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Best r-term approximation

fr~oafy +axfa+ -+ af.

Target function f € H vector space, cone, etc.
fi,...,f, € 2 C 'H dictionary.
ai,...,ar € Ror C (linear), Ry (convex), RU {—oo} (tropical).

~ with respect to ¢ : H x H — R, some measure of ‘nearness’
between pairs of points (e.g. norms, metric, volumes, expectation,
entropy, Brégman divergences, etc), want

argmin{p(f,anfi +...a.f,) | ; € D}.

For concreteness, H separable Hilbert space; measure of nearness is a
norm, but not necessarily the one induced by its inner product.

Reference: various papers by A. Cohen, R. DeVore, V. Temlyakov.
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Dictionaries
@ Number base: 2 = {10" | n€ Z} CR,

2-3.10°4+1-10"+4-102+2-103+- -
o Spanning set: 7 = {[3],[ 4], [1] [3]} € B,
[ %] =3[4]-1[5].
e Taylor: 2 = {x" | n € NU{0}} C C¥(R),
exp(x) =1+x+ 37+ 13+
o Fourier: 2 = {cos(nx),sin(nx) | n € Z} C L?(—m,7),

x =sin(x) — %sin(2x) + %sin(3x) —

N[

@ 2 orthonormal basis, Schauder basis, Hamel basis, Riesz basis,
frames, a dense spanning set.
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More dictionaries

@ Discrete cosine:
7 ={\f3cos(k+ D)+ HF [ ke -1} ccv.
o Peter-Weyl:
9 = {(rx(x)ei, &) | € G,i,j € [dr]} C L2(G).
o Paley-Wiener:
2 = {sinc(x — n) | n € Z} C H*(R).

o Gabor:

9 = {e e~ CmmBV/2 | (m n) € Z x Z} C LA(R).
o Wavelet:

9 = {2"2)(2"x — m) | (m, n) € Z x Z} C L*(R).

o Friends of wavelets: 2 C L?(IR?) beamlets, brushlets, curvelets,

ridgelets, wedgelets, multiwavelets [Mohlenkamp, Pereyra; 2008].
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Approximants

Definition
Dictionary 2 C ‘H. For r € N, the set of r-term approximants is

Y(2) = {Z;I aif €M |a;eC,fe @}.

Let f € H. The error of r-term approximation is

op(f) = infges,(9) I — &l-

@ Linear combination of two r-term approximants may have more than
r non-zero terms.
@ ¥ ,(Z) not a subspace of H. Hence nonlinear approximation.

@ In contrast with usual (linear) approximation, ie.
inngSpan(.@)Hf - g”
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Small is beautiful

f a2 icrcoifi

e Want good approximation, ie. ||[f — . ;- 5aifi|| small.
e Want sparse/concentrated representation, ie. |.#| small.
@ Sparsity depends on choice of 2.

> @10:{10”|neZ},@3:{3"|neZ}gR,

1=100.33333 - ];o= >0 ;3-107"
=[013=1-3"1
> Drourier = {cos(nx),sin(nx) | n € Z},
3x =sin(x) — 3sin(2x) 4 3sin(3x) — - - .

> 9taylor = {X" | neNU {0}},

sin(x):x—%x3—|—1—%ox5—-~
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Bigger is better

@ Union of dictionaries: allows for efficient (sparse) representation of
different features

> 9= @fourier ) @waveletSy
> 9= @spikes U -@sinusoids U @splineSy
> 9= -@wavelets U @curvelets ) -@beamlets U gridgelets-

e 2 overcomplete or redundant dictionary. Trade off: computational
complexity.

@ Rule of thumb: the larger and more diverse the dictionary, the more
efficient/sparser the representation.

e Observation: Z above all zero dimensional (at most countably

infinite).

@ Question: What about dictionaries with a continuously varying
families of functions?

@ Meta question: Why should tensor folks care about this?
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Vectors, matrices, tensors: functions on finite sets

Totally ordered finite sets: [n] ={1<2<---<n}, neN.

@ Vector or n-tuple
f:[n]— R

If (i) = a;, then f is represented by a = [ay,...,a,] € R".

@ Matrix
f:[m]x[n] —R.

If £(i,j) = ajj, then f is represented by A = [au],,J ; € R™XN,
@ Hypermatrix (order 3)

fo[l] x [m] x[n] —R.
If £(i,j, k) = ajjk, then f is represented by A = [a;jk]]fdmk" | € Rixmxn,

Normally RX = {f : X — R}. Ought to be RI"l RImIx[nl RUIX[mIx[n]
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Hilbert space structure

o /2([n]): a,b € R", (a,b) =a'b =" a;b;.
o 2([m] x [n]): A,B € R™" (A B)=1tr(ATB) = ZZ; ajjbjj.
o 2([1] x [m] x [n]): A, B € RI*mxn (A B) = 707" abjj.
@ In general,
C([m] x [n]) = £2([m]) @ E([n]),
C(U % [m] x [n]) = ([N) @ E([m]) @ ¢2([n))-

@ Frobenius norm

I,m,n
A =30 &
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Hypermatrices and tensors

Up to choice of bases
@ a € C" can represent a vector in V' (contravariant) or a linear
functional in V* (covariant).
@ A€ C™*" can represent a bilinear form V x W — C (contravariant),
a bilinear form V* x W* — C (covariant), or a linear operator
V — W (mixed).
e A e C/*mXn can represent trilinear form U x V x W — C
(contravariant), bilinear operators V x W — U (mixed), etc.
A hypermatrix is the same as a tensor if

@ we give it coordinates (represent with respect to some bases);

@ we ignore covariance and contravariance.
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Tensor ranks

e ForueR/ veR™ weR",
URVRW —HU,VJWk]],Jk | € RIxmxn,

o Outer product rank. A € R/*mxn,

rankg(A) = min{r | A=3"_joiu;®@v;®@w;, o€ R}

e Symmetric outer product rank. A € SK(R"),
ranks(A) = min{r ’ A= Zle/\,-v,- RV @V, A € R}

o Nonnegative outer product rank. A € Rf’"x”,

ranky(A) =min{r | A=>"_0ix;Qy;®z;, 0§ Ry}
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SVD, EVD, NMF of a matrix

e Singular value decomposition of A € R™*",

A=UzVT =Y cuiov

where rank(A) = r, U € O(m) left singular vectors, V € O(n) right

singular vectors, ¥ singular values.
e Symmetric eigenvalue decomposition of A € S?(R"),

A=VAVT =%

i AiVi @ v,
where rank(A) = r, V € O(n) eigenvectors, A eigenvalues.

o Nonnegative matrix factorization of A € R*”,
A=XayT ="

1=

) 0iX; ®Yi

where rank; (A) = r, X, Y € RT*" unit column vectors (in the
1-norm), A positive values.
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SVD, EVD, NMF of a hypermatrix

e Outer product decomposition of A € R/*mxn
r
A= Zizlaiu,- @ Vi @ w;

where rankg(A) = r, u; € R/ v; € R™ w; € R” unit vectors, o; € R.

o Symmetric outer product decomposition of A € S3(R"),
r
A= Zi:l AiVi @ Vi @ V;

where ranks(A) = r, v; unit vector, \; € R.

@ Nonnegative outer product decomposition for hypermatrix
A € RIxmxn s

R
A= Z,’:l 0ixj ® yi ® z;

where rank(A) =r, x; € Rg,y,- € RT,z; € R unit vectors,
5,‘ € R+.
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Best low rank approximation of a matrix
@ Given A e R™*" Want

argminrank(B)SrHA - BH
@ More precisely, find o;,u;,v;, i =1,...,r, that minimizes
A —o1u; @ vy —ooup @ vy — -+ - — ou, @ V.
Theorem (Eckart—Young)

Let A= ULV = Z;a:nlk(A) oiuiv] be singular value decomposition. For

r < rank(A), let
r
Ar = Zi:l O‘;u,'V,T.

[A—AllF = minan <A — BllF.

Then

@ No such thing for hypermatrices of order 3 or higher.
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Segre variety and its secant varieties

@ The set of all rank-1 hypermatrices is known as the Segre variety in
algebraic geometry.

@ It is a closed set (in both the Euclidean and Zariski sense) as it can
be described algebraically:

Seg(R',R™", R = {Ac R*™" | A=u@vew}=
{Ae R mxn | iz Ajjajs = FkikoksAhhlzs {ia:jat = {kas la}}
@ Hypermatrices that have rank > 1 are elements on the higher secant
varieties of . = Seg(R/,R™ R").
o E.g. a hypermatrix has rank 2 if it sits on a secant line through two

points in ./ but not on ./, rank 3 if it sits on a secant plane through
three points in . but not on any secant lines, etc.

@ Minor technicality: should really be secant quasiprojective variety.
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Same thing different names

e rth secant (quasiprojective) variety of the Segre variety is the set of r
term approximants.

o If 7 = Seg(R/,R™ R"), then
Y (2) = {A € R*™" | rankg(A) < r}.
@ Rank revealing matrix decompositions (non-unique: LU, QR, SVD):
2 ={xy" | (x,y) € R" x R"} = {A € R™" | rank(A) < 1}.

e Often unique for tensors [Kruskal; 1977], [Sidiroupoulos, Bro; 2000]:

> spark(xi,...,X,) = size of minimal linearly dependent subset [Donoho,
Elad; 2003].
» Decomposition A = Z,;ﬂfiui ® v; ® w; is unique up to scaling if

spark(uy, ..., u,) + spark(vy,...,v,) + spark(wy,...,w,) > 2r + 5.
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Dictionaries of positive dimensions
@ Neural networks:
2 = {o(w x4+ wp) | (wo,w) € R x R"}
1

where o : R — R sigmoid function, eg. o(x) = [1 4 exp(—x)] .
Exponential [Beylkin, Monzén; 2005]:

P ={e ™ |tecR,} or 92 ={e™|TeC}.
Outer product decomposition:
2 ={uvew|(uv,w)eR xR™xR"}
= {A € R*™" | rankg(A) < 1}.
@ Symmetric outer product decomposition:
2 ={vavav|veR"} ={AcS}R")|ranks(A) < 1}.
@ Nonnegative outer product decomposition:
2 ={x2y®z|(xy,z) € R xRT xR}
= {A € R*™" | rank, (A) < 1}.
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Pursuit algorithms
@ Stepwise projection:
gk = argming o {|If — hl[ | h € span{g1,..., gk 1,8}},
fk = PrOjspan{gn,....g} (F)-
@ Orthonormal matching pursuit:
gk = argmaxge@Kf — fr-1,8)l,
fk = PrOjspan{gn,....g} (F)-
@ Pure greedy:
gk = argmaxge@Kf — fi_1,8)l;
fio = f1 + (F — fi_1, 8k) 8k
@ Relaxed greedy:
gk = argmingc g {||f — h|| | h € span{fx_1,g}},
fk = arfr_1 + Brgk-
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Pursuit algorithms for tensor approximations
@ Target function
fo[l] x [m] x[n] = R.
@ Dictionary of separable functions,
7 ={g [ x[m] x[n] =R |g(i,j, k) = 9(i)e()v(k)},

where ¥ : [[] = R, ¢ : [m] = R, ¢ : [n] = R.

@ Inner product

I7m7n . . - -

(Fgy =3 f0.J,K)glirj k).
and corresponding norm and projection.

o Ditto for the symmetric and nonnegative versions.

@ Details: 11:30am-12:30pm, July 15, 2008, MSRI, Berkeley, CA.
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Advertisement

Geometry and representation theory of tensors for computer
science, statistics, and other areas

@ MSRI Summer Graduate Workshop

July 7 to July 18, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton

Mathematical Sciences Research Institute, Berkeley, CA
http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw

@ AIM Workshop

July 21 to July 25, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
American Institute of Mathematics, Palo Alto, CA
http://aimath.org/ARCC/workshops/repnsoftensors.html

vV vy vYyy

v v vYyy
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