = ‖p− f(p)‖ for every p ∈ R. By shrinking R if necessary, we may assume
that

‖p− f(p)‖ = dist(p,Q) = dist(p,Dr)

for every p ∈ R, i.e., πr(p) = f(p). Thus every smooth point of Dr is contained in
Im (πr), i.e., Im (πr) is a semialgebraic subset of Dr with

(7.12) dim Im (πr) = dimDr > dim ∂Dr.

The required result then follows from Theorems 24 and 45 with the trivial cell
Dr(I, J,K) ⊇ Dr \ ∂Dr.

A measure theoretic consequence of Corollary 46 is that there is a positive mea-
sured subset of nonnegative tensors, such that each nonnegative tensor in this subset
has a unique best nonnegative rank-r approximation, and furthermore this approxi-
mation has a unique nonnegative rank-r decomposition.

In the case of real tensors, it is possible that the best rank-r approximations
always lie on the boundary of the set of tensors of rank ≤ r [26, section 8]. So one
might perhaps wonder whether Corollary 46 is vacuous. Fortunately this is not the
case for nonnnegative tensors provided that r < rg and U ⊗V ⊗W is not r-defective.
In fact, the condition (7.12) implies that πr(A) is not always in ∂Dr.

For the special cases r = 2 and 3, we can say considerably more than Corollary 46.
We will first make an observation regarding the case when πr(A) ∈ L, where L is as
defined in (7.9).
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Lemma 47. Let πr(A) ∈ L. Then

supp(u1) ∪ · · · ∪ supp(ur) = {1, . . . , nU},
supp(v1) ∪ · · · ∪ supp(vr) = {1, . . . , nV },

supp(w1) ∪ · · · ∪ supp(wr) = {1, . . . , nW }.

Proof. Suppose 1 /∈
⋃r
i=1 supp(ui). Then by definition

〈A− πr(A), e1 ⊗ v1 ⊗ w1〉 ≤ 0,

where e1 = (1, 0, . . . , 0). Since the coordinate (πr(A))1jk = 0 for any j = 1, . . . , nV ,
k = 1, . . . , nW , and A is positive, we have that (A − πr(A))1jk > 0. On the other
hand, (e1 ⊗ v1 ⊗ w1)ijk = 0 for i 6= 1, and (e1 ⊗ v1 ⊗ w1)1jk ≥ 0. Hence

〈A− πr(A), e1 ⊗ v1 ⊗ w1〉 > 0,

a contradiction.

A cell Dr(I, J,K) is called admissible if⋂r

i=1
Ii =

⋂r

i=1
Ji =

⋂r

i=1
Ki = ∅.

By Proposition 44, Theorem 45, and Lemma 47, if A ∈ N , then there is an open
neighborhood V of A such that πr(V) contains an open subset of some admissible cell
Dr(I, J,K). For small values of r, we may check these admissible cells and possibly
obtain uniqueness for the nonnegative rank-r decomposition of πr(A) for a general A.
We will do this explicitly for r = 2 and 3.

Theorem 48. Let r = 2 or 3 and let nU , nV , nW ≥ 3. Then for a general A ∈
U+⊗V+⊗W+, its unique best nonnegative rank-r approximation πr(A) has a unique
nonnegative rank-r decomposition.

Proof. By Corollary 46, it remains to check the case πr(A) ∈ ∂Dr for a general A.
Theorem 45 and Lemma 47 further restrict the remaining case to checking (i) whether
πr(A) can be contained in an admissible cell, and (ii) whether πr(A) contained in an
admissible cell (if any) has a unique decomposition.

When r = 2, for a general p in any admissible cell Dr(I, J,K), let p = u1 ⊗ v1 ⊗
w1 + u2 ⊗ v2 ⊗ w2 be its nonnegative rank-2 decomposition. Then each set {u1, u2},
{v1, v2}, and {w1, w2} consists of a pair of linearly independent vectors. By [40], p has
a unique real rank-2 decomposition and thus the nonnegative rank-2 decomposition
is unique.

When r = 3, we may assume without loss of generality [26, Theorem 5.2] that
nU = nV = nW = 3. The only situation where a general point p of an admissible cell
Dr(I, J,K) does not have a unique nonnegative rank-r decomposition is if

I1 = I2 = {2, 3}, I3 ⊆ {1}, J1 = J3 = {2, 3}, J2 ⊆ {1},
K2 = K3 = {2, 3}, K1 ⊆ {1},

up to a permutation of the index set {1, 2, 3}. We claim that πr(A) cannot be con-
tained in such a cell Dr(I, J,K). Suppose not and πr(A) ∈ Dr(I, J,K), i.e.,

u1 = u2 = (1, 0, . . . , 0), v1 = v3 = (1, 0, . . . , 0), w2 = w3 = (1, 0, . . . , 0).
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Then (πr(A))1jk = 0 for j = 2, 3, k = 2, 3. Let

p = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ (w2 + z) + u3 ⊗ v3 ⊗ w3

for some z = (0, α, β) with α, β > 0 small enough. Then ‖A− p‖ < ‖A− πr(A)‖ for
a positive A, contradicting the definition of πr(A). Therefore πr(A) /∈ Dr(I, J,K), a
contradiction.

It is possible that a general point in an admissible cell Dr(I, J,K) may have non-
unique nonnegative rank-r decompositions. To show uniqueness, we need to exclude
such a possibility, i.e., check whether πr(A) is contained in such a cell for a typical
A. For small values of r, we may test all cells case by case but evidently this becomes
prohibitive for even moderately large values of r. Further results in this direction
would require more precise descriptions of I1, . . . ,Kr, where Dr(I, J,K)∩ Imπr 6= ∅.
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