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Hypermatrices

Totally ordered finite sets: [n] ={1<2<---<n}, neN.

@ Vector or n-tuple
f:[n]— R

If (i) = a;, then f is represented by a = [ay,...,a,] € R".

@ Matrix
f:[m]x[n] —R.

If £(i,j) = ajj, then f is represented by A = [au],,J ; € R™XN,
@ Hypermatrix (order 3)

fo[l] x [m] x[n] —R.
If £(i,j, k) = ajjk, then f is represented by A = [a;jk]]fdmk" | € Rixmxn,

Normally RX = {f : X — R}. Ought to be RI"l RImIx[nl RUIX[mIx[n]
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Hypermatrices and tensors

Up to choice of bases
@ a € R" can represent a vector in V' (contravariant) or a linear
functional in V* (covariant).

@ A€ R™*" can represent a bilinear form V* x W* — R
(contravariant), a bilinear form V x W — R (covariant), or a linear
operator V — W (mixed).

o A e R*™Xn can represent trilinear form U x V x W — R
(covariant), bilinear operators V x W — U (mixed), etc.

A hypermatrix is the same as a tensor if

@ we give it coordinates (represent with respect to some bases);

@ we ignore covariance and contravariance.
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Basic operation on a hypermatrix

@ A matrix can be multiplied on the left and right: A € R™*",
X e RPXM Y ¢ R9*7,

(X,Y) A= XAYT = [c,5] € RP*Y

where .
CoB = T XaiV3idi-
af E :ile aiYBjaij

@ A hypermatrix can be multiplied on three sides: A = [aji] € R/xmxn
X e RPXI, Y € R, Z € R*",

(X,Y,Z2)- A= [[cagw]] € RP*axr
where

I,m,n
CaBy = E XeiVBiZyk Aiik-
By Pk=1 aiYBjZykaijk
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Basic operation on a hypermatrix

@ Covariant version:
A- (X", YT, ZT)=(X,Y,2)- A

@ Gives convenient notations for multilinear functionals and multilinear
operators. For x e R,y e R™,z € R",

I,m,n

.A(X, y, Z) =A- (X, Y, Z) = Zi,j =1 aAjjkXiYjZk,
m,n

A(la Y, Z) =A- (l7 Y, Z) = Zj k=1 QijkYjZk-

L.-H. Lim (Berkeley) Tensor approximations April 23, 2008 5/37



Symmetric hypermatrices

o Cubical hypermatrix [ajc] € R™"*" is symmetric if
djjk = dikj = djik = Ajki = Akij = Akji-

@ Invariant under all permutations o € &y on indices.

o SK(R") denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example
Moments of a random vector x = (Xi,..., X,):
my(x) = [E(x,-lx,-2 .. -x,-k) ..... [/ /x,lx,2 i, dp(xi) - dp(x,)
iyeeig=1
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, ..., X,):

kk(x) = Z. .(—1)”l(p—l)!E(iglx;>~-E<ig‘px,-)]n .

,,,,,

For n =1, k(x) for k =1,2,3,4 are the expectation, variance, skewness,
and kurtosis. )

@ Important in Independent Component Analysis (ICA).
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Inner products and norms

o /2([n]): a,b € R", (a,b) =a'b =" a;b;.
o 2([m] x [n]): A,B € R™" (A B)=1tr(ATB) = ZZ; ajjbjj.
o 2([1] x [m] x [n]): A, B € RI*mxn (A B) = 707" abjj.
@ In general,
C([m] x [n]) = £2([m]) @ E([n]),
C(U % [m] x [n]) = ([N) @ E([m]) @ ¢2([n))-

@ Frobenius norm

I,m,n
A =30 &
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

o Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

@ Polynomial f € R[xy, ..., x,] of degree d can be expressed as
f(x) = ap + a; x +x' Aox + Az(x,%,%) + - - - + Ag(x, ..., X).

a0 € R,a; € R", Ay € R™N A3 € R*nxn A, € R0,
@ Numerical linear algebra: d = 2.

@ Numerical multilinear algebra: d > 2.
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Multilinear spectral theory

Let A € R"™*"™*" (easier if A symmetric).

@ How should one define its eigenvalues and eigenvectors?

© What is a decomposition that generalizes the eigenvalue
decomposition of a matrix?

Let A € R/xmxn

@ How should one define its singular values and singular vectors?

@ What is a decomposition that generalizes the singular value
decomposition of a matrix?

Somewhat surprising: (1) and (2) have different answers.
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Multilinear spectral theory

o May define eigenvalues/vectors of A € S¥(R") as critical
values/points of the multilinear Raleigh quotient

A(x, .., x)/|Ix]|&.

Lagrangian
L(x,A) == A%, x) = A(Ix][§ = 1).

@ At a critical point
Al %, ... x) = Axk7L,
Ditto for singular values/vectors of A € RI>xdk,

Perron-Frobenius theorem for irreducible non-negative hypermatrices,
spectral hypergraph theory:

» L, “Singular values and eigenvalues of tensors: a variational approach,”
Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 1 (2005).
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Tensor ranks (Hitchcock, 1927)

o Matrix rank. A € R™*",

rank(A) = dim(spang{Ae1,...,Aen})  (column rank)
= dim(spang{Aie,...,Ame})  (row rank)
=min{r|A=Y"_ uv} (outer product rank).

o Multilinear rank. A € R™™*" rankg(A) = (r1(A), n(A), r3(A)),

ri(A) = dim(spang{Aiee; - - -, Alee})
r(A) = dim(spang{Aete, - - - ; Aeme })
r3(A) = dim(spang{Aee1;- - -, Aeen})
e Outer product rank. A € R/xmxn,
rankg(A) = min{r | A=3"7_ju; ® v; ® w;}
whereu®@vew: = [[Ui‘/jWk]]f':JTLn:r
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Eigenvalue and singular value decompositions

@ Rank revealing decompositions associated with outer product rank.
e Symmetric eigenvalue decomposition of A € S3(R"),

r
A= Zi:l AV @V ® v (1)

where ranks(A) = min{r ! A=3TAviQvi® v,-} =r.
» P. Comon, G. Golub, L, B. Mourrain, “Symmetric tensor and
symmetric tensor rank,” SIAM J. Matrix Anal. Appl.

e Singular value decomposition of A € R/*m*",
r
A= Zl.zlaiui XV QwW; (2)

where rankg(A) = r.

» V. de Silva, L, “Tensor rank and the ill-posedness of the best low-rank
approximation problem,” SIAM J. Matrix Anal. Appl.

@ (1) used in applications of ICA to signal processing; (2) used in
applications of the PARAFAC model to analytical chemistry.
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Eigenvalue and singular value decompositions

@ Rank revealing decompositions associated with the multilinear rank.

e Symmetric eigenvalue decomposition of A € S3(R"),
A= (U,U,U)-C (3)

where rankg(A) = (r, r,r), U € R™" has orthonormal columns and
C € S3(R").
o Singular value decomposition of A € R/*m*n,

A=(U,V,W)-C (4)

where rankg(A) = (r1, r, 13), U € R/X1, V € R™MX2 W € RM¥5
have orthonormal columns and C € R *"2%73,

» L. De Lathauwer, B. De Moor, J. Vandewalle “A multilinear singular
value decomposition,” SIAM J. Matrix Anal. Appl., 21 (2000), no. 4.

» B. Savas, L, “Best multilinear rank approximation with quasi-Newton
method on Grassmannians,” preprint.
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Segre variety and its secant varieties

@ The set of all rank-1 hypermatrices is known as the Segre variety in
algebraic geometry.

@ It is a closed set (in both the Euclidean and Zariski sense) as it can
be described algebraically:

Seg(R/,Rm,Rn) — {.A e R/men ‘ A=u ®V®W} —
{AeR™™M | a1 2jhis = Akikoks @by Lins Jo} = {kas ln}}
@ Hypermatrices that have rank > 1 are elements on the higher secant
varieties of .7 = Seg(R/,R™ R").
o E.g. a hypermatrix has rank 2 if it sits on a secant line through two

points in . but not on ., rank 3 if it sits on a secant plane through
three points in . but not on any secant lines, etc.
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Decomposition approach to data analysis

@ More generally, F = C, R, Ry, Rpyax (max-plus algebra), Rlx, ..., xp]
(polynomial rings), etc.

Dictionary, 2 C FN, not contained in any hyperplane.

Let 25 = union of bisecants to &, 23 = union of trisecants to &,
.., 9, = union of r-secants to .

Define Z-rank of A € FN to be min{r | A € 2,}.
If o :FN x FN — R is some measure of ‘nearness’ between pairs of

points (e.g. norms, Bregman divergences, etc), we want to find a best
low-rank approximation to A:

argmin{p(A, B) | Z-rank(B) < r}.
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Decomposition approach to data analysis

@ In the presence of noise, approximation instead of decomposition
A~a1-Bi+--+a, B, € 9,.

B; € 2 reveal features of the dataset A.

@ Note that another way to say ‘best low-rank’ is ‘sparsest possible’.

Examples
@ CANDECOMP/PARAFAC: 2 = {A | rankg(A) < 1},
¢(A, B) = [ A= Bl -
@ De Lathauwer model: 2 = {A | rankg(A) < (n,r,13)},
¢(A,B) = || A - B|F.
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Fundamental problem of multiway data analysis

o A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
@ Solve
argminrank(B)SrH‘A - BH

@ rank may be outer product rank, multilinear rank, symmetric rank (for
symmetric hypermatrix), or nonnegative rank (nonnegative

hypermatrix).
Example
Given A € R%x%xds find u;, vj,w;, i =1,...,r, that minimizes
[A—u1 @viQw; —u @va@Wy — -+ —u, @V, QZ,|

or C € R*2Xi and U € RA*1 Vv € R2X2 W € R%B*"3, that minimizes

A= (U,V,W)-C||.

v
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Fundamental problem of multiway data analysis

Example

Given A € SK(C"), find u;, i = 1,...,r, that minimizes
u®k K
(R L —
or C € Rn=xr2Xris gnd U € R™' that minimizes
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Separation of variables

Approximation by sum or integral of separable functions

@ Continuous

f(x,y,z /Gxt o(y, t)Y(z, t) dt.
o Semi-discrete
fley.2) =" 0o()en(y)n(2)

‘9P(X) = 0(x, tp)v ‘PP(Y) = o(y, tp)v 1/)P(Z) =1Y(z, tp): r possibly co.
@ Discrete

r
ajixk = g UjpVipW,
ijk p=1 PP kp

ajjk = F(xi, Y5, 2k), tip = 0p(xi), Vip = ©p(¥j), Wkp = ¥p(2k)-
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Separation of variables

Useful for data analysis, machine learning, pattern recognition.

Gaussians are separable

exp(x® + y? + z°%) = exp(x?) exp(y?) exp(2?).

@ More generally for symmetric positive-definite A € R™",

exp(x " Ax) = exp(z' Az) = Hn

) exp(\;z?).

Gaussian mixture models

m

f(x) = ijl aj expl(x — Hj)TAj(x - “’j)]v

f is a sum of separable functions.
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Integral kernels

Approximation by sum or integral kernels

@ Continuous
f(x,y,z ///K(X,yzﬁ(xx) (v, y"W(z,2") dx'dy’dZ'.

@ Semi-discrete

P.q.r
f(x,y,z) = Z., . cinjrie O (X) i (v )0owr (2)

i’ k'=1

Cirjrk! = K(X;’vyjh le</)1 0,‘/(X) = G(X,XI{/), ij'(y) = @(yayj{')'
Y(z) = (2, 2s), p,q, r possibly oo.
@ Discrete P
aje = ) i g I il Vi Wik

ajjk = f(xi,yj, 2k), uiv = 0i(xi), viir = @jr(¥j), Wi = i (zk).
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Lemma (de Silva, L)
Let r > 2 and k > 3. Given the norm-topology on R%* > the following
statements are equivalent:
Q The set . (dv,...,dk) :={A|rankg(A) < r} is not closed.
@ There exists a sequence A, rankg(A,) < r, n € N, converging to B
with rankg (B) > r.

© There exists B, rankg (B) > r, that may be approximated arbitrarily
closely by hypermatrices of strictly lower rank, i.e.

inf{||B — Al | rankg(A) < r} =0.

Q There exists C, rankg(C) > r, that does not have a best rank-r
approximation, i.e.

inf{||C — A|| | rankg(A) < r}

is not attained (by any A with rankg(A) < r).
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Non-existence of best low-rank approximation
o Forx;,y; e R%, =123,

A=x1 ®%x ®y3+ X1 QY2 ® X3+ Y1 @ X2 ® X3.
@ Forne N,

1 1 1
Ap:=n X1+ Y1) @ X2+ _y2 | @ X3+ y3 | — Xy @ X2 © Xs.

Lemma (de Silva, L)

rankg(A) = 3 iff x;,y; linearly independent, i = 1,2,3. Furthermore, it is
clear that rankg(A,) < 2 and

limp_oo An = A.

@ Original result, in a different form, due to:

» D. Bini, G. Lotti, F. Romani, “Approximate solutions for the bilinear
form computational problem,” SIAM J. Comput., 9 (1980), no. 4.
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Outer product approximations are ill-behaved

@ Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem (de Silva, L)
Let k >3 and di,...,dx > 2. For any s such that

2 <s<min{di,...,dk},

there exists A € RAX > with rankg(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

e For matrices, the quantity min{di, d>} will be the maximal possible
rank in R%*% |n general, a hypermatrix in R % %% can have rank
exceeding min{di, ..., dk}.
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Outer product approximations are ill-behaved

@ Tensor rank can jump over an arbitrarily large gap:

Theorem (de Silva, L)

Let k > 3. Given any s € N, there exists a sequence of order-k
hypermatrix A, such that rankg(A,) < r and lim,_ A, = A with
rankg(A) =r +s.

@ Hypermatrices that fail to have best low-rank approximations are not
rare. May occur with non-zero probability; sometimes with certainty.

Theorem (de Silva, L)

Let . be a measure that is positive or infinite on Euclidean open sets in
R/>*mxn " There exists some r € N such that

w({A | A does not have a best rank-r approximation}) > 0.

R2><2><2

In , all rank-3 hypermatrices fail to have best rank-2 approximation.
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Message

@ That the best rank-r approximation problem for hypermatrices has no
solution poses serious difficulties.

@ It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn’t matter.

@ If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Weak solutions

@ For a hypermatrix A that has no best rank-r approximation, we will
call a C € {A | rankg(A) < r} attaining

inf{||C — A|| | rankg(A) < r}

a weak solution. In particular, we must have rankg(C) > r.

o It is perhaps surprising that one may completely parameterize all limit
points of order-3 rank-2 hypermatrices.
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Weak solutions

Theorem (de Silva, L)
Let di,d»,d3 > 2. Let A, € RN*%Xd pe 5 sequence of hypermatrices
with rankg (A,) < 2 and

limp oo An = A,

where the limit is taken in any norm topology. If the limiting hypermatrix
A has rank higher than 2, then rankg(A) must be exactly 3 and there
exist pairs of linearly independent vectors x1,y1 € R%, xo,y> € R%,
x3,y3 € R® such that

.A=X1®X2®Y3+X1®YQ®X3+Y1®X2®X3.

@ In particular, a sequence of order-3 rank-2 hypermatrices cannot
‘jump rank’ by more than 1.
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Hyperdeterminant
o Work in C(1+1)xx(d+1) for the time being (d; > 1). Consider
M = {A e CltDx(dtl) | g A(xq,... %) = 0

for non-zero x1, ..., Xk}

Theorem (Gelfand, Kapranov, Zelevinsky)
M is a hypersurface iff for all j =1, ...k,

d: < d:.
= Lz

@ The hyperdeterminant Det(.A) is the equation of the hypersurface,
i.e. a multivariate polynomial in the entries of A such that

M = {A € ClT1x(dtl) | Det(A) = 0.

@ Det(.A) may be chosen to have integer coefficients.
@ For C™*" condition becomes m < n and n < m, i.e. square matrices.
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2 X 2 X 2 hyperdeterminant
Hyperdeterminant of A = [ajx] € R?*2%2 [Cayley; 1845] is

1
Det(A) = — |det a0 Ao10 n a0 110
4 001 o1l a1 a1

2
8000 4010 d100 4110

— det —
4001 401l d101  di11

a
— 4det |77
4001

ao10
ao11

a100 4110
det
dior a1l

A result that parallels the matrix case is the following: the system of

bilinear equations

a000X0Yo + @o10Xoy1 + Ai00X1yo + ai10X1y1
a001X0Y0 + do11Xoy1 + dw01X1yo + Ai11x1y1
a000X020 + A001X0Z1 + @100X120 + A101X121
a010X020 + A011X0Z1 + @110X120 + A111X121
3000Y020 + A001Y0Z1 + Aoi0y12o0 + Ao011Y121

3100020 + 3101Y02Z1 + ai10y120 + a111y121

has a non-trivial solution iff Det(.A) = 0.
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2 X 2 X 3 hyperdeterminant
Hyperdeterminant of A = [ajx] € R?*2%3 is

do00 4001 4002 di00 di01 4102
Det(A) =det |ai00 a1 a2 det |ao10 @011 Qo2
do10 doi1 4012 dilo  dir d2

4000 4001 4002 do00 4001 4002

—det |aw0 a1 awo2| det [aoi0 @011 dor2

a110 4111 4112 d110 4111 4112

Again, the following is true:

a000X0yo + ao10Xoy1 + aioox1yo + aitoxiyr = 0,
aoo1Xoyo + ao11Xoy1 + awoixiyo + aiixiyr = 0,
ao02Xoyo + ao12Xoy1 + awo2x1yo + aiexiyr = 0,
a000X020 + @001X02Z1 + A002X02Z2 + @100X120 + At01x121 + aw2x1z2 = 0,
a010X020 + @011X021 + @012X022 + a110X120 + a111x121 + aiexize = 0,
a000Y020 + ao01Y0z1 + ao02yY022 + ao10y120 + ao11y1z1 + aoey1z2 = 0,

a100Y020 + a101¥021 + a102Y022 + atwoyi12o + auy1z1 + aizy1z2 =0,

has a non-trivial solution iff Det(.A) = 0.
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Cayley hyperdeterminant and tensor rank

@ The Cayley hyperdeterminant Dety > may be extended to any
A € RNX2Xs ith rankg(A) < 2.

Theorem (de Silva, L)

Let di,dp,d3 > 2. A€ RAXEXD js 5 weak solution, i.e.

A=x1@% ®@y3+ X1 ®Y2 ® X3+ Y1 ® X2 ® X3,
iff Detz 2 2(A) = 0.

Theorem (Kruskal)

Let A € R?*2*2_ Then rankg(A) = 2 if Deta22(A) > 0 and
rankg(A) = 3 if Detz’g,z(.A) < 0.

@ See de Silva-L for a proof via the Cayley hyperdeterminant.
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Symmetric hypermatrices for blind source separation

Problem

Given'y = Mx + n. Unknown: source vector x € C", mixing matrix
M € C™*", noise n € C™. Known: observation vectory € C™. Goal:
recover x fromy.

@ Assumptions:

© components of x statistically independent,
@ M full column-rank,
© n Gaussian.

@ Method: use cumulants
ki(y) = (M, M,.... M) - kk(x) + xk(n).

@ By assumptions, kx(n) = 0 and k(x) is diagonal. So need to
diagonalize the symmetric hypermatrix ki (y).
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Diagonalizing a symmetric hypermatrix

@ A best symmetric rank approximation may not exist either:

Example (Comon, Golub, L, Mourrain)

Let x,y € R” be linearly independent. Define for n € N,

1 Rk
A,:=n (x + ;y) — nx®k

and
A=xQy® Qy+y®x® - Qy+ - +yQy®- - ®x.
Then ranks(A,) < 2, ranks(.A) = k, and

lim,—o A, = A.
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Nonnegative hypermatrices and nonnegative tensor rank

o Let 0 < A € R%X*xd The nonnegative rank of A is

rank (A —mln{r‘z UuiQVv® - ®zj, u,-,...,z,'ZO}

@ Clearly nonnegative decomposition exists for any A > 0.
@ Arises in the Naive Bayes model.

Theorem (L)
Let A = [aj,...,]€ R#**% be nonnegative. Then

|nf{HA Z u v, ® --®z;H’u,-,...,z,-20}

is always attained.
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Advertisement

Geometry and representation theory of tensors for computer
science, statistics, and other areas

@ MSRI Summer Graduate Workshop

July 7 to July 18, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton

Mathematical Sciences Research Institute, Berkeley, CA
http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw

@ AIM Workshop

July 21 to July 25, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
American Institute of Mathematics, Palo Alto, CA
http://aimath.org/ARCC/workshops/repnsoftensors.html

vV vy vYyy

v v vYyy
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