Hyperdeterminants, secant varieties, and tensor approximations

Lek-Heng Lim
University of California, Berkeley

April 23, 2008

Joint work with Vin de Silva

Hypermatrices

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Vector or n-tuple

$$
f:[n] \rightarrow \mathbb{R}
$$

If $f(i)=a_{i}$, then f is represented by $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]^{\top} \in \mathbb{R}^{n}$.

- Matrix

$$
f:[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j)=a_{i j}$, then f is represented by $A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}$. Normally $\mathbb{R}^{X}=\{f: X \rightarrow \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times[n]}, \mathbb{R}^{[I] \times[m] \times[n]}$.

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{R}^{n}$ can represent a vector in V (contravariant) or a linear functional in V^{*} (covariant).
- $A \in \mathbb{R}^{m \times n}$ can represent a bilinear form $V^{*} \times W^{*} \rightarrow \mathbb{R}$ (contravariant), a bilinear form $V \times W \rightarrow \mathbb{R}$ (covariant), or a linear operator $V \rightarrow W$ (mixed).
- $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$ can represent trilinear form $U \times V \times W \rightarrow \mathbb{R}$ (covariant), bilinear operators $V \times W \rightarrow U$ (mixed), etc.
A hypermatrix is the same as a tensor if
(1) we give it coordinates (represent with respect to some bases);
(2) we ignore covariance and contravariance.

Basic operation on a hypermatrix

- A matrix can be multiplied on the left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}, Y \in \mathbb{R}^{q \times n}$,

$$
(X, Y) \cdot A=X A Y^{\top}=\left[c_{\alpha \beta}\right] \in \mathbb{R}^{p \times q}
$$

where

$$
c_{\alpha \beta}=\sum_{i, j=1}^{m, n} x_{\alpha i} y_{\beta j} a_{i j}
$$

- A hypermatrix can be multiplied on three sides: $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{I \times m \times n}$, $X \in \mathbb{R}^{p \times 1}, Y \in \mathbb{R}^{q \times m}, Z \in \mathbb{R}^{r \times n}$,

$$
(X, Y, Z) \cdot \mathcal{A}=\llbracket c_{\alpha \beta \gamma} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{\alpha \beta \gamma}=\sum_{i, j, k=1}^{l, m, n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{i j k}
$$

Basic operation on a hypermatrix

- Covariant version:

$$
\mathcal{A} \cdot\left(X^{\top}, Y^{\top}, Z^{\top}\right):=(X, Y, Z) \cdot \mathcal{A}
$$

- Gives convenient notations for multilinear functionals and multilinear operators. For $\mathbf{x} \in \mathbb{R}^{\prime}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k=1}^{I, m, n} a_{i j k} x_{i} y_{j} z_{k} \\
& \mathcal{A}(I, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(I, \mathbf{y}, \mathbf{z})=\sum_{j, k=1}^{m, n} a_{i j k} y_{j} z_{k}
\end{aligned}
$$

Symmetric hypermatrices

- Cubical hypermatrix $\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$
a_{i j k}=a_{i k j}=a_{j i k}=a_{j k i}=a_{k i j}=a_{k j i} .
$$

- Invariant under all permutations $\sigma \in \mathfrak{S}_{k}$ on indices.
- $S^{k}\left(\mathbb{R}^{n}\right)$ denotes set of all order- k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
m_{k}(\mathbf{x})=\left[E\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n}=\left[\int \cdots \int x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} d \mu\left(x_{i_{1}}\right) \cdots d \mu\left(x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

Symmetric hypermatrices

Example

Cumulants of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
\kappa_{k}(\mathbf{x})=\left[\sum_{A_{1} \cup \ldots \cup A_{p}=\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{p-1}(p-1)!E\left(\prod_{i \in A_{1}} x_{i}\right) \cdots E\left(\prod_{i \in \mathcal{A}_{p}} x_{i}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

For $n=1, \kappa_{k}(x)$ for $k=1,2,3,4$ are the expectation, variance, skewness, and kurtosis.

- Important in Independent Component Analysis (ICA).

Inner products and norms

- $\ell^{2}([n]): \mathbf{a}, \mathbf{b} \in \mathbb{R}^{n},\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a}^{\top} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}$.
- $\ell^{2}([m] \times[n]): A, B \in \mathbb{R}^{m \times n},\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j=1}^{m, n} a_{i j} b_{i j}$.
- $\ell^{2}([/] \times[m] \times[n]): \mathcal{A}, \mathcal{B} \in \mathbb{R}^{\prime \times m \times n},\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i, j, k=1}^{l, m, n} a_{i j k} b_{i j k}$.
- In general,

$$
\begin{aligned}
\ell^{2}([m] \times[n]) & =\ell^{2}([m]) \otimes \ell^{2}([n]), \\
\ell^{2}([/] \times[m] \times[n]) & =\ell^{2}([/]) \otimes \ell^{2}([m]) \otimes \ell^{2}([n]) .
\end{aligned}
$$

- Frobenius norm

$$
\|\mathcal{A}\|_{F}^{2}=\sum_{i, j, k=1}^{1, m, n} a_{i j k}^{2}
$$

DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way?

- Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra.
- Polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree d can be expressed as

$$
f(\mathbf{x})=a_{0}+\mathbf{a}_{1}^{\top} \mathbf{x}+\mathbf{x}^{\top} A_{2} \mathbf{x}+\mathcal{A}_{3}(\mathbf{x}, \mathbf{x}, \mathbf{x})+\cdots+\mathcal{A}_{d}(\mathbf{x}, \ldots, \mathbf{x})
$$

$$
a_{0} \in \mathbb{R}, \mathbf{a}_{1} \in \mathbb{R}^{n}, A_{2} \in \mathbb{R}^{n \times n}, \mathcal{A}_{3} \in \mathbb{R}^{n \times n \times n}, \ldots, \mathcal{A}_{d} \in \mathbb{R}^{n \times \cdots \times n}
$$

- Numerical linear algebra: $d=2$.
- Numerical multilinear algebra: $d>2$.

Multilinear spectral theory

Let $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$ (easier if \mathcal{A} symmetric).
(1) How should one define its eigenvalues and eigenvectors?
(0) What is a decomposition that generalizes the eigenvalue decomposition of a matrix?
Let $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$
(1) How should one define its singular values and singular vectors?
(c) What is a decomposition that generalizes the singular value decomposition of a matrix?
Somewhat surprising: (1) and (2) have different answers.

Multilinear spectral theory

- May define eigenvalues/vectors of $\mathcal{A} \in S^{k}\left(\mathbb{R}^{n}\right)$ as critical values/points of the multilinear Raleigh quotient

$$
\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x}) /\|\mathbf{x}\|_{k}^{k}
$$

- Lagrangian

$$
L(\mathbf{x}, \lambda):=\mathcal{A}(\mathbf{x}, \ldots, \mathbf{x})-\lambda\left(\|\mathbf{x}\|_{k}^{k}-1\right)
$$

- At a critical point

$$
\mathcal{A}\left(I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=\lambda \mathbf{x}^{k-1}
$$

- Ditto for singular values/vectors of $\mathcal{A} \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.
- Perron-Frobenius theorem for irreducible non-negative hypermatrices, spectral hypergraph theory:
- L, "Singular values and eigenvalues of tensors: a variational approach," Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 1 (2005).

Tensor ranks (Hitchcock, 1927)

- Matrix rank. $A \in \mathbb{R}^{m \times n}$.

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank). }
\end{aligned}
$$

- Multilinear rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. $\operatorname{rank}_{\boxplus}(\mathcal{A})=\left(r_{1}(\mathcal{A}), r_{2}(\mathcal{A}), r_{3}(\mathcal{A})\right)$,

$$
\begin{aligned}
& r_{1}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{1 \bullet \bullet}, \ldots, \mathcal{A}_{\bullet \bullet \bullet}\right\}\right) \\
& r_{2}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{\bullet 1 \bullet}, \ldots, \mathcal{A}_{\bullet \bullet \bullet}\right\}\right) \\
& r_{3}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{\bullet \bullet 1}, \ldots, \mathcal{A}_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n}$.

Eigenvalue and singular value decompositions

- Rank revealing decompositions associated with outer product rank.
- Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i} \tag{1}
\end{equation*}
$$

where $\operatorname{rank}_{\mathrm{s}}(A)=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}\right\}=r$.

- P. Comon, G. Golub, L, B. Mourrain, "Symmetric tensor and symmetric tensor rank," SIAM J. Matrix Anal. Appl.
- Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\begin{equation*}
\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i} \tag{2}
\end{equation*}
$$

where $\operatorname{rank}_{\otimes}(\mathcal{A})=r$.

- V. de Silva, L, "Tensor rank and the ill-posedness of the best low-rank approximation problem," SIAM J. Matrix Anal. Appl.
- (1) used in applications of ICA to signal processing; (2) used in applications of the PARAFAC model to analytical chemistry.

Eigenvalue and singular value decompositions

- Rank revealing decompositions associated with the multilinear rank.
- Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\mathcal{A}=(U, U, U) \cdot \mathcal{C} \tag{3}
\end{equation*}
$$

where $\operatorname{rank}_{\boxplus}(A)=(r, r, r), U \in \mathbb{R}^{n \times r}$ has orthonormal columns and $\mathcal{C} \in \mathrm{S}^{3}\left(\mathbb{R}^{r}\right)$.

- Singular value decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\begin{equation*}
\mathcal{A}=(U, V, W) \cdot \mathcal{C} \tag{4}
\end{equation*}
$$

where $\operatorname{rank}_{\boxplus}(A)=\left(r_{1}, r_{2}, r_{3}\right), U \in \mathbb{R}^{1 \times r_{1}}, V \in \mathbb{R}^{m \times r_{2}}, W \in \mathbb{R}^{n \times r_{3}}$ have orthonormal columns and $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$.

- L. De Lathauwer, B. De Moor, J. Vandewalle "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., 21 (2000), no. 4.
- B. Savas, L, "Best multilinear rank approximation with quasi-Newton method on Grassmannians," preprint.

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$
\begin{aligned}
& \operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)=\left\{\mathcal{A} \in \mathbb{R}^{I \times m \times n} \mid \mathcal{A}=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\right\}= \\
& \quad\left\{A \in \mathbb{R}^{I \times m \times n} \mid a_{i_{1} i_{2} i_{3}} a_{j_{1} j_{2} j_{3}}=a_{k_{1} k_{2} k_{3}} a_{1_{1} l_{2} l_{3}},\left\{i_{\alpha}, j_{\alpha}\right\}=\left\{k_{\alpha}, l_{\alpha}\right\}\right\}
\end{aligned}
$$

- Hypermatrices that have rank >1 are elements on the higher secant varieties of $\mathscr{S}=\operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$.
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in \mathscr{S} but not on \mathscr{S}, rank 3 if it sits on a secant plane through three points in \mathscr{S} but not on any secant lines, etc.

Decomposition approach to data analysis

- More generally, $\mathbb{F}=\mathbb{C}, \mathbb{R}, \mathbb{R}_{+}, \mathbb{R}_{\max }$ (max-plus algebra), $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ (polynomial rings), etc.
- Dictionary, $\mathscr{D} \subset \mathbb{F}^{N}$, not contained in any hyperplane.
- Let $\mathscr{D}_{2}=$ union of bisecants to $\mathscr{D}, \mathscr{D}_{3}=$ union of trisecants to \mathscr{D}, $\ldots, \mathscr{D}_{r}=$ union of r-secants to \mathscr{D}.
- Define \mathscr{D}-rank of $\mathcal{A} \in \mathbb{F}^{N}$ to be $\min \left\{r \mid \mathcal{A} \in \mathscr{D}_{r}\right\}$.
- If $\varphi: \mathbb{F}^{N} \times \mathbb{F}^{N} \rightarrow \mathbb{R}$ is some measure of 'nearness' between pairs of points (e.g. norms, Bregman divergences, etc), we want to find a best low-rank approximation to \mathcal{A} :

$$
\operatorname{argmin}\{\varphi(\mathcal{A}, \mathcal{B}) \mid \mathscr{D}-\operatorname{rank}(B) \leq r\} .
$$

Decomposition approach to data analysis

- In the presence of noise, approximation instead of decomposition

$$
\mathcal{A} \approx \alpha_{1} \cdot \mathcal{B}_{1}+\cdots+\alpha_{r} \cdot \mathcal{B}_{r} \in \mathscr{D}_{r}
$$

$\mathcal{B}_{i} \in \mathscr{D}$ reveal features of the dataset \mathcal{A}.

- Note that another way to say 'best low-rank' is 'sparsest possible'.

Examples

(1) CANDECOMP/PARAFAC: $\mathscr{D}=\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq 1\right\}$, $\varphi(\mathcal{A}, \mathcal{B})=\|\mathcal{A}-\mathcal{B}\|_{F}$.
(2) De Lathauwer model: $\mathscr{D}=\left\{\mathcal{A} \mid\right.$ rank $\left._{\boxplus}(\mathcal{A}) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\}$, $\varphi(\mathcal{A}, \mathcal{B})=\|\mathcal{A}-\mathcal{B}\|_{F}$.

Fundamental problem of multiway data analysis

- \mathcal{A} hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
- Solve

$$
\operatorname{argmin}_{\operatorname{rank}(\mathcal{B}) \leq r}\|\mathcal{A}-\mathcal{B}\| .
$$

- rank may be outer product rank, multilinear rank, symmetric rank (for symmetric hypermatrix), or nonnegative rank (nonnegative hypermatrix).

Example

Given $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{z}_{r}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{d_{1} \times r_{1}}, V \in \mathbb{R}^{d_{2} \times r_{2}}, W \in \mathbb{R}^{d_{3} \times r_{3}}$, that minimizes

$$
\|\mathcal{A}-(U, V, W) \cdot \mathcal{C}\|
$$

Fundamental problem of multiway data analysis

Example

Given $\mathcal{A} \in S^{k}\left(\mathbb{C}^{n}\right)$, find $\mathbf{u}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\mathbf{u}_{1}^{\otimes k}-\mathbf{u}_{2}^{\otimes k}-\cdots-\mathbf{u}_{r}^{\otimes k}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{n \times r_{i}}$ that minimizes

$$
\|\mathcal{A}-(U, U, U) \cdot \mathcal{C}\|
$$

Separation of variables

Approximation by sum or integral of separable functions

- Continuous

$$
f(x, y, z)=\int \theta(x, t) \varphi(y, t) \psi(z, t) d t
$$

- Semi-discrete

$$
f(x, y, z)=\sum_{p=1}^{r} \theta_{p}(x) \varphi_{p}(y) \psi_{p}(z)
$$

$$
\theta_{p}(x)=\theta\left(x, t_{p}\right), \varphi_{p}(y)=\varphi\left(y, t_{p}\right), \psi_{p}(z)=\psi\left(z, t_{p}\right), r \text { possibly } \infty
$$

- Discrete

$$
\begin{gathered}
a_{i j k}=\sum_{p=1}^{r} u_{i p} v_{j p} w_{k p} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i p}=\theta_{p}\left(x_{i}\right), v_{j p}=\varphi_{p}\left(y_{j}\right), w_{k p}=\psi_{p}\left(z_{k}\right)
\end{gathered}
$$

Separation of variables

- Useful for data analysis, machine learning, pattern recognition.
- Gaussians are separable

$$
\exp \left(x^{2}+y^{2}+z^{2}\right)=\exp \left(x^{2}\right) \exp \left(y^{2}\right) \exp \left(z^{2}\right)
$$

- More generally for symmetric positive-definite $A \in \mathbb{R}^{n \times n}$,

$$
\exp \left(\mathbf{x}^{\top} A \mathbf{x}\right)=\exp \left(\mathbf{z}^{\top} \Lambda \mathbf{z}\right)=\prod_{i=1}^{n} \exp \left(\lambda_{i} z_{i}^{2}\right)
$$

- Gaussian mixture models

$$
f(\mathbf{x})=\sum_{j=1}^{m} \alpha_{j} \exp \left[\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)^{\top} A_{j}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)\right]
$$

f is a sum of separable functions.

Integral kernels

Approximation by sum or integral kernels

- Continuous

$$
f(x, y, z)=\iiint K\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \theta\left(x, x^{\prime}\right) \varphi\left(y, y^{\prime}\right) \psi\left(z, z^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}
$$

- Semi-discrete

$$
f(x, y, z)=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} \theta_{i^{\prime}}(x) \varphi_{j^{\prime}}(y) \psi_{k^{\prime}}(z)
$$

$$
c_{i^{\prime} j^{\prime} k^{\prime}}=K\left(x_{i^{\prime}}^{\prime}, y_{j^{\prime}}^{\prime}, z_{k^{\prime}}^{\prime}\right), \theta_{i^{\prime}}(x)=\theta\left(x, x_{i^{\prime}}^{\prime}\right), \varphi_{j^{\prime}}(y)=\varphi\left(y, y_{j^{\prime}}^{\prime}\right)
$$

$$
\psi_{k^{\prime}}(z)=\psi\left(z, z_{k^{\prime}}^{\prime}\right), p, q, r \text { possibly } \infty
$$

- Discrete

$$
\begin{gathered}
a_{i j k}=\sum_{i^{\prime}, j^{\prime}, k^{\prime}=1}^{p, q, r} c_{i^{\prime} j^{\prime} k^{\prime}} u_{i i^{\prime}} v_{j j^{\prime}} w_{k k^{\prime}} \\
a_{i j k}=f\left(x_{i}, y_{j}, z_{k}\right), u_{i i^{\prime}}=\theta_{i^{\prime}}\left(x_{i}\right), v_{j j^{\prime}}=\varphi_{j^{\prime}}\left(y_{j}\right), w_{k k^{\prime}}=\psi_{k^{\prime}}\left(z_{k}\right) .
\end{gathered}
$$

Lemma (de Silva, L)

Let $r \geq 2$ and $k \geq 3$. Given the norm-topology on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, the following statements are equivalent:
(1) The set $\mathscr{S}_{r}\left(d_{1}, \ldots, d_{k}\right):=\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}$ is not closed.
(2) There exists a sequence \mathcal{A}_{n}, rank $_{\otimes}\left(\mathcal{A}_{n}\right) \leq r, n \in \mathbb{N}$, converging to \mathcal{B} with rank $_{\otimes}(\mathcal{B})>r$.
(3) There exists $\mathcal{B}, \operatorname{rank}_{\otimes}(\mathcal{B})>r$, that may be approximated arbitrarily closely by hypermatrices of strictly lower rank, i.e.

$$
\inf \left\{\|\mathcal{B}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}=0
$$

(9) There exists \mathcal{C}, rank $_{\otimes}(\mathcal{C})>r$, that does not have a best rank- r approximation, i.e.

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

is not attained (by any \mathcal{A} with $\operatorname{rank}_{\otimes}(\mathcal{A}) \leq r$).

Non-existence of best low-rank approximation

- For $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{d_{i}}, i=1,2,3$,

$$
\mathcal{A}:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- For $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}_{1}+\frac{1}{n} \mathbf{y}_{1}\right) \otimes\left(\mathbf{x}_{2}+\frac{1}{n} \mathbf{y}_{2}\right) \otimes\left(\mathbf{x}_{3}+\frac{1}{n} \mathbf{y}_{3}\right)-n \mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} .
$$

Lemma (de Silva, L)

$\operatorname{rank}_{\otimes}(\mathcal{A})=3$ iff $\mathbf{x}_{i}, \mathbf{y}_{i}$ linearly independent, $i=1,2,3$. Furthermore, it is clear that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

- Original result, in a different form, due to:
- D. Bini, G. Lotti, F. Romani, "Approximate solutions for the bilinear form computational problem," SIAM J. Comput., 9 (1980), no. 4.

Outer product approximations are ill-behaved

- Such phenomenon can and will happen for all orders >2, all norms, and many ranks:

Theorem (de Silva, L)

Let $k \geq 3$ and $d_{1}, \ldots, d_{k} \geq 2$. For any s such that

$$
2 \leq s \leq \min \left\{d_{1}, \ldots, d_{k}\right\}
$$

there exists $\mathcal{A} \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ with $\operatorname{rank}_{\otimes}(\mathcal{A})=s$ such that \mathcal{A} has no best rank-r approximation for some $r<s$. The result is independent of the choice of norms.

- For matrices, the quantity $\min \left\{d_{1}, d_{2}\right\}$ will be the maximal possible rank in $\mathbb{R}^{d_{1} \times d_{2}}$. In general, a hypermatrix in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ can have rank exceeding $\min \left\{d_{1}, \ldots, d_{k}\right\}$.

Outer product approximations are ill-behaved

- Tensor rank can jump over an arbitrarily large gap:

Theorem (de Silva, L)

Let $k \geq 3$. Given any $s \in \mathbb{N}$, there exists a sequence of order- k hypermatrix \mathcal{A}_{n} such that $\operatorname{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq r$ and $\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}$ with $\operatorname{rank}_{\otimes}(\mathcal{A})=r+s$.

- Hypermatrices that fail to have best low-rank approximations are not rare. May occur with non-zero probability; sometimes with certainty.

Theorem (de Silva, L)

Let μ be a measure that is positive or infinite on Euclidean open sets in $\mathbb{R}^{I \times m \times n}$. There exists some $r \in \mathbb{N}$ such that

$$
\mu(\{\mathcal{A} \mid \mathcal{A} \text { does not have a best rank-r approximation }\})>0 .
$$

In $\mathbb{R}^{2 \times 2 \times 2}$, all rank-3 hypermatrices fail to have best rank-2 approximation.

Message

- That the best rank- r approximation problem for hypermatrices has no solution poses serious difficulties.
- It is incorrect to think that if we just want an 'approximate solution', then this doesn't matter.
- If there is no solution in the first place, then what is it that are we trying to approximate? i.e. what is the 'approximate solution' an approximate of?

Weak solutions

- For a hypermatrix \mathcal{A} that has no best rank- r approximation, we will call a $\mathcal{C} \in \overline{\left\{\mathcal{A} \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}}$ attaining

$$
\inf \left\{\|\mathcal{C}-\mathcal{A}\| \mid \operatorname{rank}_{\otimes}(\mathcal{A}) \leq r\right\}
$$

a weak solution. In particular, we must have $\operatorname{rank}_{\otimes}(\mathcal{C})>r$.

- It is perhaps surprising that one may completely parameterize all limit points of order-3 rank-2 hypermatrices.

Weak solutions

Theorem (de Silva, L)

Let $d_{1}, d_{2}, d_{3} \geq 2$. Let $\mathcal{A}_{n} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ be a sequence of hypermatrices with $\mathrm{rank}_{\otimes}\left(\mathcal{A}_{n}\right) \leq 2$ and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

where the limit is taken in any norm topology. If the limiting hypermatrix \mathcal{A} has rank higher than 2 , then rank $_{\otimes}(\mathcal{A})$ must be exactly 3 and there exist pairs of linearly independent vectors $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}$, $\mathbf{x}_{3}, \mathbf{y}_{3} \in \mathbb{R}^{d_{3}}$ such that

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

- In particular, a sequence of order-3 rank-2 hypermatrices cannot 'jump rank' by more than 1 .

Hyperdeterminant

- Work in $\mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$ for the time being $\left(d_{i} \geq 1\right)$. Consider

$$
\begin{aligned}
\mathscr{M}:=\{\mathcal{A} & \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \nabla \mathcal{A}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=\mathbf{0} \\
& \text { for non-zero } \left.\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} .
\end{aligned}
$$

Theorem (Gelfand, Kapranov, Zelevinsky)
\mathscr{M} is a hypersurface iff for all $j=1, \ldots, k$,

$$
d_{j} \leq \sum_{i \neq j} d_{i}
$$

- The hyperdeterminant $\operatorname{Det}(\mathcal{A})$ is the equation of the hypersurface, i.e. a multivariate polynomial in the entries of \mathcal{A} such that

$$
\mathscr{M}=\left\{\mathcal{A} \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \operatorname{Det}(\mathcal{A})=0\right\}
$$

- $\operatorname{Det}(\mathcal{A})$ may be chosen to have integer coefficients.
- For $\mathbb{C}^{m \times n}$, condition becomes $m \leq n$ and $n \leq m$, i.e. square matrices.

$2 \times 2 \times 2$ hyperdeterminant

 Hyperdeterminant of $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ [Cayley; 1845] is$$
\left.\left.\left.\begin{array}{rl}
\operatorname{Det}(\mathcal{A})=\frac{1}{4}\left[\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]+\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right. \\
& -\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]\right.
\end{array}\right)-\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right]^{2} .
$$

A result that parallels the matrix case is the following: the system of bilinear equations

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=0, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=0, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=0, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}(\mathcal{A})=0$.

$2 \times 2 \times 3$ hyperdeterminant

Hyperdeterminant of $\mathcal{A}=\llbracket a_{j j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 3}$ is

$$
\operatorname{Det}(\mathcal{A})=\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right]
$$

$$
-\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right]
$$

Again, the following is true:

$$
\begin{aligned}
a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
a_{002} x_{0} y_{0}+a_{012} x_{0} y_{1}+a_{102} x_{1} y_{0}+a_{112} x_{1} y_{1}=0, \\
a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{002} x_{0} z_{2}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}+a_{102} x_{1} z_{2}=0, \\
a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{012} x_{0} z_{2}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}+a_{112} x_{1} z_{2}=0, \\
a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{002} y_{0} z_{2}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}+a_{012} y_{1} z_{2}=0, \\
a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{102} y_{0} z_{2}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}+a_{112} y_{1} z_{2}=0,
\end{aligned}
$$

has a non-trivial solution iff $\operatorname{Det}(\mathcal{A})=0$.

Cayley hyperdeterminant and tensor rank

- The Cayley hyperdeterminant Det $_{2,2,2}$ may be extended to any $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ with $\operatorname{rank}_{\otimes}(\mathcal{A}) \leq 2$.

Theorem (de Silva, L)
Let $d_{1}, d_{2}, d_{3} \geq 2$. $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ is a weak solution, i.e.

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}
$$

iff $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

Theorem (Kruskal)
Let $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$. Then $\operatorname{rank}_{\otimes}(\mathcal{A})=2$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})>0$ and $\operatorname{rank}_{\otimes}(\mathcal{A})=3$ if $\operatorname{Det}_{2,2,2}(\mathcal{A})<0$.

- See de Silva-L for a proof via the Cayley hyperdeterminant.

Symmetric hypermatrices for blind source separation

Problem

Given $\mathbf{y}=M \mathbf{x}+\mathbf{n}$. Unknown: source vector $\mathbf{x} \in \mathbb{C}^{n}$, mixing matrix $M \in \mathbb{C}^{m \times n}$, noise $\mathbf{n} \in \mathbb{C}^{m}$. Known: observation vector $\mathbf{y} \in \mathbb{C}^{m}$. Goal: recover \mathbf{x} from \mathbf{y}.

- Assumptions:
(1) components of \mathbf{x} statistically independent,
(2) M full column-rank,
(3) n Gaussian.
- Method: use cumulants

$$
\kappa_{k}(\mathbf{y})=(M, M, \ldots, M) \cdot \kappa_{k}(\mathbf{x})+\kappa_{k}(\mathbf{n}) .
$$

- By assumptions, $\kappa_{k}(\mathbf{n})=0$ and $\kappa_{k}(\mathbf{x})$ is diagonal. So need to diagonalize the symmetric hypermatrix $\kappa_{k}(\mathbf{y})$.

Diagonalizing a symmetric hypermatrix

- A best symmetric rank approximation may not exist either:

Example (Comon, Golub, L, Mourrain)
Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ be linearly independent. Define for $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=n\left(\mathbf{x}+\frac{1}{n} \mathbf{y}\right)^{\otimes k}-n \mathbf{x}^{\otimes k}
$$

and

$$
\mathcal{A}:=\mathbf{x} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{x} \otimes \cdots \otimes \mathbf{y}+\cdots+\mathbf{y} \otimes \mathbf{y} \otimes \cdots \otimes \mathbf{x}
$$

Then $\operatorname{ranks}_{s}\left(\mathcal{A}_{n}\right) \leq 2, \operatorname{rank}_{s}(\mathcal{A})=k$, and

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n}=\mathcal{A}
$$

Nonnegative hypermatrices and nonnegative tensor rank

- Let $0 \leq \mathcal{A} \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. The nonnegative rank of \mathcal{A} is

$$
\operatorname{rank}_{+}(\mathcal{A}):=\min \left\{r \mid \sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}, \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

- Clearly nonnegative decomposition exists for any $\mathcal{A} \geq 0$.
- Arises in the Naïve Bayes model.

Theorem (L)
Let $\mathcal{A}=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ be nonnegative. Then

$$
\inf \left\{\left\|\mathcal{A}-\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \cdots \otimes \mathbf{z}_{i}\right\| \mid \mathbf{u}_{i}, \ldots, \mathbf{z}_{i} \geq 0\right\}
$$

is always attained.

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas
(1) MSRI Summer Graduate Workshop

- July 7 to July 18, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton
- Mathematical Sciences Research Institute, Berkeley, CA
- http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw
(2) AIM Workshop
- July 21 to July 25, 2008
- Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
- American Institute of Mathematics, Palo Alto, CA
- http://aimath.org/ARCC/workshops/repnsoftensors.html

