Projection, matching, and basis pursuits for multilinear approximations

Lek-Heng Lim

University of California, Berkeley

July 10, 2008

Best r-term approximation

$$f \approx \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_r f_r$$
.

- Target function $f \in \mathcal{H}$ vector space, cone, etc.
- $f_1, \ldots, f_r \in \mathcal{D} \subset \mathcal{H}$ dictionary.
- $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ or \mathbb{C} (linear), \mathbb{R}_+ (convex), $\mathbb{R} \cup \{-\infty\}$ (tropical).
- \approx with respect to $\varphi: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$, some measure of 'nearness' between pairs of points (e.g. norms, metric, volumes, expectation, entropy, Brègman divergences, etc), want

$$\operatorname{argmin}\{\varphi(f,\alpha_1f_1+\ldots\alpha_rf_r)\mid f_i\in\mathscr{D}\}.$$

- ullet For concreteness, ${\cal H}$ separable Hilbert space; measure of nearness is a norm, but not necessarily the one induced by its inner product.
- Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.

Dictionaries

• Number base: $\mathscr{D} = \{10^n \mid n \in \mathbb{Z}\} \subseteq \mathbb{R}$,

$$\tfrac{22}{7} = 3 \cdot 10^0 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 2 \cdot 10^{-3} + \cdots$$

 $\bullet \ \ \mathsf{Spanning \ set:} \ \mathscr{D} = \left\{ \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1 \\ -1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] \right\} \subseteq \mathbb{R}^2,$

$$\left[\begin{smallmatrix} 2 \\ -3 \end{smallmatrix} \right] = 3 \left[\begin{smallmatrix} 1 \\ -1 \end{smallmatrix} \right] - 1 \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right].$$

• Taylor: $\mathscr{D} = \{x^n \mid n \in \mathbb{N} \cup \{0\}\} \subseteq C^{\omega}(\mathbb{R}),$

$$\exp(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$$

• Fourier: $\mathscr{D} = \{\cos(nx), \sin(nx) \mid n \in \mathbb{Z}\} \subseteq L^2(-\pi, \pi),$

$$\frac{1}{2}x = \sin(x) - \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) - \cdots$$

More dictionaries

• Discrete cosine:

$$\mathscr{D} = \left\{ \sqrt{\frac{2}{N}} \cos(k + \frac{1}{2}) (n + \frac{1}{2}) \frac{\pi}{N} \mid k \in [N-1] \right\} \subseteq \mathbb{C}^{N}.$$

Peter-Weyl:

$$\mathscr{D} = \{\langle \pi(x)\mathbf{e}_i, \mathbf{e}_j \rangle \mid \pi \in \widehat{G}, i, j \in [d_{\pi}]\} \subseteq L^2(G).$$

• Paley-Wiener:

$$\mathscr{D} = \{ \operatorname{sinc}(x - n) \mid n \in \mathbb{Z} \} \subseteq H^2(\mathbb{R}).$$

Gabor:

$$\mathscr{D} = \{e^{i\alpha nx}e^{-(x-m\beta)^2/2} \mid (m,n) \in \mathbb{Z} \times \mathbb{Z}\} \subseteq L^2(\mathbb{R}).$$

Wavelet:

$$\mathscr{D} = \{2^{n/2}\psi(2^nx - m) \mid (m, n) \in \mathbb{Z} \times \mathbb{Z}\} \subseteq L^2(\mathbb{R}).$$

• Friends of wavelets: $\mathscr{D} \subseteq L^2(\mathbb{R}^2)$ beamlets, brushlets, curvelets, ridgelets, wedgelets, multiwavelets [Mohlenkamp, Pereyra; 2008].

Approximants

Definition

Dictionary $\mathscr{D} \subset \mathcal{H}$. For $r \in \mathbb{N}$, the set of **r-term approximants** is

$$\Sigma_r(\mathscr{D}) := \Big\{ \sum\nolimits_{i=1}^r \alpha_i f_i \in \mathcal{H} \; \Big| \; \alpha_i \in \mathbb{C}, f_i \in \mathscr{D} \Big\}.$$

Let $f \in \mathcal{H}$. The error of r-term approximation is

$$\sigma_n(f) := \inf_{g \in \Sigma_r(\mathscr{D})} ||f - g||.$$

- Linear combination of two r-term approximants may have more than r non-zero terms.
- $\Sigma_r(\mathcal{D})$ not a subspace of \mathcal{H} . Hence **nonlinear approximation**.
- In contrast with usual (linear) approximation, ie.

$$\inf_{g \in \operatorname{span}(\mathscr{D})} \|f - g\|.$$

Small is beautiful

$$f \approx \sum_{i \in \mathscr{I} \subseteq \mathscr{D}} \alpha_i f_i$$

- Want good approximation, ie. $||f \sum_{i \in \mathscr{I} \subset \mathscr{D}} \alpha_i f_i||$ small.
- \bullet Want sparse/concentrated representation, ie. $|\mathcal{I}|$ small.
- Sparsity depends on choice of D.

$$\mathcal{D}_{10} = \{10^n \mid n \in \mathbb{Z}\}, \mathcal{D}_3 = \{3^n \mid n \in \mathbb{Z}\} \subseteq \mathbb{R},$$

$$\frac{1}{3} = [0.33333 \cdots]_{10} = \sum_{n=1}^{\infty} 3 \cdot 10^{-n}$$

$$= [0.1]_3 = 1 \cdot 3^{-1}.$$

• $\mathscr{D}_{\text{fourier}} = \{\cos(nx), \sin(nx) \mid n \in \mathbb{Z}\},\$

$$\frac{1}{2}x = \sin(x) - \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) - \cdots$$

• $\mathscr{D}_{\mathsf{taylor}} = \{ x^n \mid n \in \mathbb{N} \cup \{0\} \},$

$$\sin(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \cdots$$

Bigger is better

- Union of dictionaries: allows for efficient (sparse) representation of different features
 - $\mathcal{D} = \mathcal{D}_{\text{fourier}} \cup \mathcal{D}_{\text{wavelets}}$
 - $\qquad \qquad \mathscr{D} = \mathscr{D}_{\mathsf{spikes}} \cup \mathscr{D}_{\mathsf{sinusoids}} \cup \mathscr{D}_{\mathsf{splines}},$
 - $\qquad \qquad \mathscr{D} = \mathscr{D}_{\text{wavelets}} \cup \mathscr{D}_{\text{curvelets}} \cup \mathscr{D}_{\text{beamlets}} \cup \mathscr{D}_{\text{ridgelets}}.$
- overcomplete or redundant dictionary. Trade off: computational complexity.
- **Rule of thumb:** the larger and more diverse the dictionary, the more efficient/sparser the representation.
- **Observation:** \mathscr{D} above all zero dimensional (at most countably infinite).
- Question: What about dictionaries with a continuously varying families of functions?
- Meta question: Why should tensor folks care about this?

Vectors, matrices, tensors: functions on finite sets

Totally ordered finite sets: $[n] = \{1 < 2 < \cdots < n\}, n \in \mathbb{N}.$

• Vector or *n*-tuple

$$f:[n]\to\mathbb{R}.$$

If $f(i) = a_i$, then f is represented by $\mathbf{a} = [a_1, \dots, a_n]^{\top} \in \mathbb{R}^n$.

Matrix

$$f:[m]\times[n]\to\mathbb{R}.$$

If $f(i,j) = a_{ij}$, then f is represented by $A = [a_{ij}]_{i,i=1}^{m,n} \in \mathbb{R}^{m \times n}$.

Hypermatrix (order 3)

$$f:[I]\times[m]\times[n]\to\mathbb{R}.$$

If $f(i,j,k) = a_{ijk}$, then f is represented by $\mathcal{A} = \llbracket a_{ijk} \rrbracket_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$.

Normally $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times [n]}, \mathbb{R}^{[l] \times [m] \times [n]}$.

10140121212121212

Hilbert space structure

- $\ell^2([n])$: $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^\top \mathbf{b} = \sum_{i=1}^n a_i b_i$.
- $\ell^2([m] \times [n])$: $A, B \in \mathbb{R}^{m \times n}$, $\langle A, B \rangle = \operatorname{tr}(A^{\top}B) = \sum_{i,j=1}^{m,n} a_{ij}b_{ij}$.
- $\ell^2([I] \times [m] \times [n])$: $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{I \times m \times n}$, $\langle \mathcal{A}, \mathcal{B} \rangle = \sum_{i,j,k=1}^{I,m,n} a_{ijk} b_{ijk}$.
- In general,

$$\ell^{2}([m] \times [n]) = \ell^{2}([m]) \otimes \ell^{2}([n]),$$

$$\ell^{2}([I] \times [m] \times [n]) = \ell^{2}([I]) \otimes \ell^{2}([m]) \otimes \ell^{2}([n]).$$

Frobenius norm

$$\|A\|_F^2 = \sum_{i,j,k=1}^{l,m,n} a_{ijk}^2.$$

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{C}^n$ can represent a vector in V (contravariant) or a linear functional in V^* (covariant).
- $A \in \mathbb{C}^{m \times n}$ can represent a bilinear form $V \times W \to \mathbb{C}$ (contravariant), a bilinear form $V^* \times W^* \to \mathbb{C}$ (covariant), or a linear operator $V \to W$ (mixed).
- $\mathcal{A} \in \mathbb{C}^{I \times m \times n}$ can represent trilinear form $U \times V \times W \to \mathbb{C}$ (contravariant), bilinear operators $V \times W \to U$ (mixed), etc.

A hypermatrix is the same as a tensor if

- we give it coordinates (represent with respect to some bases);
- 2 we ignore covariance and contravariance.

Tensor ranks

• For $\mathbf{u} \in \mathbb{R}^I$, $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{w} \in \mathbb{R}^n$,

$$\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} := \llbracket u_i v_j w_k \rrbracket_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}.$$

• Outer product rank. $A \in \mathbb{R}^{l \times m \times n}$,

$$\operatorname{\mathsf{rank}}_\otimes(\mathcal{A}) = \min\{r \mid \mathcal{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i, \quad \sigma_i \in \mathbb{R}\}.$$

• Symmetric outer product rank. $\mathcal{A} \in \mathsf{S}^k(\mathbb{R}^n)$,

$$\mathsf{rank}_\mathsf{S}(\mathcal{A}) = \mathsf{min}\{r \mid \mathcal{A} = \sum_{i=1}^r \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i, \quad \lambda_i \in \mathbb{R}\}.$$

• Nonnegative outer product rank. $\mathcal{A} \in \mathbb{R}_{+}^{l \times m \times n}$,

$$\operatorname{rank}_+(\mathcal{A}) = \min\{r \mid \mathcal{A} = \sum_{i=1}^r \delta_i \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i, \quad \delta_i \in \mathbb{R}_+\}.$$

SVD, EVD, NMF of a matrix

• Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$A = U \Sigma V^{\top} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}$$

where rank(A) = r, $U \in O(m)$ left singular vectors, $V \in O(n)$ right singular vectors, Σ singular values.

• Symmetric eigenvalue decomposition of $A \in S^2(\mathbb{R}^n)$,

$$A = V \Lambda V^{\top} = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i,$$

where rank(A) = r, $V \in O(n)$ eigenvectors, Λ eigenvalues.

• Nonnegative matrix factorization of $A \in \mathbb{R}^{n \times n}_+$,

$$A = X\Delta Y^{\top} = \sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}$$

where $\operatorname{rank}_+(A) = r$, $X, Y \in \mathbb{R}_+^{m \times r}$ unit column vectors (in the 1-norm), Δ positive values.

SVD, EVD, NMF of a hypermatrix

• Outer product decomposition of $A \in \mathbb{R}^{l \times m \times n}$,

$$\mathcal{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$$

where $\operatorname{rank}_{\otimes}(\mathcal{A}) = r$, $\mathbf{u}_i \in \mathbb{R}^l$, $\mathbf{v}_i \in \mathbb{R}^m$, $\mathbf{w}_i \in \mathbb{R}^n$ unit vectors, $\sigma_i \in \mathbb{R}$.

• Symmetric outer product decomposition of $\mathcal{A} \in S^3(\mathbb{R}^n)$,

$$\mathcal{A} = \sum\nolimits_{i=1}^r \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i$$

where rank_S(A) = r, \mathbf{v}_i unit vector, $\lambda_i \in \mathbb{R}$.

• Nonnegative outer product decomposition for hypermatrix $\mathcal{A} \in \mathbb{R}^{I \times m \times n}_+$ is

$$\mathcal{A} = \sum_{i=1}^r \delta_i \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i$$

where $\operatorname{rank}_+(A) = r$, $\mathbf{x}_i \in \mathbb{R}^l_+$, $\mathbf{y}_i \in \mathbb{R}^m_+$, $\mathbf{z}_i \in \mathbb{R}^n_+$ unit vectors, $\delta_i \in \mathbb{R}_+$.

Best low rank approximation of a matrix

• Given $A \in \mathbb{R}^{m \times n}$. Want

$$\operatorname{argmin}_{\operatorname{rank}(B) \leq r} ||A - B||.$$

• More precisely, find σ_i , \mathbf{u}_i , \mathbf{v}_i , $i = 1, \dots, r$, that minimizes

$$\|\mathcal{A} - \sigma_1 \mathbf{u}_1 \otimes \mathbf{v}_1 - \sigma_2 \mathbf{u}_2 \otimes \mathbf{v}_2 - \dots - \sigma_r \mathbf{u}_r \otimes \mathbf{v}_r\|.$$

Theorem (Eckart-Young)

Let $A = U\Sigma V^{\top} = \sum_{i=1}^{\text{rank}(A)} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$ be singular value decomposition. For $r \leq \operatorname{rank}(A)$, let

$$A_r := \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top.$$

Then

$$||A - A_r||_F = \min_{\text{rank}(B) \le r} ||A - B||_F.$$

No such thing for hypermatrices of order 3 or higher.

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$Seg(\mathbb{R}^{I}, \mathbb{R}^{m}, \mathbb{R}^{n}) = \{ \mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid \mathcal{A} = \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \} =$$

$$\{ \mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid a_{i_{1}i_{2}i_{3}}a_{j_{1}j_{2}j_{3}} = a_{k_{1}k_{2}k_{3}}a_{l_{1}l_{2}l_{3}}, \{i_{\alpha}, j_{\alpha}\} = \{k_{\alpha}, l_{\alpha}\} \}$$

- Hypermatrices that have rank > 1 are elements on the higher secant varieties of $\mathscr{S} = \mathsf{Seg}(\mathbb{R}^I, \mathbb{R}^m, \mathbb{R}^n)$.
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in $\mathscr S$ but not on $\mathscr S$, rank 3 if it sits on a secant plane through three points in $\mathscr S$ but not on any secant lines, etc.
- Minor technicality: should really be secant *quasiprojective variety*.

Same thing different names

- rth secant (quasiprojective) variety of the Segre variety is the set of r term approximants.
- If $\mathscr{D} = \operatorname{Seg}(\mathbb{R}^I, \mathbb{R}^m, \mathbb{R}^n)$, then

$$\Sigma_r(\mathscr{D}) = \{ \mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid \mathsf{rank}_{\otimes}(\mathcal{A}) \leq r \}.$$

• Rank revealing matrix decompositions (non-unique: LU, QR, SVD):

$$\mathscr{D} = \{ \mathbf{x} \mathbf{y}^\top \mid (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^n \} = \{ A \in \mathbb{R}^{m \times n} \mid \mathsf{rank}(A) \le 1 \}.$$

- Often unique for tensors [Kruskal; 1977], [Sidiroupoulos, Bro; 2000]:
 - ▶ spark($\mathbf{x}_1, \dots, \mathbf{x}_r$) = size of minimal linearly dependent subset [Donoho, Elad; 2003].
 - ▶ Decomposition $\mathcal{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$ is unique up to scaling if

$$\operatorname{spark}(\mathbf{u}_1,\ldots,\mathbf{u}_r)+\operatorname{spark}(\mathbf{v}_1,\ldots,\mathbf{v}_r)+\operatorname{spark}(\mathbf{w}_1,\ldots,\mathbf{w}_r)\geq 2r+5.$$

Dictionaries of positive dimensions

• Neural networks:

$$\mathscr{D} = \{ \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0) \mid (w_0, \mathbf{w}) \in \mathbb{R} \times \mathbb{R}^n \}$$

where $\sigma : \mathbb{R} \to \mathbb{R}$ sigmoid function, eg. $\sigma(x) = [1 + \exp(-x)]^{-1}$.

• Exponential [Beylkin, Monzón; 2005]:

$$\mathscr{D} = \{e^{-tx} \mid t \in \mathbb{R}_+\} \quad \text{or} \quad \mathscr{D} = \{e^{\tau x} \mid \tau \in \mathbb{C}\}.$$

• Outer product decomposition:

$$\mathcal{D} = \{\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \mid (\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{R}^{I} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\}$$
$$= \{\mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq 1\}.$$

• Symmetric outer product decomposition:

$$\mathscr{D} = \{ \mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v} \mid \mathbf{v} \in \mathbb{R}^n \} = \{ \mathcal{A} \in \mathsf{S}^3(\mathbb{R}^n) \mid \mathsf{rank}_\mathsf{S}(\mathcal{A}) \leq 1 \}.$$

• Nonnegative outer product decomposition:

$$\mathcal{D} = \{ \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \mid (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}_{+}^{I} \times \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \}$$
$$= \{ \mathcal{A} \in \mathbb{R}_{+}^{I \times m \times n} \mid \operatorname{rank}_{+}(\mathcal{A}) \leq 1 \}.$$

Pursuit algorithms

Stepwise projection:

$$\begin{split} &g_k = \mathsf{argmin}_{g \in \mathscr{D}} \{ \|f - h\| \mid h \in \mathsf{span} \{g_1, \dots, g_{k-1}, g \} \}, \\ &f_k = \mathsf{proj}_{\mathsf{span} \{g_1, \dots, g_k\}} (f). \end{split}$$

• Orthonormal matching pursuit:

$$egin{aligned} g_k &= \operatorname{argmax}_{g \in \mathscr{D}} |\langle f - f_{k-1}, g
angle|, \ f_k &= \operatorname{proj}_{\operatorname{span}\{g_1, \dots, g_k\}}(f). \end{aligned}$$

• Pure greedy:

$$g_k = \operatorname{argmax}_{g \in \mathscr{D}} |\langle f - f_{k-1}, g \rangle|,$$

 $f_k = f_{k-1} + \langle f - f_{k-1}, g_k \rangle g_k.$

• Relaxed greedy:

$$\begin{split} &g_k = \operatorname{argmin}_{g \in \mathscr{D}} \{ \|f - h\| \mid h \in \operatorname{span} \{f_{k-1}, g\} \}, \\ &f_k = \alpha_k f_{k-1} + \beta_k g_k. \end{split}$$

Pursuit algorithms for tensor approximations

Target function

$$f:[I]\times[m]\times[n]\to\mathbb{R}.$$

Dictionary of separable functions,

$$\mathscr{D} = \{g : [I] \times [m] \times [n] \to \mathbb{R} \mid g(i,j,k) = \vartheta(i)\varphi(j)\psi(k)\},\$$

where $\vartheta: [I] \to \mathbb{R}$, $\varphi: [m] \to \mathbb{R}$, $\psi: [n] \to \mathbb{R}$.

Inner product

$$\langle f,g\rangle = \sum_{i,j,k=1}^{J,m,n} f(i,j,k)g(i,j,k).$$

and corresponding norm and projection.

- Ditto for the symmetric and nonnegative versions.
- Details: 11:30am-12:30pm, July 15, 2008, MSRI, Berkeley, CA.

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas

- MSRI Summer Graduate Workshop
 - ▶ July 7 to July 18, 2008
 - Organized by J.M. Landsberg, L.-H. Lim, J. Morton
 - Mathematical Sciences Research Institute, Berkeley, CA
 - ▶ http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw
- AIM Workshop
 - July 21 to July 25, 2008
 - Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
 - American Institute of Mathematics, Palo Alto, CA
 - http://aimath.org/ARCC/workshops/repnsoftensors.html