Hyperdeterminants, secant varieties, and tensor approximations

Lek-Heng Lim

University of California, Berkeley

April 23, 2008

Joint work with Vin de Silva

L.-H. Lim (Berkeley)

Tensor approximations

April 23, 2008 1 / 37

Hypermatrices

Totally ordered finite sets: $[n] = \{1 < 2 < \cdots < n\}, n \in \mathbb{N}.$

• Vector or *n*-tuple

$$f:[n] \to \mathbb{R}.$$

If $f(i) = a_i$, then f is represented by $\mathbf{a} = [a_1, \dots, a_n]^\top \in \mathbb{R}^n$. • Matrix

$$f:[m]\times [n]\to \mathbb{R}.$$

If $f(i,j) = a_{ij}$, then f is represented by $A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{R}^{m \times n}$.

• Hypermatrix (order 3)

$$f:[I]\times[m]\times[n]\to\mathbb{R}.$$

If $f(i, j, k) = a_{ijk}$, then f is represented by $\mathcal{A} = [\![a_{ijk}]\!]_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$. Normally $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times [n]}, \mathbb{R}^{[l] \times [m] \times [n]}$.

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{R}^n$ can represent a vector in V (contravariant) or a linear functional in V^* (covariant).
- A ∈ ℝ^{m×n} can represent a bilinear form V* × W* → ℝ (contravariant), a bilinear form V × W → ℝ (covariant), or a linear operator V → W (mixed).
- $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$ can represent trilinear form $U \times V \times W \to \mathbb{R}$ (covariant), bilinear operators $V \times W \to U$ (mixed), etc.

A hypermatrix is the same as a tensor if

- we give it coordinates (represent with respect to some bases);
- 2 we ignore covariance and contravariance.

Basic operation on a hypermatrix

• A matrix can be multiplied on the left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}$, $Y \in \mathbb{R}^{q \times n}$,

$$(X, Y) \cdot A = XAY^{\top} = [c_{\alpha\beta}] \in \mathbb{R}^{p \times q}$$

where

$$c_{lphaeta} = \sum_{i,j=1}^{m,n} x_{lpha i} y_{eta j} \mathsf{a}_{ij}.$$

• A hypermatrix can be multiplied on three sides: $\mathcal{A} = \llbracket a_{ijk} \rrbracket \in \mathbb{R}^{l \times m \times n}$, $X \in \mathbb{R}^{p \times l}$, $Y \in \mathbb{R}^{q \times m}$, $Z \in \mathbb{R}^{r \times n}$,

$$(X, Y, Z) \cdot \mathcal{A} = \llbracket c_{\alpha\beta\gamma} \rrbracket \in \mathbb{R}^{p \times q \times r}$$

where

$$c_{\alpha\beta\gamma} = \sum_{i,j,k=1}^{I,m,n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{ijk}.$$

Basic operation on a hypermatrix

Covariant version:

$$\mathcal{A} \cdot (X^{\top}, Y^{\top}, Z^{\top}) := (X, Y, Z) \cdot \mathcal{A}.$$

Gives convenient notations for multilinear functionals and multilinear operators. For x ∈ ℝ^l, y ∈ ℝ^m, z ∈ ℝⁿ,

$$\mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \mathcal{A} \cdot (\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{\substack{i,j,k=1\\i,j,k=1}}^{l,m,n} a_{ijk} x_i y_j z_k,$$
$$\mathcal{A}(l, \mathbf{y}, \mathbf{z}) := \mathcal{A} \cdot (l, \mathbf{y}, \mathbf{z}) = \sum_{\substack{m,n\\j,k=1}}^{m,n} a_{ijk} y_j z_k.$$

Symmetric hypermatrices

• Cubical hypermatrix $\llbracket a_{ijk} \rrbracket \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$a_{ijk} = a_{ikj} = a_{jik} = a_{jki} = a_{kij} = a_{kji}.$$

- Invariant under all permutations $\sigma \in \mathfrak{S}_k$ on indices.
- $S^k(\mathbb{R}^n)$ denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector $\mathbf{x} = (X_1, \ldots, X_n)$:

$$m_k(\mathbf{x}) = \left[E(x_{i_1} x_{i_2} \cdots x_{i_k}) \right]_{i_1, \dots, i_k=1}^n = \left[\int \cdots \int x_{i_1} x_{i_2} \cdots x_{i_k} d\mu(x_{i_1}) \cdots d\mu(x_{i_k}) \right]_{i_1, \dots, i_k=1}^n.$$

(日) (同) (日) (日)

Symmetric hypermatrices

Example

Cumulants of a random vector $\mathbf{x} = (X_1, \ldots, X_n)$:

$$\kappa_k(\mathbf{x}) = \left[\sum_{A_1 \sqcup \cdots \sqcup A_p = \{i_1, \dots, i_k\}} (-1)^{p-1} (p-1)! E\left(\prod_{i \in A_1} x_i\right) \cdots E\left(\prod_{i \in A_p} x_i\right)\right]_{i_1, \dots, i_k = 1}^n.$$

For n = 1, $\kappa_k(x)$ for k = 1, 2, 3, 4 are the expectation, variance, skewness, and kurtosis.

• Important in Independent Component Analysis (ICA).

Inner products and norms

- $\ell^2([n])$: $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^\top \mathbf{b} = \sum_{i=1}^n a_i b_i$.
- $\ell^2([m] \times [n])$: $A, B \in \mathbb{R}^{m \times n}$, $\langle A, B \rangle = \operatorname{tr}(A^\top B) = \sum_{i,j=1}^{m,n} a_{ij} b_{ij}$.
- $\ell^2([I] \times [m] \times [n])$: $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{I \times m \times n}$, $\langle \mathcal{A}, \mathcal{B} \rangle = \sum_{i,j,k=1}^{I,m,n} a_{ijk} b_{ijk}$.

In general,

$$\begin{split} \ell^2([m]\times[n]) &= \ell^2([m])\otimes \ell^2([n]),\\ \ell^2([l]\times[m]\times[n]) &= \ell^2([l])\otimes \ell^2([m])\otimes \ell^2([n]). \end{split}$$

Frobenius norm

$$\|\mathcal{A}\|_{F}^{2} = \sum_{i,j,k=1}^{l,m,n} a_{ijk}^{2}.$$

DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA Tech 2007.

Problem

Beyond convex optimization: *can linear algebra be replaced by algebraic geometry in a systematic way?*

- Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra.
- Polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree d can be expressed as

$$f(\mathbf{x}) = a_0 + \mathbf{a}_1^\top \mathbf{x} + \mathbf{x}^\top A_2 \mathbf{x} + A_3(\mathbf{x}, \mathbf{x}, \mathbf{x}) + \cdots + A_d(\mathbf{x}, \dots, \mathbf{x}).$$

 $a_0 \in \mathbb{R}, a_1 \in \mathbb{R}^n, A_2 \in \mathbb{R}^{n \times n}, A_3 \in \mathbb{R}^{n \times n \times n}, \dots, A_d \in \mathbb{R}^{n \times \dots \times n}.$

- Numerical linear algebra: d = 2.
- Numerical multilinear algebra: d > 2.

Multilinear spectral theory

Let $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$ (easier if \mathcal{A} symmetric).

- I How should one define its eigenvalues and eigenvectors?
- What is a decomposition that generalizes the eigenvalue decomposition of a matrix?
- Let $\mathcal{A} \in \mathbb{R}^{I imes m imes n}$
 - How should one define its singular values and singular vectors?
 - What is a decomposition that generalizes the singular value decomposition of a matrix?

Somewhat surprising: (1) and (2) have different answers.

Multilinear spectral theory

May define eigenvalues/vectors of A ∈ S^k(ℝⁿ) as critical values/points of the multilinear Raleigh quotient

$$\mathcal{A}(\mathsf{x},\ldots,\mathsf{x})/\|\mathsf{x}\|_k^k$$

Lagrangian

$$L(\mathbf{x},\lambda) := \mathcal{A}(\mathbf{x},\ldots,\mathbf{x}) - \lambda(\|\mathbf{x}\|_{k}^{k}-1).$$

• At a critical point

$$\mathcal{A}(I_n,\mathbf{x},\ldots,\mathbf{x})=\lambda\mathbf{x}^{k-1}.$$

- Ditto for singular values/vectors of $\mathcal{A} \in \mathbb{R}^{d_1 \times \cdots \times d_k}$.
- Perron-Frobenius theorem for irreducible non-negative hypermatrices, spectral hypergraph theory:
 - L, "Singular values and eigenvalues of tensors: a variational approach," Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 1 (2005).

Tensor ranks (Hitchcock, 1927)

• Matrix rank.
$$A \in \mathbb{R}^{m \times n}$$

$$\begin{aligned} \operatorname{rank}(A) &= \operatorname{dim}(\operatorname{span}_{\mathbb{R}}\{A_{\bullet 1}, \dots, A_{\bullet n}\}) & (\operatorname{column rank}) \\ &= \operatorname{dim}(\operatorname{span}_{\mathbb{R}}\{A_{1\bullet}, \dots, A_{m\bullet}\}) & (\operatorname{row rank}) \\ &= \min\{r \mid A = \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}\} & (\operatorname{outer product rank}). \end{aligned}$$

• Multilinear rank. $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$. rank_{\boxplus}(\mathcal{A}) = ($r_1(\mathcal{A}), r_2(\mathcal{A}), r_3(\mathcal{A})$),

$$\begin{split} r_1(\mathcal{A}) &= \dim(\operatorname{span}_{\mathbb{R}}\{\mathcal{A}_{1\bullet\bullet}, \dots, \mathcal{A}_{I\bullet\bullet}\})\\ r_2(\mathcal{A}) &= \dim(\operatorname{span}_{\mathbb{R}}\{\mathcal{A}_{\bullet1\bullet}, \dots, \mathcal{A}_{\bulletm\bullet}\})\\ r_3(\mathcal{A}) &= \dim(\operatorname{span}_{\mathbb{R}}\{\mathcal{A}_{\bullet\bullet1}, \dots, \mathcal{A}_{\bullet\bulletn}\}) \end{split}$$

• Outer product rank. $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$.

$$\operatorname{rank}_{\otimes}(\mathcal{A}) = \min\{r \mid \mathcal{A} = \sum_{i=1}^{r} \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i\}$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} := \llbracket u_i v_j w_k \rrbracket_{i,j,k=1}^{l,m,n}$.

Eigenvalue and singular value decompositions

- Rank revealing decompositions associated with outer product rank.
- Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathsf{S}^3(\mathbb{R}^n)$,

$$\mathcal{A} = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i \tag{1}$$

where rank_S(A) = min{ $r \mid A = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i$ } = r.

- P. Comon, G. Golub, L, B. Mourrain, "Symmetric tensor and symmetric tensor rank," SIAM J. Matrix Anal. Appl.
- Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$

$$\mathcal{A} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}$$
(2)

where rank_{\otimes}(\mathcal{A}) = r.

- V. de Silva, L, "Tensor rank and the ill-posedness of the best low-rank approximation problem," SIAM J. Matrix Anal. Appl.
- (1) used in applications of ICA to signal processing; (2) used in applications of the PARAFAC model to analytical chemistry.

L.-H. Lim (Berkeley)

Eigenvalue and singular value decompositions

- Rank revealing decompositions associated with the multilinear rank.
- Symmetric eigenvalue decomposition of $\mathcal{A} \in S^3(\mathbb{R}^n)$,

$$\mathcal{A} = (U, U, U) \cdot \mathcal{C} \tag{3}$$

where rank_{\boxplus}(*A*) = (*r*, *r*, *r*), *U* $\in \mathbb{R}^{n \times r}$ has orthonormal columns and $C \in S^3(\mathbb{R}^r)$.

• Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$,

$$\mathcal{A} = (U, V, W) \cdot \mathcal{C} \tag{4}$$

where rank_{\square}(*A*) = (*r*₁, *r*₂, *r*₃), *U* $\in \mathbb{R}^{l \times r_1}$, *V* $\in \mathbb{R}^{m \times r_2}$, *W* $\in \mathbb{R}^{n \times r_3}$ have orthonormal columns and $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$.

- L. De Lathauwer, B. De Moor, J. Vandewalle "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., 21 (2000), no. 4.
- B. Savas, L, "Best multilinear rank approximation with quasi-Newton method on Grassmannians," *preprint*.

L.-H. Lim (Berkeley)

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$Seg(\mathbb{R}^{l}, \mathbb{R}^{m}, \mathbb{R}^{n}) = \{ \mathcal{A} \in \mathbb{R}^{l \times m \times n} \mid \mathcal{A} = \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \} = \{ \mathcal{A} \in \mathbb{R}^{l \times m \times n} \mid \mathbf{a}_{i_{1}i_{2}i_{3}}\mathbf{a}_{j_{1}j_{2}j_{3}} = \mathbf{a}_{k_{1}k_{2}k_{3}}\mathbf{a}_{l_{1}l_{2}l_{3}}, \{i_{\alpha}, j_{\alpha}\} = \{k_{\alpha}, l_{\alpha}\} \}$$

- Hypermatrices that have rank > 1 are elements on the higher secant varieties of S = Seg(ℝ^l, ℝ^m, ℝⁿ).
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in \mathscr{S} but not on \mathscr{S} , rank 3 if it sits on a secant plane through three points in \mathscr{S} but not on any secant lines, etc.

Decomposition approach to data analysis

- More generally, F = C, R, R₊, R_{max} (max-plus algebra), R[x₁,..., x_n] (polynomial rings), etc.
- Dictionary, $\mathscr{D} \subset \mathbb{F}^N$, not contained in any hyperplane.
- Let D₂ = union of bisecants to D, D₃ = union of trisecants to D, ..., D_r = union of r-secants to D.
- Define \mathscr{D} -rank of $\mathcal{A} \in \mathbb{F}^N$ to be min $\{r \mid \mathcal{A} \in \mathscr{D}_r\}$.
- If φ : 𝔽^N × 𝔅^N → ℝ is some measure of 'nearness' between pairs of points (e.g. norms, Bregman divergences, etc), we want to find a best low-rank approximation to A:

$$\operatorname{argmin}\{\varphi(\mathcal{A},\mathcal{B}) \mid \mathscr{D}\operatorname{-rank}(\mathcal{B}) \leq r\}.$$

Decomposition approach to data analysis

• In the presence of noise, approximation instead of decomposition

$$\mathcal{A} \approx \alpha_1 \cdot \mathcal{B}_1 + \cdots + \alpha_r \cdot \mathcal{B}_r \in \mathscr{D}_r.$$

 $\mathcal{B}_i \in \mathscr{D}$ reveal features of the dataset \mathcal{A} .

• Note that another way to say 'best low-rank' is 'sparsest possible'.

Examples

• CANDECOMP/PARAFAC:
$$\mathscr{D} = \{\mathcal{A} \mid \mathsf{rank}_{\otimes}(\mathcal{A}) \leq 1\},\ \varphi(\mathcal{A}, \mathcal{B}) = \|\mathcal{A} - \mathcal{B}\|_{\mathsf{F}}.$$

② De Lathauwer model: $D = \{A \mid \mathsf{rank}_{⊞}(A) \leq (r_1, r_2, r_3)\}, \varphi(A, B) = ||A - B||_F.$

- 4 同 6 4 日 6 4 日 6

Fundamental problem of multiway data analysis

- \mathcal{A} hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
- Solve

$$\operatorname{argmin}_{\operatorname{rank}(\mathcal{B})\leq r} \|\mathcal{A} - \mathcal{B}\|.$$

 rank may be outer product rank, multilinear rank, symmetric rank (for symmetric hypermatrix), or nonnegative rank (nonnegative hypermatrix).

Example

Given
$$\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$$
, find $\mathbf{u}_i, \mathbf{v}_i, \mathbf{w}_i, i = 1, \dots, r$, that minimizes

$$\|\mathcal{A} - \mathbf{u}_1 \otimes \mathbf{v}_1 \otimes \mathbf{w}_1 - \mathbf{u}_2 \otimes \mathbf{v}_2 \otimes \mathbf{w}_2 - \dots - \mathbf{u}_r \otimes \mathbf{v}_r \otimes \mathbf{z}_r\|$$

or $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ and $U \in \mathbb{R}^{d_1 \times r_1}, V \in \mathbb{R}^{d_2 \times r_2}, W \in \mathbb{R}^{d_3 \times r_3}$, that minimizes

$$\|\mathcal{A} - (U, V, W) \cdot \mathcal{C}\|.$$

< ロ > < 同 > < 三 > < 三

Fundamental problem of multiway data analysis

Example

Given $\mathcal{A} \in S^k(\mathbb{C}^n)$, find \mathbf{u}_i , $i = 1, \ldots, r$, that minimizes

$$\|\mathcal{A} - \mathbf{u}_1^{\otimes k} - \mathbf{u}_2^{\otimes k} - \cdots - \mathbf{u}_r^{\otimes k}\|$$

or $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ and $U \in \mathbb{R}^{n \times r_i}$ that minimizes

 $\|\mathcal{A} - (U, U, U) \cdot \mathcal{C}\|.$

L.-H. Lim (Berkeley)

通 ト イヨ ト イヨト

Separation of variables

Approximation by sum or integral of separable functions

Continuous

$$f(x,y,z) = \int \theta(x,t)\varphi(y,t)\psi(z,t)\,dt.$$

Semi-discrete

$$f(x, y, z) = \sum_{\rho=1}^{r} \theta_{\rho}(x) \varphi_{\rho}(y) \psi_{\rho}(z)$$

 $\theta_p(x) = \theta(x, t_p), \ \varphi_p(y) = \varphi(y, t_p), \ \psi_p(z) = \psi(z, t_p), \ r \text{ possibly } \infty.$

Discrete

$$a_{ijk} = \sum\nolimits_{p=1}^r u_{ip} v_{jp} w_{kp}$$

 $a_{ijk} = f(x_i, y_j, z_k), \ u_{ip} = \theta_p(x_i), \ v_{jp} = \varphi_p(y_j), \ w_{kp} = \psi_p(z_k).$

Separation of variables

- Useful for data analysis, machine learning, pattern recognition.
- Gaussians are separable

$$\exp(x^2 + y^2 + z^2) = \exp(x^2) \exp(y^2) \exp(z^2).$$

• More generally for symmetric positive-definite $A \in \mathbb{R}^{n \times n}$,

$$\exp(\mathbf{x}^{\top}A\mathbf{x}) = \exp(\mathbf{z}^{\top}\Lambda\mathbf{z}) = \prod_{i=1}^{n} \exp(\lambda_{i}z_{i}^{2}).$$

Gaussian mixture models

$$f(\mathbf{x}) = \sum_{j=1}^{m} \alpha_j \exp[(\mathbf{x} - \boldsymbol{\mu}_j)^\top A_j (\mathbf{x} - \boldsymbol{\mu}_j)],$$

f is a sum of separable functions.

Integral kernels

Approximation by sum or integral kernels

• Continuous

$$f(x,y,z) = \iiint K(x',y',z')\theta(x,x')\varphi(y,y')\psi(z,z')\,dx'dy'dz'.$$

Semi-discrete

$$f(x, y, z) = \sum_{i', j', k'=1}^{p, q, r} c_{i'j'k'} \theta_{i'}(x) \varphi_{j'}(y) \psi_{k'}(z)$$

 $\begin{aligned} c_{i'j'k'} &= K(x'_{i'}, y'_{j'}, z'_{k'}), \ \theta_{i'}(x) = \theta(x, x'_{i'}), \ \varphi_{j'}(y) = \varphi(y, y'_{j'}), \\ \psi_{k'}(z) &= \psi(z, z'_{k'}), \ p, q, r \text{ possibly } \infty. \end{aligned}$

Discrete

$$a_{ijk} = \sum_{i',j',k'=1}^{p,q,r} c_{i'j'k'} u_{ii'} v_{jj'} w_{kk'}$$

 $a_{ijk} = f(x_i, y_j, z_k), \ u_{ii'} = \theta_{i'}(x_i), \ v_{jj'} = \varphi_{j'}(y_j), \ w_{kk'} = \psi_{k'}(z_k).$

Lemma (de Silva, L)

Let $r \ge 2$ and $k \ge 3$. Given the norm-topology on $\mathbb{R}^{d_1 \times \cdots \times d_k}$, the following statements are equivalent:

- The set $\mathscr{S}_r(d_1, \ldots, d_k) := \{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\}$ is not closed.
- 2 There exists a sequence A_n, rank_⊗(A_n) ≤ r, n ∈ N, converging to B with rank_⊗(B) > r.
- Some of the exists B, rank_⊗(B) > r, that may be approximated arbitrarily closely by hypermatrices of strictly lower rank, i.e.

$$\inf\{\|\mathcal{B}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\} = 0.$$

There exists C, rank_⊗(C) > r, that does not have a best rank-r approximation, i.e.

$$\inf\{\|\mathcal{C}-\mathcal{A}\| \mid \mathsf{rank}_{\otimes}(\mathcal{A}) \leq r\}$$

is not attained (by any A with rank_{\otimes} $(A) \leq r$).

L.-H. Lim (Berkeley)

Non-existence of best low-rank approximation

• For
$$\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^{d_i}$$
, $i = 1, 2, 3$,

 $\mathcal{A} := \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3.$

• For $n \in \mathbb{N}$,

$$\mathcal{A}_n := n\left(\mathbf{x}_1 + \frac{1}{n}\mathbf{y}_1\right) \otimes \left(\mathbf{x}_2 + \frac{1}{n}\mathbf{y}_2\right) \otimes \left(\mathbf{x}_3 + \frac{1}{n}\mathbf{y}_3\right) - n\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3.$$

Lemma (de Silva, L)

 $\operatorname{rank}_{\otimes}(\mathcal{A}) = 3$ iff $\mathbf{x}_i, \mathbf{y}_i$ linearly independent, i = 1, 2, 3. Furthermore, it is clear that $\operatorname{rank}_{\otimes}(\mathcal{A}_n) \leq 2$ and

$$\lim_{n\to\infty}\mathcal{A}_n=\mathcal{A}.$$

• Original result, in a different form, due to:

 D. Bini, G. Lotti, F. Romani, "Approximate solutions for the bilinear form computational problem," SIAM J. Comput., 9 (1980), no. 4.

L.-H. Lim (Berkeley)

Outer product approximations are ill-behaved

• Such phenomenon can and will happen for all orders > 2, all norms, and many ranks:

Theorem (de Silva, L)

Let $k \ge 3$ and $d_1, \ldots, d_k \ge 2$. For any s such that

 $2\leq s\leq \min\{d_1,\ldots,d_k\},\,$

there exists $\mathcal{A} \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ with rank_{\otimes} $(\mathcal{A}) = s$ such that \mathcal{A} has no best rank-r approximation for some r < s. The result is independent of the choice of norms.

 For matrices, the quantity min{d₁, d₂} will be the maximal possible rank in ℝ^{d₁×d₂}. In general, a hypermatrix in ℝ^{d₁×···×d_k} can have rank exceeding min{d₁,...,d_k}.

Outer product approximations are ill-behaved

• Tensor rank can jump over an arbitrarily large gap:

Theorem (de Silva, L)

Let $k \geq 3$. Given any $s \in \mathbb{N}$, there exists a sequence of order-k hypermatrix \mathcal{A}_n such that $\operatorname{rank}_{\otimes}(\mathcal{A}_n) \leq r$ and $\lim_{n \to \infty} \mathcal{A}_n = \mathcal{A}$ with $\operatorname{rank}_{\otimes}(\mathcal{A}) = r + s$.

 Hypermatrices that fail to have best low-rank approximations are not rare. May occur with non-zero probability; sometimes with certainty.

Theorem (de Silva, L)

Let μ be a measure that is positive or infinite on Euclidean open sets in $\mathbb{R}^{l \times m \times n}$. There exists some $r \in \mathbb{N}$ such that

 $\mu(\{A \mid A \text{ does not have a best rank-r approximation}\}) > 0.$

In $\mathbb{R}^{2 \times 2 \times 2}$, all rank-3 hypermatrices fail to have best rank-2 approximation.

Message

- That the best rank-*r* approximation problem for hypermatrices has no solution poses serious difficulties.
- It is incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? i.e. what is the 'approximate solution' an approximate of?

Weak solutions

• For a hypermatrix A that has no best rank-r approximation, we will call a $C \in \overline{\{A \mid \operatorname{rank}_{\otimes}(A) \leq r\}}$ attaining

$$\inf\{\|\mathcal{C}-\mathcal{A}\| \mid \mathsf{rank}_{\otimes}(\mathcal{A}) \leq r\}$$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(\mathcal{C}) > r$.

• It is perhaps surprising that one may completely parameterize all limit points of order-3 rank-2 hypermatrices.

Weak solutions

Theorem (de Silva, L)

Let $d_1, d_2, d_3 \ge 2$. Let $\mathcal{A}_n \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ be a sequence of hypermatrices with rank_{\otimes} $(\mathcal{A}_n) \le 2$ and

$$\lim_{n\to\infty}\mathcal{A}_n=\mathcal{A},$$

where the limit is taken in any norm topology. If the limiting hypermatrix \mathcal{A} has rank higher than 2, then rank_{\otimes}(\mathcal{A}) must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_1, \mathbf{y}_1 \in \mathbb{R}^{d_1}, \mathbf{x}_2, \mathbf{y}_2 \in \mathbb{R}^{d_2}, \mathbf{x}_3, \mathbf{y}_3 \in \mathbb{R}^{d_3}$ such that

 $\mathcal{A} = \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3.$

 In particular, a sequence of order-3 rank-2 hypermatrices cannot 'jump rank' by more than 1.

Hyperdeterminant

• Work in $\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)}$ for the time being $(d_i \geq 1)$. Consider

$$\mathscr{M} := \{ \mathcal{A} \in \mathbb{C}^{(d_1+1) \times \dots \times (d_k+1)} \mid \nabla \mathcal{A}(\mathbf{x}_1, \dots, \mathbf{x}_k) = \mathbf{0}$$
for non-zero $\mathbf{x}_1, \dots, \mathbf{x}_k \}.$

Theorem (Gelfand, Kapranov, Zelevinsky)

 \mathcal{M} is a hypersurface iff for all $j = 1, \ldots, k$,

$$d_j \leq \sum_{i \neq j} d_i.$$

• The **hyperdeterminant** Det(A) is the equation of the hypersurface, i.e. a multivariate polynomial in the entries of A such that

$$\mathscr{M} = \{ \mathcal{A} \in \mathbb{C}^{(d_1+1) \times \cdots \times (d_k+1)} \mid \mathsf{Det}(\mathcal{A}) = 0 \}.$$

Det(A) may be chosen to have integer coefficients.
For C^{m×n}, condition becomes m ≤ n and n ≤ m, i.e. square matrices.

L.-H. Lim (Berkeley)

$2 \times 2 \times 2$ hyperdeterminant Hyperdeterminant of $\mathcal{A} = [\![a_{ijk}]\!] \in \mathbb{R}^{2 \times 2 \times 2}$ [Cayley; 1845] is

$$Det(\mathcal{A}) = \frac{1}{4} \left[det \left(\begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} + \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix} \right) \\ - det \left(\begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} - \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix} \right) \right]^2 \\ - 4 det \begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} det \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix}$$

A result that parallels the matrix case is the following: the system of bilinear equations

$$\begin{split} a_{000}x_0y_0 + a_{010}x_0y_1 + a_{100}x_1y_0 + a_{110}x_1y_1 &= 0, \\ a_{001}x_0y_0 + a_{011}x_0y_1 + a_{101}x_1y_0 + a_{111}x_1y_1 &= 0, \\ a_{000}x_0z_0 + a_{001}x_0z_1 + a_{100}x_1z_0 + a_{101}x_1z_1 &= 0, \\ a_{010}x_0z_0 + a_{011}x_0z_1 + a_{110}x_1z_0 + a_{111}x_1z_1 &= 0, \\ a_{000}y_0z_0 + a_{001}y_0z_1 + a_{010}y_1z_0 + a_{011}y_1z_1 &= 0, \\ a_{100}y_0z_0 + a_{101}y_0z_1 + a_{110}y_1z_0 + a_{111}y_1z_1 &= 0, \end{split}$$

has a non-trivial solution iff Det(A) = 0.

 $2 \times 2 \times 3$ hyperdeterminant Hyperdeterminant of $\mathcal{A} = [\![a_{ijk}]\!] \in \mathbb{R}^{2 \times 2 \times 3}$ is

$$\operatorname{Det}(\mathcal{A}) = \operatorname{det} \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{100} & a_{101} & a_{102} \\ a_{010} & a_{011} & a_{012} \end{bmatrix} \operatorname{det} \begin{bmatrix} a_{100} & a_{101} & a_{102} \\ a_{010} & a_{011} & a_{012} \\ a_{110} & a_{111} & a_{112} \end{bmatrix} - \operatorname{det} \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{100} & a_{101} & a_{102} \\ a_{100} & a_{101} & a_{102} \\ a_{110} & a_{111} & a_{112} \end{bmatrix} \operatorname{det} \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{010} & a_{011} & a_{012} \\ a_{110} & a_{111} & a_{112} \end{bmatrix}$$

Again, the following is true:

$$\begin{aligned} a_{000}x_0y_0 + a_{010}x_0y_1 + a_{100}x_1y_0 + a_{110}x_1y_1 &= 0, \\ a_{001}x_0y_0 + a_{011}x_0y_1 + a_{101}x_1y_0 + a_{111}x_1y_1 &= 0, \\ a_{002}x_0y_0 + a_{012}x_0y_1 + a_{102}x_1y_0 + a_{112}x_1y_1 &= 0, \\ a_{000}x_0z_0 + a_{001}x_0z_1 + a_{002}x_0z_2 + a_{100}x_1z_0 + a_{101}x_1z_1 + a_{102}x_1z_2 &= 0, \\ a_{010}x_0z_0 + a_{011}x_0z_1 + a_{012}x_0z_2 + a_{110}x_1z_0 + a_{111}x_1z_1 + a_{112}x_1z_2 &= 0, \\ a_{000}y_0z_0 + a_{001}y_0z_1 + a_{002}y_0z_2 + a_{010}y_1z_0 + a_{011}y_1z_1 + a_{012}y_1z_2 &= 0, \\ a_{100}y_0z_0 + a_{101}y_0z_1 + a_{102}y_0z_2 + a_{110}y_1z_0 + a_{111}y_1z_1 + a_{112}y_1z_2 &= 0, \end{aligned}$$

has a non-trivial solution iff Det(A) = 0.

Image: A match a ma

Cayley hyperdeterminant and tensor rank

• The Cayley hyperdeterminant $\text{Det}_{2,2,2}$ may be extended to any $\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ with rank_{\otimes} $(\mathcal{A}) \leq 2$.

Theorem (de Silva, L)

Let $d_1, d_2, d_3 \ge 2$. $\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ is a weak solution, i.e.

 $\mathcal{A} = \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3,$

 $\textit{iff} \ \mathsf{Det}_{2,2,2}(\mathcal{A}) = 0.$

Theorem (Kruskal)

Let $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$. Then $\operatorname{rank}_{\otimes}(\mathcal{A}) = 2$ if $\operatorname{Det}_{2,2,2}(\mathcal{A}) > 0$ and $\operatorname{rank}_{\otimes}(\mathcal{A}) = 3$ if $\operatorname{Det}_{2,2,2}(\mathcal{A}) < 0$.

• See de Silva-L for a proof via the Cayley hyperdeterminant.

L.-H. Lim (Berkeley)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Symmetric hypermatrices for blind source separation

Problem

Given $\mathbf{y} = M\mathbf{x} + \mathbf{n}$. Unknown: source vector $\mathbf{x} \in \mathbb{C}^n$, mixing matrix $M \in \mathbb{C}^{m \times n}$, noise $\mathbf{n} \in \mathbb{C}^m$. Known: observation vector $\mathbf{y} \in \mathbb{C}^m$. Goal: recover \mathbf{x} from \mathbf{y} .

- Assumptions:
 - components of x statistically independent,
 - M full column-rank,
 - In Gaussian.
- Method: use cumulants

$$\kappa_k(\mathbf{y}) = (M, M, \dots, M) \cdot \kappa_k(\mathbf{x}) + \kappa_k(\mathbf{n}).$$

• By assumptions, $\kappa_k(\mathbf{n}) = 0$ and $\kappa_k(\mathbf{x})$ is diagonal. So need to diagonalize the symmetric hypermatrix $\kappa_k(\mathbf{y})$.

Diagonalizing a symmetric hypermatrix

• A best symmetric rank approximation may not exist either:

Example (Comon, Golub, L, Mourrain)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be linearly independent. Define for $n \in \mathbb{N}$,

$$\mathcal{A}_n := n \left(\mathbf{x} + \frac{1}{n} \mathbf{y} \right)^{\otimes k} - n \mathbf{x}^{\otimes k}$$

and

 $\mathcal{A} := \mathbf{x} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{y} + \cdots + \mathbf{y} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{x}.$

Then $\operatorname{rank}_{\mathsf{S}}(\mathcal{A}_n) \leq 2$, $\operatorname{rank}_{\mathsf{S}}(\mathcal{A}) = k$, and

$$\lim_{n\to\infty}\mathcal{A}_n=\mathcal{A}.$$

イロト イヨト イヨト

Nonnegative hypermatrices and nonnegative tensor rank

• Let
$$0 \leq \mathcal{A} \in \mathbb{R}^{d_1 \times \cdots \times d_k}$$
. The nonnegative rank of \mathcal{A} is
 $\operatorname{rank}_+(\mathcal{A}) := \min\{r \mid \sum_{i=1}^r \mathbf{u}_i \otimes \mathbf{v}_i \otimes \cdots \otimes \mathbf{z}_i, \ \mathbf{u}_i, \dots, \mathbf{z}_i \geq 0\}$

- Clearly nonnegative decomposition exists for any $\mathcal{A} \geq 0$.
- Arises in the Naïve Bayes model.

Theorem (L) Let $\mathcal{A} = [\![a_{j_1 \cdots j_k}]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ be nonnegative. Then $\inf\{\|\mathcal{A} - \sum_{i=1}^r \mathbf{u}_i \otimes \mathbf{v}_i \otimes \cdots \otimes \mathbf{z}_i\| \mid \mathbf{u}_i, \dots, \mathbf{z}_i \ge 0\}$ is always attained.

(日) (同) (三) (三)

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas

- MSRI Summer Graduate Workshop
 - July 7 to July 18, 2008
 - Organized by J.M. Landsberg, L.-H. Lim, J. Morton
 - Mathematical Sciences Research Institute, Berkeley, CA
 - http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw

2 AIM Workshop

- July 21 to July 25, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
- American Institute of Mathematics, Palo Alto, CA
- http://aimath.org/ARCC/workshops/repnsoftensors.html