Spectrum and Pseudospectrum of a Tensor

Lek-Heng Lim
University of California, Berkeley

July 11, 2008

Matrix eigenvalues and eigenvectors

- One of the most important ideas ever invented.
- R. Coifman et. al.: "Eigenvector magic: eigenvectors as an extension of Newtonian calculus."
- Normal/Hermitian A
- Invariant subspace: $A \mathbf{x}=\lambda \mathbf{x}$.
- Rayleigh quotient: $\mathbf{x}^{\top} A \mathbf{x} / \mathbf{x}^{\top} \mathbf{x}$.
- Lagrange multipliers: $\mathbf{x}^{\top} A \mathbf{x}-\lambda\left(\|\mathbf{x}\|^{2}-1\right)$.
- Best rank-1 approximation: $\min _{\|\mathbf{x}\|=1}\left\|A-\lambda \mathbf{x x}^{\top}\right\|$.
- Nonnormal A
- Pseudospectrum: $\sigma_{\varepsilon}(A)=\left\{\lambda \in \mathbb{C} \mid\left\|(A-\lambda I)^{-1}\right\|>\varepsilon^{-1}\right\}$.
- Numerical range: $W(A)=\left\{\mathbf{x}^{*} A \mathbf{x} \in \mathbb{C} \mid\|\mathbf{x}\|=1\right\}$.
- Irreducible representations of $C^{*}(A)$ with natural Borel structure.
- Primitive ideals of $C^{*}(A)$ with hull-kernel topology.
- How can one define these for tensors?

DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way?

- Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra.
- Polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree d can be expressed as

$$
f(\mathbf{x})=a_{0}+\mathbf{a}_{1}^{\top} \mathbf{x}+\mathbf{x}^{\top} A_{2} \mathbf{x}+\mathcal{A}_{3}(\mathbf{x}, \mathbf{x}, \mathbf{x})+\cdots+\mathcal{A}_{d}(\mathbf{x}, \ldots, \mathbf{x})
$$

$a_{0} \in \mathbb{R}, \mathbf{a}_{1} \in \mathbb{R}^{n}, A_{2} \in \mathbb{R}^{n \times n}, \mathcal{A}_{3} \in \mathbb{R}^{n \times n \times n}, \ldots, \mathcal{A}_{d} \in \mathbb{R}^{n \times \cdots \times n}$.

- Numerical linear algebra: $d=2$.
- Numerical multilinear algebra: $d>2$.

Hypermatrices

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Vector or n-tuple

$$
f:[n] \rightarrow \mathbb{R}
$$

If $f(i)=a_{i}$, then f is represented by $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]^{\top} \in \mathbb{R}^{n}$.

- Matrix

$$
f:[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j)=a_{i j}$, then f is represented by $A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}$. Normally $\mathbb{R}^{X}=\{f: X \rightarrow \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times[n]}, \mathbb{R}^{[/] \times[m] \times[n]}$.

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{R}^{n}$ can represent a vector in V (contravariant) or a linear functional in V^{*} (covariant).
- $A \in \mathbb{R}^{m \times n}$ can represent a bilinear form $V \times W \rightarrow \mathbb{R}$ (contravariant), a bilinear form $V^{*} \times W^{*} \rightarrow \mathbb{R}$ (covariant), or a linear operator $V \rightarrow W$ (mixed).
- $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$ can represent trilinear form $U \times V \times W \rightarrow \mathbb{R}$ (contravariant), bilinear operators $V \times W \rightarrow U$ (mixed), etc.

A hypermatrix is the same as a tensor if
(1) we give it coordinates (represent with respect to some bases);
(2) we ignore covariance and contravariance.

Basic operation on a hypermatrix

- A matrix can be multiplied on the left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}, Y \in \mathbb{R}^{q \times n}$,

$$
(X, Y) \cdot A=X A Y^{\top}=\left[c_{\alpha \beta}\right] \in \mathbb{R}^{p \times q}
$$

where

$$
c_{\alpha \beta}=\sum_{i, j=1}^{m, n} x_{\alpha i} y_{\beta j} a_{i j}
$$

- A hypermatrix can be multiplied on three sides: $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{I \times m \times n}$, $X \in \mathbb{R}^{p \times I}, Y \in \mathbb{R}^{q \times m}, Z \in \mathbb{R}^{r \times n}$,

$$
(X, Y, Z) \cdot \mathcal{A}=\llbracket c_{\alpha \beta \gamma} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{\alpha \beta \gamma}=\sum_{i, j, k=1}^{I, m, n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{i j k}
$$

Numerical range of a tensor

- Covariant version:

$$
\mathcal{A} \cdot\left(X^{\top}, Y^{\top}, Z^{\top}\right):=(X, Y, Z) \cdot \mathcal{A}
$$

- Gives convenient notations for multilinear functionals and multilinear operators. For $\mathbf{x} \in \mathbb{R}^{\prime}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k=1}^{I, m, n} a_{i j k} x_{i} y_{j} z_{k} \\
& \mathcal{A}(I, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(I, \mathbf{y}, \mathbf{z})=\sum_{j, k=1}^{m, n} a_{i j k} y_{j} z_{k}
\end{aligned}
$$

- Numerical range of square matrix $A \in \mathbb{C}^{n \times n}$,

$$
W(A)=\left\{\mathbf{x}^{*} A \mathbf{x} \in \mathbb{C} \mid\|\mathbf{x}\|_{2}=1\right\}=\left\{A\left(\mathbf{x}, \mathbf{x}^{*}\right) \in \mathbb{C} \mid\|\mathbf{x}\|_{2}=1\right\}
$$

- Plausible generalization to cubical hypermatrix $\mathcal{A} \in \mathbb{C}^{n \times \cdots \times n}$,

$$
W(\mathcal{A})= \begin{cases}\left\{\mathcal{A}\left(\mathbf{x}, \mathbf{x}^{*}, \ldots, \mathbf{x}\right) \in \mathbb{C} \mid\|\mathbf{x}\|_{k}=1\right\} & \text { odd order } \\ \left\{\mathcal{A}\left(\mathbf{x}, \mathbf{x}^{*}, \ldots, \mathbf{x}^{*}\right) \in \mathbb{C} \mid\|\mathbf{x}\|_{k}=1\right\} & \text { even order }\end{cases}
$$

Symmetric hypermatrices

- Cubical hypermatrix $\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$
a_{i j k}=a_{i k j}=a_{j i k}=a_{j k i}=a_{k i j}=a_{k j i}
$$

- Invariant under all permutations $\sigma \in \mathfrak{S}_{k}$ on indices.
- $S^{k}\left(\mathbb{R}^{n}\right)$ denotes set of all order- k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
m_{k}(\mathbf{x})=\left[E\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n}=\left[\int \cdots \int x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} d \mu\left(x_{i_{1}}\right) \cdots d \mu\left(x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

Symmetric hypermatrices

Example

Cumulants of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
\kappa_{k}(\mathbf{x})=\left[\sum_{A_{1} \cup \ldots \cup A_{p}=\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{p-1}(p-1)!E\left(\prod_{i \in A_{1}} x_{i}\right) \cdots E\left(\prod_{i \in \mathcal{A}_{p}} x_{i}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

For $n=1, \kappa_{k}(x)$ for $k=1,2,3,4$ are the expectation, variance, skewness, and kurtosis.

- Important in Independent Component Analysis (ICA).

Multilinear spectral theory

Let $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$ (easier if \mathcal{A} symmetric).
(1) How should one define its eigenvalues and eigenvectors?
(0) What is a decomposition that generalizes the eigenvalue decomposition of a matrix?
Let $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$
(1) How should one define its singualr values and singular vectors?
(2) What is a decomposition that generalizes the singular value decomposition of a matrix?
Somewhat surprising: (1) and (2) have different answers.

Tensor ranks (Hitchcock, 1927)

- Matrix rank. $A \in \mathbb{R}^{m \times n}$.

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank). }
\end{aligned}
$$

- Multilinear rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. rank $_{\boxplus}(A)=\left(r_{1}(A), r_{2}(A), r_{3}(A)\right)$,

$$
\begin{aligned}
& r_{1}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet \bullet}, \ldots, A_{l \bullet \bullet}\right\}\right) \\
& r_{2}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1 \bullet}, \ldots, A_{\bullet m \bullet}\right\}\right) \\
& r_{3}(A)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet \bullet 1}, \ldots, A_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n}$.

Matrix EVD and SVD

- Rank revealing decompositions.
- Symmetric eigenvalue decomposition of $A \in \mathrm{~S}^{2}\left(\mathbb{R}^{n}\right)$,

$$
A=V \wedge V^{\top}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(A)=r, V \in O(n)$ eigenvectors, Λ eigenvalues.

- Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(\mathcal{A})=r, U \in \mathrm{O}(m)$ left singular vectors, $V \in \mathrm{O}(n)$ right singular vectors, Σ singular values.

One plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the outer product rank.
- Symmetric outer product decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}_{\mathrm{s}}(A)=r, \mathbf{v}_{i}$ unit vector, $\lambda_{i} \in \mathbb{R}$.

- Outer product decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

where $\operatorname{rank}_{\otimes}(\mathcal{A})=r, \mathbf{u}_{i} \in \mathbb{R}^{\prime}, \mathbf{v}_{i} \in \mathbb{R}^{m}, \mathbf{w}_{i} \in \mathbb{R}^{n}$ unit vectors, $\sigma_{i} \in \mathbb{R}$.

Another plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the multilinear rank.
- Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\mathcal{A}=(U, V, W) \cdot \mathcal{C}
$$

where $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right), U \in \mathbb{R}^{1 \times r_{1}}, V \in \mathbb{R}^{m \times r_{2}}, W \in \mathbb{R}^{n \times r_{3}}$ have orthonormal columns and $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$.

- Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=(U, U, U) \cdot \mathcal{C}
$$

where $\operatorname{rank}(A)=(r, r, r), U \in \mathbb{R}^{n \times r}$ has orthonormal columns and $\mathcal{C} \in S^{3}\left(\mathbb{R}^{r}\right)$.

Variational approach to eigenvalues/vectors

- $A \in \mathbb{R}^{m \times n}$ symmetric.
- Eigenvalues and eigenvectors are critical values and critical points of

$$
\mathbf{x}^{\top} A \mathbf{x} /\|\mathbf{x}\|_{2}^{2} .
$$

- Equivalently, critical values/points of $\mathbf{x}^{\top} A \mathbf{x}$ constrained to unit sphere.
- Lagrangian:

$$
L(\mathbf{x}, \lambda)=\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x}-\lambda\left(\|\mathbf{x}\|_{2}^{2}-1\right) .
$$

- Vanishing of ∇L at critical $\left(\mathbf{x}_{c}, \lambda_{c}\right) \in \mathbb{R}^{n} \times \mathbb{R}$ yields familiar

$$
A \mathbf{x}_{c}=\lambda_{c} \mathbf{x}_{c}
$$

Variational approach to singular values/vectors

- $A \in \mathbb{R}^{m \times n}$.
- Singular values and singular vectors are critical values and critical points of

$$
\mathbf{x}^{\top} A \mathbf{y} /\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

- Lagrangian:

$$
L(\mathbf{x}, \mathbf{y}, \sigma)=\mathbf{x}^{\top} A \mathbf{y}-\sigma\left(\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}-1\right)
$$

- At critical $\left(\mathbf{x}_{c}, \mathbf{y}_{c}, \sigma_{c}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}$,

$$
A \mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}=\sigma_{c} \mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}, \quad A^{\top} \mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}=\sigma_{c} \mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}
$$

- Writing $\mathbf{u}_{c}=\mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\|_{2}$ and $\mathbf{v}_{c}=\mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\|_{2}$ yields familiar

$$
A \mathbf{v}_{c}=\sigma_{c} \mathbf{u}_{c}, \quad A^{\top} \mathbf{u}_{c}=\sigma_{c} \mathbf{v}_{c}
$$

Eigenvalues/vectors of a tensor

- Extends to hypermatrices.
- For $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n}$, write $\mathbf{x}^{p}:=\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]^{\top}$.
- Define the ' ℓ^{k}-norm' $\|\mathbf{x}\|_{k}=\left(x_{1}^{k}+\cdots+x_{n}^{k}\right)^{1 / k}$.
- Define eigenvalues/vectors of $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{R}^{n}\right)$ as critical values/points of the multilinear Rayleigh quotient

$$
\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x}) /\|\mathbf{x}\|_{k}^{k}
$$

- Lagrangian

$$
L(\mathbf{x}, \lambda):=\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x})-\lambda\left(\|\mathbf{x}\|_{k}^{k}-1\right)
$$

- At a critical point

$$
\mathcal{A}\left(I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=\lambda \mathbf{x}^{k-1}
$$

Eigenvalues/vectors of a tensor

- If \mathcal{A} is symmetric,

$$
\mathcal{A}\left(I_{n}, \mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}\right)=\mathcal{A}\left(\mathbf{x}, I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=\cdots=\mathcal{A}\left(\mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}, I_{n}\right)
$$

- Also obtained by Liqun Qi independently:
- L. Qi, "Eigenvalues of a real supersymmetric tensor," J. Symbolic Comput., 40 (2005), no. 6.
- L, "Singular values and eigenvalues of tensors: a variational approach," Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 1 (2005).
- For unsymmetric hypermatrices - get different eigenpairs for different modes (unsymmetric matrix have different left/right eigenvectors).
- Falls outside Classical Invariant Theory - not invariant under $Q \in \mathrm{O}(n)$, ie. $\|Q \mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}$.
- Invariant under $Q \in \operatorname{GL}(n)$ with $\|Q \mathbf{x}\|_{k}=\|\mathbf{x}\|_{k}$.

Singular values/vectors of a tensor

- Likewise for singular values/vectors of $\mathcal{A} \in \mathbb{R}^{1 \times m \times n}$.
- Lagrangian is

$$
L(\mathbf{x}, \mathbf{y}, \mathbf{z}, \sigma)=\mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})-\sigma(\|\mathbf{x}\|\|\mathbf{y}\|\|\mathbf{z}\|-1)
$$

where $\sigma \in \mathbb{R}$ is the Lagrange multiplier.

- At a critical point,

$$
\begin{aligned}
\mathcal{A}\left(I_{l}, \mathbf{y} /\|\mathbf{y}\|, \mathbf{z} /\|\mathbf{z}\|\right) & =\sigma \mathbf{x} /\|\mathbf{x}\| \\
\mathcal{A}\left(\mathbf{x} /\|\mathbf{x}\|, I_{m}, \mathbf{z} /\|\mathbf{z}\|\right) & =\sigma \mathbf{y} /\|\mathbf{y}\| \\
\mathcal{A}\left(\mathbf{x} /\|\mathbf{x}\|, \mathbf{y} /\|\mathbf{y}\|, I_{n}\right) & =\sigma \mathbf{z} /\|\mathbf{z}\|
\end{aligned}
$$

- Normalize to get

$$
\mathcal{A}\left(I_{I}, \mathbf{v}, \mathbf{w}\right)=\sigma \mathbf{u}, \quad \mathcal{A}\left(\mathbf{u}, I_{m}, \mathbf{w}\right)=\sigma \mathbf{v}, \quad \mathcal{A}\left(\mathbf{u}, \mathbf{v}, I_{n}\right)=\sigma \mathbf{w}
$$

Pseudospectrum of a tensor

- Pseudospectrum of square matrix $A \in \mathbb{C}^{n \times n}$,

$$
\begin{aligned}
\sigma_{\varepsilon}(A) & =\left\{\lambda \in \mathbb{C} \mid\left\|(A-\lambda I)^{-1}\right\|_{2}>\varepsilon^{-1}\right\} \\
& =\left\{\lambda \in \mathbb{C} \mid \sigma_{\min }(A-\lambda I)<\varepsilon\right\}
\end{aligned}
$$

- One plausible generalization to cubical hypermatrix $\mathcal{A} \in \mathbb{C}^{n \times \cdots \times n}$,

$$
\sigma_{\varepsilon}^{\Sigma}(\mathcal{A})=\left\{\lambda \in \mathbb{C} \mid \sigma_{\min }(\mathcal{A}-\lambda \mathcal{I})<\varepsilon\right\}
$$

- Another plausible generalization,

$$
\sigma_{\varepsilon}^{\Delta}(\mathcal{A})=\left\{\lambda \in \mathbb{C} \mid \inf _{\operatorname{Det}_{n, \ldots, n}(\mathcal{B})=0}\|\mathcal{A}-\lambda \mathcal{I}-\mathcal{B}\|_{F}<\varepsilon^{-1}\right\}
$$

- Fact: hyperdeterminant $\operatorname{Det}_{n, \ldots, n}(\mathcal{B})=0$ iff 0 is a singular value of \mathcal{B}.

Perron-Frobenius theorem for hypermatrices

- An order-k cubical hypermatrix $\mathcal{A} \in \mathrm{T}^{k}\left(\mathbb{R}^{n}\right)$ is reducible if there exist a permutation $\sigma \in \mathfrak{S}_{n}$ such that the permuted hypermatrix

$$
\llbracket b_{i_{1} \cdots i_{k}} \rrbracket=\llbracket a_{\sigma\left(j_{1}\right) \cdots \sigma\left(j_{k}\right)} \rrbracket
$$

has the property that for some $m \in\{1, \ldots, n-1\}, b_{i_{1} \ldots i_{k}}=0$ for all $i_{1} \in\{1, \ldots, n-m\}$ and all $i_{2}, \ldots, i_{k} \in\{1, \ldots, m\}$.

- We say that \mathcal{A} is irreducible if it is not reducible. In particular, if $\mathcal{A}>0$, then it is irreducible.

Theorem (L)

Let $0 \leq \mathcal{A}=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathrm{~T}^{k}\left(\mathbb{R}^{n}\right)$ be irreducible. Then \mathcal{A} has
(1) a positive real eigenvalue λ with an eigenvector \mathbf{x};
(2) x may be chosen to have all entries non-negative;
(3) if μ is an eigenvalue of \mathcal{A}, then $|\mu| \leq \lambda$.

Hypergraphs

- $G=(V, E)$ is 3-hypergraph.
- V is the finite set of vertices.
- E is the subset of hyperedges, ie. 3-element subsets of V.
- Write elements of E as $[x, y, z](x, y, z \in V)$.
- G is undirected, so $[x, y, z]=[y, z, x]=\cdots=[z, y, x]$.
- Hyperedge is said to degenerate if of the form $[x, x, y]$ or $[x, x, x]$ (hyperloop at x). We do not exclude degenerate hyperedges.
- G is m-regular if every $v \in V$ is adjacent to exactly m hyperedges.
- G is r-uniform if every edge contains exactly r vertices.
- Good reference: D. Knuth, The art of computer programming, 4, pre-fascicle 0a, 2008.

Spectral hypergraph theory

- Define the order-3 adjacency hypermatrix $\mathcal{A}=\llbracket a_{i j k} \rrbracket$ by

$$
a_{x y z}= \begin{cases}1 & \text { if }[x, y, z] \in E \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathcal{A} \in \mathbb{R}^{|V| \times|V| \times|V|}$ nonnegative symmetric hypermatrix.
- Consider cubic form

$$
\mathcal{A}(f, f, f)=\sum_{x, y, z} a_{x y z} f(x) f(y) f(z)
$$

where $f \in \mathbb{R}^{V}$.

- Eigenvalues (resp. eigenvectors) of A are the critical values (resp. critical points) of $\mathcal{A}(f, f, f)$ constrained to the $f \in \ell^{3}(V)$, ie.

$$
\sum_{x \in V} f(x)^{3}=1
$$

Spectral hypergraph theory

We have the following.

Lemma (L)

Let G be an m-regular 3-hypergraph. \mathcal{A} its adjacency hypermatrix. Then
(1) m is an eigenvalue of \mathcal{A};
(2) if λ is an eigenvalue of \mathcal{A}, then $|\lambda| \leq m$;
(3) λ has multiplicity 1 if and only if G is connected.

Related work: J. Friedman, A. Wigderson, "On the second eigenvalue of hypergraphs," Combinatorica, 15 (1995), no. 1.

Spectral hypergraph theory

- A hypergraph $G=(V, E)$ is said to be k-partite or k-colorable if there exists a partition of the vertices $V=V_{1} \cup \cdots \cup V_{k}$ such that for any k vertices u, v, \ldots, z with $a_{u v \cdots z} \neq 0, u, v, \ldots, z$ must each lie in a distinct $V_{i}(i=1, \ldots, k)$.

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices. Then
(1) If $k \equiv 1 \bmod 4$, then every eigenvalue of G occurs with multiplicity a multiple of k.
(2) If $k \equiv 3 \bmod 4$, then the spectrum of G is symmetric, ie. if λ is an eigenvalue, then so is $-\lambda$.
(3) Furthermore, every eigenvalue of G occurs with multiplicity a multiple of $k / 2$, ie. if λ is an eigenvalue of G, then λ and $-\lambda$ occurs with the same multiplicity.

To do

- Cases $k \equiv 0,2 \bmod 4$
- Cheeger type isoperimetric inequalities
- Expander hypergraphs
- Algorithms for eigenvalues/vectors of a hypermatrix

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas
(1) MSRI Summer Graduate Workshop

- July 7 to July 18, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton
- Mathematical Sciences Research Institute, Berkeley, CA
- http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw
(2) AIM Workshop
- July 21 to July 25, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
- American Institute of Mathematics, Palo Alto, CA
- http://aimath.org/ARCC/workshops/repnsoftensors.html

