Projection, matching, and basis pursuits for multilinear approximations

Lek-Heng Lim
University of California, Berkeley

July 10, 2008

Best r-term approximation

$$
f \approx \alpha_{1} f_{1}+\alpha_{2} f_{2}+\cdots+\alpha_{r} f_{r}
$$

- Target function $f \in \mathcal{H}$ vector space, cone, etc.
- $f_{1}, \ldots, f_{r} \in \mathscr{D} \subset \mathcal{H}$ dictionary.
- $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$ or \mathbb{C} (linear), \mathbb{R}_{+}(convex), $\mathbb{R} \cup\{-\infty\}$ (tropical).
- \approx with respect to $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$, some measure of 'nearness' between pairs of points (e.g. norms, metric, volumes, expectation, entropy, Brègman divergences, etc), want

$$
\operatorname{argmin}\left\{\varphi\left(f, \alpha_{1} f_{1}+\ldots \alpha_{r} f_{r}\right) \mid f_{i} \in \mathscr{D}\right\}
$$

- For concreteness, \mathcal{H} separable Hilbert space; measure of nearness is a norm, but not necessarily the one induced by its inner product.
- Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.

Dictionaries

- Number base: $\mathscr{D}=\left\{10^{n} \mid n \in \mathbb{Z}\right\} \subseteq \mathbb{R}$,

$$
\frac{22}{7}=3 \cdot 10^{0}+1 \cdot 10^{-1}+4 \cdot 10^{-2}+2 \cdot 10^{-3}+\cdots
$$

- Spanning set: $\mathscr{D}=\left\{\left[\begin{array}{c}1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{2}$,

$$
\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-1\left[\begin{array}{c}
1 \\
0
\end{array}\right] .
$$

- Taylor: $\mathscr{D}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\} \subseteq C^{\omega}(\mathbb{R})$,

$$
\exp (x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots
$$

- Fourier: $\mathscr{D}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\} \subseteq L^{2}(-\pi, \pi)$,

$$
\frac{1}{2} x=\sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\cdots
$$

- \mathscr{D} orthonormal basis, Schauder basis, Hamel basis, Riesz basis, frames, a dense spanning set.

More dictionaries

- Discrete cosine:

$$
\mathscr{D}=\left\{\left.\sqrt{\frac{2}{N}} \cos \left(k+\frac{1}{2}\right)\left(n+\frac{1}{2}\right) \frac{\pi}{N} \right\rvert\, k \in[N-1]\right\} \subseteq \mathbb{C}^{N} .
$$

- Peter-Weyl:

$$
\mathscr{D}=\left\{\left\langle\pi(x) \mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle \mid \pi \in \widehat{G}, i, j \in\left[d_{\pi}\right]\right\} \subseteq L^{2}(G)
$$

- Paley-Wiener:

$$
\mathscr{D}=\{\operatorname{sinc}(x-n) \mid n \in \mathbb{Z}\} \subseteq H^{2}(\mathbb{R})
$$

- Gabor:

$$
\mathscr{D}=\left\{e^{i \alpha n x} e^{-(x-m \beta)^{2} / 2} \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Wavelet:

$$
\mathscr{D}=\left\{2^{n / 2} \psi\left(2^{n} x-m\right) \mid(m, n) \in \mathbb{Z} \times \mathbb{Z}\right\} \subseteq L^{2}(\mathbb{R})
$$

- Friends of wavelets: $\mathscr{D} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$ beamlets, brushlets, curvelets, ridgelets, wedgelets, multiwavelets [Mohlenkamp, Pereyra; 2008].

Approximants

Definition

Dictionary $\mathscr{D} \subset \mathcal{H}$. For $r \in \mathbb{N}$, the set of \boldsymbol{r}-term approximants is

$$
\Sigma_{r}(\mathscr{D}):=\left\{\sum_{i=1}^{r} \alpha_{i} f_{i} \in \mathcal{H} \mid \alpha_{i} \in \mathbb{C}, f_{i} \in \mathscr{D}\right\} .
$$

Let $f \in \mathcal{H}$. The error of r-term approximation is

$$
\sigma_{n}(f):=\inf _{g \in \Sigma_{r}(\mathscr{D})}\|f-g\| .
$$

- Linear combination of two r-term approximants may have more than r non-zero terms.
- $\Sigma_{r}(\mathscr{D})$ not a subspace of \mathcal{H}. Hence nonlinear approximation.
- In contrast with usual (linear) approximation, ie.

$$
\inf _{g \in \operatorname{span}(\mathscr{D})}\|f-g\| .
$$

Small is beautiful

$$
f \approx \sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_{i} f_{i}
$$

- Want good approximation, ie. $\left\|f-\sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_{i} f_{i}\right\|$ small.
- Want sparse/concentrated representation, ie. $|\mathscr{I}|$ small.
- Sparsity depends on choice of \mathscr{D}.
- $\mathscr{D}_{10}=\left\{10^{n} \mid n \in \mathbb{Z}\right\}, \mathscr{D}_{3}=\left\{3^{n} \mid n \in \mathbb{Z}\right\} \subseteq \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{3} & =[0.33333 \cdots]_{10}=\sum_{n=1}^{\infty} 3 \cdot 10^{-n} \\
& =[0.1]_{3}=1 \cdot 3^{-1} .
\end{aligned}
$$

- $\mathscr{D}_{\text {fourier }}=\{\cos (n x), \sin (n x) \mid n \in \mathbb{Z}\}$,

$$
\frac{1}{2} x=\sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\cdots .
$$

- $\mathscr{D}_{\text {taylor }}=\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}$,

$$
\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots
$$

Bigger is better

- Union of dictionaries: allows for efficient (sparse) representation of different features
- $\mathscr{D}=\mathscr{D}_{\text {fourier }} \cup \mathscr{D}_{\text {wavelets }}$,
- $\mathscr{D}=\mathscr{D}_{\text {spikes }} \cup \mathscr{D}_{\text {sinusoids }} \cup \mathscr{D}_{\text {splines }}$,
- $\mathscr{D}=\mathscr{D}_{\text {wavelets }} \cup \mathscr{D}_{\text {curvelets }} \cup \mathscr{D}_{\text {beamlets }} \cup \mathscr{D}_{\text {ridgelets }}$.
- \mathscr{D} overcomplete or redundant dictionary. Trade off: computational complexity.
- Rule of thumb: the larger and more diverse the dictionary, the more efficient/sparser the representation.
- Observation: \mathscr{D} above all zero dimensional (at most countably infinite).
- Question: What about dictionaries with a continuously varying families of functions?
- Meta question: Why should tensor folks care about this?

Vectors, matrices, tensors: functions on finite sets

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Vector or n-tuple

$$
f:[n] \rightarrow \mathbb{R}
$$

If $f(i)=a_{i}$, then f is represented by $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]^{\top} \in \mathbb{R}^{n}$.

- Matrix

$$
f:[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j)=a_{i j}$, then f is represented by $A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}$. Normally $\mathbb{R}^{X}=\{f: X \rightarrow \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times[n]}, \mathbb{R}^{[l] \times[m] \times[n]}$.

Hilbert space structure

- $\ell^{2}([n]): \mathbf{a}, \mathbf{b} \in \mathbb{R}^{n},\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a}^{\top} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}$.
- $\ell^{2}([m] \times[n]): A, B \in \mathbb{R}^{m \times n},\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j=1}^{m, n} a_{i j} b_{i j}$.
- $\ell^{2}([/] \times[m] \times[n]): \mathcal{A}, \mathcal{B} \in \mathbb{R}^{\prime \times m \times n},\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i, j, k=1}^{l, m, n} a_{i j k} b_{i j k}$.
- In general,

$$
\begin{aligned}
\ell^{2}([m] \times[n]) & =\ell^{2}([m]) \otimes \ell^{2}([n]), \\
\ell^{2}([/] \times[m] \times[n]) & =\ell^{2}([/]) \otimes \ell^{2}([m]) \otimes \ell^{2}([n]) .
\end{aligned}
$$

- Frobenius norm

$$
\|\mathcal{A}\|_{F}^{2}=\sum_{i, j, k=1}^{1, m, n} a_{i j k}^{2}
$$

Hypermatrices and tensors

Up to choice of bases

- a $\in \mathbb{C}^{n}$ can represent a vector in V (contravariant) or a linear functional in V^{*} (covariant).
- $A \in \mathbb{C}^{m \times n}$ can represent a bilinear form $V \times W \rightarrow \mathbb{C}$ (contravariant), a bilinear form $V^{*} \times W^{*} \rightarrow \mathbb{C}$ (covariant), or a linear operator $V \rightarrow W$ (mixed).
- $\mathcal{A} \in \mathbb{C}^{1 \times m \times n}$ can represent trilinear form $U \times V \times W \rightarrow \mathbb{C}$ (contravariant), bilinear operators $V \times W \rightarrow U$ (mixed), etc.

A hypermatrix is the same as a tensor if
(1) we give it coordinates (represent with respect to some bases);
(2) we ignore covariance and contravariance.

Tensor ranks

- For $\mathbf{u} \in \mathbb{R}^{\prime}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$,

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}, \quad \sigma_{i} \in \mathbb{R}\right\}
$$

- Symmetric outer product rank. $\mathcal{A} \in S^{k}\left(\mathbb{R}^{n}\right)$,

$$
\operatorname{rank}_{s}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}, \quad \lambda_{i} \in \mathbb{R}\right\}
$$

- Nonnegative outer product rank. $\mathcal{A} \in \mathbb{R}_{+}^{1 \times m \times n}$,

$$
\operatorname{rank}_{+}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}, \quad \delta_{i} \in \mathbb{R}_{+}\right\}
$$

SVD, EVD, NMF of a matrix

- Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(\mathcal{A})=r, U \in \mathrm{O}(m)$ left singular vectors, $V \in \mathrm{O}(n)$ right singular vectors, Σ singular values.

- Symmetric eigenvalue decomposition of $A \in S^{2}\left(\mathbb{R}^{n}\right)$,

$$
A=V \wedge V^{\top}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(A)=r, V \in O(n)$ eigenvectors, Λ eigenvalues.

- Nonnegative matrix factorization of $A \in \mathbb{R}_{+}^{n \times n}$,

$$
A=X \Delta Y^{\top}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}
$$

where $\operatorname{rank}_{+}(A)=r, X, Y \in \mathbb{R}_{+}^{m \times r}$ unit column vectors (in the 1-norm), Δ positive values.

SVD, EVD, NMF of a hypermatrix

- Outer product decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

where $\operatorname{rank}_{\otimes}(\mathcal{A})=r, \mathbf{u}_{i} \in \mathbb{R}^{\prime}, \mathbf{v}_{i} \in \mathbb{R}^{m}, \mathbf{w}_{i} \in \mathbb{R}^{n}$ unit vectors, $\sigma_{i} \in \mathbb{R}$.

- Symmetric outer product decomposition of $\mathcal{A} \in S^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{ranks}_{s}(A)=r, \mathbf{v}_{i}$ unit vector, $\lambda_{i} \in \mathbb{R}$.

- Nonnegative outer product decomposition for hypermatrix $\mathcal{A} \in \mathbb{R}_{+} \times m \times n$ is

$$
\mathcal{A}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}
$$

where $\operatorname{rank}_{+}(A)=r, \mathbf{x}_{i} \in \mathbb{R}_{+}^{\prime}, \mathbf{y}_{i} \in \mathbb{R}_{+}^{m}, \mathbf{z}_{i} \in \mathbb{R}_{+}^{n}$ unit vectors, $\delta_{i} \in \mathbb{R}_{+}$.

Best low rank approximation of a matrix

- Given $A \in \mathbb{R}^{m \times n}$. Want

$$
\operatorname{argmin}_{\operatorname{rank}(B) \leq r}\|A-B\| .
$$

- More precisely, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r}\right\| .
$$

Theorem (Eckart-Young)
Let $A=U \Sigma V^{\top}=\sum_{i=1}^{r a n k(A)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$ be singular value decomposition. For $r \leq \operatorname{rank}(A)$, let

$$
A_{r}:=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} .
$$

Then

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank}(B) \leq r}\|A-B\|_{F} .
$$

- No such thing for hypermatrices of order 3 or higher.

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$
\begin{aligned}
& \operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)=\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \mathcal{A}=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\right\}= \\
& \quad\left\{\mathcal{A} \in \mathbb{R}^{l \times m \times n} \mid a_{i_{1} i_{2} i_{3}} a_{j_{1} j_{2} j_{3}}=a_{k_{1} k_{2} k_{3}} a_{1} i_{2} /_{3},\left\{i_{\alpha}, j_{\alpha}\right\}=\left\{k_{\alpha}, l_{\alpha}\right\}\right\}
\end{aligned}
$$

- Hypermatrices that have rank >1 are elements on the higher secant varieties of $\mathscr{S}=\operatorname{Seg}\left(\mathbb{R}^{I}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$.
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in \mathscr{S} but not on \mathscr{S}, rank 3 if it sits on a secant plane through three points in \mathscr{S} but not on any secant lines, etc.
- Minor technicality: should really be secant quasiprojective variety.

Same thing different names

- r th secant (quasiprojective) variety of the Segre variety is the set of r term approximants.
- If $\mathscr{D}=\operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$, then

$$
\Sigma_{r}(\mathscr{D})=\left\{\mathcal{A} \in \mathbb{R}^{1 \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

- Rank revealing matrix decompositions (non-unique: LU, QR, SVD):

$$
\mathscr{D}=\left\{\mathbf{x y}^{\top} \mid(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m} \times \mathbb{R}^{n}\right\}=\left\{A \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(A) \leq 1\right\} .
$$

- Often unique for tensors [Kruskal; 1977], [Sidiroupoulos, Bro; 2000]:
- $\operatorname{spark}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)=$ size of minimal linearly dependent subset [Donoho, Elad; 2003].
- Decomposition $\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}$ is unique up to scaling if

$$
\operatorname{spark}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)+\operatorname{spark}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)+\operatorname{spark}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right) \geq 2 r+5
$$

Dictionaries of positive dimensions

- Neural networks:

$$
\mathscr{D}=\left\{\sigma\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right) \mid\left(w_{0}, \mathbf{w}\right) \in \mathbb{R} \times \mathbb{R}^{n}\right\}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ sigmoid function, eg. $\sigma(x)=[1+\exp (-x)]^{-1}$.

- Exponential [Beylkin, Monzón; 2005]:

$$
\mathscr{D}=\left\{e^{-t x} \mid t \in \mathbb{R}_{+}\right\} \quad \text { or } \quad \mathscr{D}=\left\{e^{\tau x} \mid \tau \in \mathbb{C}\right\}
$$

- Outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \mid(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq 1\right\}
\end{aligned}
$$

- Symmetric outer product decomposition:

$$
\mathscr{D}=\left\{\mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v} \mid \mathbf{v} \in \mathbb{R}^{n}\right\}=\left\{\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right) \mid \operatorname{rank}_{\mathrm{S}}(\mathcal{A}) \leq 1\right\}
$$

- Nonnegative outer product decomposition:

$$
\begin{aligned}
\mathscr{D} & =\left\{\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \mid(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}_{+}^{\prime} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n}\right\} \\
& =\left\{\mathcal{A} \in \mathbb{R}_{+}^{\prime \times m \times n} \mid \operatorname{rank}_{+}(\mathcal{A}) \leq 1\right\}^{2}
\end{aligned}
$$

Pursuit algorithms

- Stepwise projection:

$$
\begin{aligned}
g_{k} & =\operatorname{argmin}_{g \in \mathscr{D}}\left\{\|f-h\| \mid h \in \operatorname{span}\left\{g_{1}, \ldots, g_{k-1}, g\right\}\right\}, \\
f_{k} & =\operatorname{proj}_{\text {span }\left\{g_{1}, \ldots, g_{k}\right\}}(f)
\end{aligned}
$$

- Orthonormal matching pursuit:

$$
\begin{aligned}
g_{k} & =\operatorname{argmax}_{g \in \mathscr{D}}\left|\left\langle f-f_{k-1}, g\right\rangle\right|, \\
f_{k} & =\operatorname{proj}_{\text {span }\left\{g_{1}, \ldots, g_{k}\right\}}(f) .
\end{aligned}
$$

- Pure greedy:

$$
\begin{aligned}
g_{k} & =\operatorname{argmax}_{g \in \mathscr{D}}\left|\left\langle f-f_{k-1}, g\right\rangle\right|, \\
f_{k} & =f_{k-1}+\left\langle f-f_{k-1}, g_{k}\right\rangle g_{k} .
\end{aligned}
$$

- Relaxed greedy:

$$
\begin{aligned}
g_{k} & =\operatorname{argmin}_{g \in \mathscr{D}}\left\{\|f-h\| \mid h \in \operatorname{span}\left\{f_{k-1}, g\right\}\right\}, \\
f_{k} & =\alpha_{k} f_{k-1}+\beta_{k} g_{k} .
\end{aligned}
$$

Pursuit algorithms for tensor approximations

- Target function

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

- Dictionary of separable functions,

$$
\mathscr{D}=\{g:[I] \times[m] \times[n] \rightarrow \mathbb{R} \mid g(i, j, k)=\vartheta(i) \varphi(j) \psi(k)\},
$$

where $\vartheta:[/] \rightarrow \mathbb{R}, \varphi:[m] \rightarrow \mathbb{R}, \psi:[n] \rightarrow \mathbb{R}$.

- Inner product

$$
\langle f, g\rangle=\sum_{i, j, k=1}^{l, m, n} f(i, j, k) g(i, j, k)
$$

and corresponding norm and projection.

- Ditto for the symmetric and nonnegative versions.
- Details: 11:30am-12:30pm, July 15, 2008, MSRI, Berkeley, CA.

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas
(1) MSRI Summer Graduate Workshop

- July 7 to July 18, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton
- Mathematical Sciences Research Institute, Berkeley, CA
- http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw
(2) AIM Workshop
- July 21 to July 25, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
- American Institute of Mathematics, Palo Alto, CA
- http://aimath.org/ARCC/workshops/repnsoftensors.html

