
Found Comput Math (2018) 18:45–95
https://doi.org/10.1007/s10208-016-9332-x

Fast Structured Matrix Computations: Tensor Rank
and Cohn–Umans Method

Ke Ye1 · Lek-Heng Lim2

Received: 1 January 2016 / Revised: 16 June 2016 / Accepted: 22 August 2016 /
Published online: 26 September 2016
© SFoCM 2016

Abstract Wediscuss a generalization of theCohn–Umansmethod, a potent technique
developed for studying the bilinear complexity of matrix multiplication by embedding
matrices into an appropriate group algebra. We investigate how the Cohn–Umans
method may be used for bilinear operations other than matrix multiplication, with
algebras other than group algebras, and we relate it to Strassen’s tensor rank approach,
the traditional framework for investigating bilinear complexity. To demonstrate the
utility of the generalized method, we apply it to find the fastest algorithms for forming
structured matrix–vector product, the basic operation underlying iterative algorithms
for structured matrices. The structures we study include Toeplitz, Hankel, circulant,
symmetric, skew-symmetric, f -circulant, block Toeplitz–Toeplitz block, triangular
Toeplitz matrices, Toeplitz-plus-Hankel, sparse/banded/triangular. Except for the case
of skew-symmetric matrices, for which we have only upper bounds, the algorithms
derived using the generalizedCohn–Umansmethod in all other instances are the fastest
possible in the sense of having minimum bilinear complexity. We also apply this
framework to a few other bilinear operations including matrix–matrix, commutator,
simultaneous matrix products, and briefly discuss the relation between tensor nuclear
norm and numerical stability.

Communicated by Nicholas Higham.

B Lek-Heng Lim
lekheng@galton.uchicago.edu

Ke Ye
kye@galton.uchicago.edu

1 Department of Statistics, University of Chicago, Chicago, IL 60637, USA

2 Computational and Applied Mathematics Initiative, Department
of Statistics, University of Chicago, Chicago, IL 60637, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-016-9332-x&domain=pdf

46 Found Comput Math (2018) 18:45–95

Keywords Bilinear complexity · Tensor rank · Tensor nuclear norm · Cohn–Umans
method · Structured matrix–vector product · Stability · Sparse and structured matrices

Mathematics Subject Classification 15B05 · 65F50 · 65Y20 · 13P25 · 22D20

1 Introduction

In this article, we systematically study the design of fast, possibly fastest, algorithms
for a variety of operations involving structured matrices, as measured by the bilinear
complexity of the problem. Roughly speaking, the bilinear complexity of an algorithm
for a problem that can be cast as the evaluation of a bilinear map is the number of mul-
tiplications required in the algorithm; the bilinear complexity of the problem is then
that of an algorithmwith the lowest bilinear complexity [6, Chapter 14]. This notion of
complexity is best known for its use in quantifying the speed of matrix–matrix product
and matrix inversion in the work of Strassen [40], Coppersmith–Winograd [13], Vas-
silevska Williams [46], and many others. The current record, due to Le Gall [30], for
the asymptotic bilinear complexity of n × n matrix–matrix product for unstructured
matrices is O(n2.3728639). Roughly speaking, the asymptotic bilinear complexity of a
problem dependent on n refers to its bilinear complexity when n is sufficiently large.

The algorithms that we study in this article will be for the following operations: (1)
matrix–vector product, (2) matrix–matrix product, and (3) commutator product:

(A, x) �→ Ax, (A, B) �→ AB, (A, B) �→ AB − B A,

where A and B are structured matrices and x is a vector, of appropriate dimensions
so that the products are defined.

The structured matrices studied in this article include: (1) sparse (including banded
and triangular), (2) symmetric, (3) skew-symmetric, (4) Toeplitz, (5) Hankel, (6) cir-
culant, (7) f -circulant and skew-circulant, (8) block Toeplitz–Toeplitz block (bttb)
and more generally any block structured matrices with structured blocks, (9) triangu-
lar Toeplitz and its analogues for Hankel and circulant matrices, (10) sum of Toeplitz
and Hankel. We provide algorithms of optimal bilinear complexity for all except the
skew-symmetric case (for which we only have upper bounds). The optimal bilinear
complexity for the Toeplitz and triangular Toeplitz matrix–vector product are well-
known, due to Bini and Capovani [2], but we will obtain them using a different method
(generalized Cohn–Umans) that applies more generally to all classes of structured
matrices discussed here.

We will examine two different approaches: the Strassen tensor rank approach
[42,43], and the Cohn–Umans group theoretic approach [8–10], as well as the rela-
tions between them. Our study gives a generalization of the Cohn–Umans approach in
two regards: a generalization from matrix–matrix product to arbitrary bilinear opera-
tions, and a generalization from (a) group algebras (e.g., Sect. 17) to arbitrary algebras
including (b) cohomology rings of manifolds (e.g., Sect. 11), (c) coordinate rings of
schemes (e.g., Sect. 11) and varieties (e.g., Sect. 13), (d) polynomial identity rings
(e.g., Sect. 16). We will provide the equivalent of their ‘triple product property’ in

123

Found Comput Math (2018) 18:45–95 47

these more general contexts. The idea of considering algebras other than group alge-
bras was already in [10], where the authors proposed to use adjacency algebras of
coherent configurations. These may be viewed as a generalization of group algebras
and are in particular semisimple, i.e., isomorphic to an algebra of block diagonalmatri-
ces. Our generalization goes further in that the algebras we use may contain nilpotents
and thus cannot be semisimple (e.g., Sect. 11); in fact they may not be associative
algebras (e.g., Sect. 16), may not be algebras (e.g., Sect. 15), and may not even be
vector spaces (e.g., Example 6).

We hope to convince our readers, by way of a series of constructions involving
various structured matrices and various bilinear operations, that this generalization of
Cohn–Umans method could allow one to systematically uncover fast algorithms, and
these could in turn be shown to be the fastest possible (in terms of bilinear complexity)
via arguments based on the Strassen tensor rank approach. For instance, we will see
in Sect. 14 that the fastest possible algorithm for multiplying a symmetric matrix to
a vector involves first writing the symmetric matrix as a sum of Hankel matrices of
decreasing dimensions bordered by zeros. For example, a 4 × 4 symmetric matrix
would have to be decomposed into

⎡
⎢⎢⎣

a b c d
b e f g
c f h i
d g i j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a b c d
b c d g
c d g i
d g i j

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
0 e − c f − d 0
0 f − d e − c 0
0 0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 h − g − e + c 0
0 0 0 0

⎤
⎥⎥⎦ .

This is highly nonobvious to us. We would not have been able to find this algorithm
without employing the generalized Cohn–Umans approach.

The main focus of our article will be the matrix–vector product for various struc-
tured matrices since these form the fundamental building blocks of most modern
iterative algorithms for problems involving structured matrices: linear systems [7,34],
least-squares problems [3,34], eigenvalue problems [47], evaluating analytic functions
with matrix arguments [21], etc. On the other hand, problems requiring matrix–matrix
product of structuredmatrices are relatively uncommon; one reason being that themost
common structuredmatrices (symmetric, Toeplitz, Hankel, etc; in fact all but circulant)
are not closed under matrix–matrix products. Explicit pseudocodes for all structured
matrix–vector product algorithms appearing in this article may be found in [49].

1.1 Why Minimize Multiplications?

In modern computer processors, there is no noticeable difference in the latency of
addition and multiplication [23, Tables 14-1 and 15-6]. So the reader might wonder
why bilinear complexity continues to be of relevance.We provide three reasons below.

The first reason is that such algorithms apply when we have matrices in place of
scalars. We illustrate this with a simple example, Gauss’s method for multiplying two
complex numbers [26, Section 4.6.4]. Let a, b, c, d ∈ R. Then the usual method

(a + ib)(c + id) = (ac − bd) + i(ad + bc)

123

48 Found Comput Math (2018) 18:45–95

requires four real multiplications and two real additions but Gauss’s method

(a + ib)(c + id) = (ac − bd) + i[(a + b)(c + d) − ac − bd] (1)

requires three real multiplications and five real additions. If the costs of addition and
multiplication are roughly the same, thenGauss’smethod is a poorway formultiplying
complex numbers. However, the usefulness of Gauss’s method comes into view when
we multiply complex matrices [20, Chapter 23], i.e., when we do

(A + i B)(C + i D) = (AC − B D) + i[(A + B)(C + D) − AC − B D]

where A, B, C, D ∈ R
n×n . NowGauss’smethod requires threematrix multiplications

instead of four. Addition and multiplication of scalars may well have similar compu-
tational costs, but multiplication of n × n matrices is by any measure vastly more
expensive1 than addition of n × n matrices. This observation applies more generally.
For example, Strassen’s algorithm for the product of 2×2 matrices [40] only becomes
practically useful when it is applied (recursively) to the product of 2×2 block matrices
[20, Chapter 23].

A second reason is that the preceding comparison of addition and multiplication
implicitly assumes that we are using the traditionalmeasure of computational cost, i.e.,
time complexity, but other measures, e.g., energy consumption, number of gates, code
space, etc, have become increasingly important. For instance, a multiplier requires
many more gates than an adder (e.g., 2200 gates for an 18-bit multiplier versus 125
gates for an 18-bit adder [27]), which translates into more wires and transistors on a
microchip and also consumes more energy.

A third reason is that while the latencies of addition andmultiplication are compara-
ble on a general purpose cpu, it is important to remember that arithmetic is performed
on other microchips as well, e.g., asic, dsp, fpga, gpu, motion coprocessor, etc,
where the latency of multiplication may be substantially higher than that of addition.
Moreover, our second reason also applies in this context.

1.2 Overview

We begin by introducing the central object of this article, the structure tensor of a
bilinear operation, and discuss several examples in Sect. 2. This is followed by a
discussion of tensor rank and the closely related notion of border rank in Sect. 3,
allowing us to define bilinear complexity rigorously as the rank of a structure tensor.
We prove several results regarding tensor rank and border rank that will be useful later
when we need to determine these for a given structure tensor. We end the section with
a brief discussion of numerical stability and its relation to the nuclear norm of the
structure tensor.

1 Even if the exponent of matrix multiplication turns out to be 2; note that this is asymptotic.

123

Found Comput Math (2018) 18:45–95 49

In Sect. 4, we examine the structure tensor in the special case where the bilinear
operation is the product operation in an algebra and prove a relation between tensor
ranks of the respective structure tensors when one algebra is mapped into another.
This provides partial motivation for the generalized Cohn–Umans method in Sect. 5,
where we first present the usual Cohn–Umans method as a commutative diagram
of algebras and vector space homomorphisms (as opposed to homomorphisms of
algebras), followed by a demonstration that the ‘triple product property’ is equivalent
to the commutativity of the diagram. Once presented in this manner, the Cohn–Umans
method essentially generalizes itself. As a first example, we show that the fast integer
multiplication algorithms of Karatsuba et al. may be viewed as an application of the
generalized Cohn–Umans method.

In the remainder of the article, we apply the generalized Cohn–Umans method to
analyze a variety of structured matrix–vector products:

– sparse, banded, triangular: Sect. 6,
– circulant: Sect. 7,
– f -circulant, skew-circulant: Sect. 8,
– Toeplitz: Sect. 9,
– Hankel: Sect. 10,
– triangular Toeplitz/Hankel: Sect. 11,
– Toeplitz-plus-Hankel: Sect. 12,
– block Toeplitz–Toeplitz block and other multilevel structures: Sect. 13,
– symmetric: Sect. 14,
– skew-symmetric: Sect. 15.

Except for the case of skew-symmetric matrices, we obtain algorithms with opti-
mum bilinear complexities for all structured matrix–vector products listed above. In
particular we obtain the rank and border rank of the structure tensors in all cases but
the last.

A reader who follows the developments in Sects. 7–15 will observe a certain degree
of interdependence between these algorithms. For example, as we havementioned ear-
lier, the algorithm for symmetric matrix–vector product depends on that for Hankel
matrix–vector product, but the latter depends on that for Toeplitz matrix–vector prod-
uct, which in turn depends on that for circulant matrix–vector product. As another
example of a somewhat surprising interdependence, in Sect. 16, we discuss an algo-
rithm for the commutator product, i.e., [A, B] = AB − B A, for 2 × 2 matrices A, B
based on the algorithm for 3 × 3 skew-symmetric matrix–vector product in Sect. 15.
Yet a third example is that our algorithm for skew-circulant matrix–vector product in
Sect. 8 turns out to contain Gauss’s multiplication of complex numbers as a special
case: (1) may be viewed as the product of a skew-circulant matrix in R

2×2 with a
vector in R

2.
To round out this article, we introduce a new class of problems in Sect. 17 that

we call ‘simultaneous product’ of matrices. The most natural problem in this class
would be the simultaneous computation of AB and ABT for a square matrix B, but
we are unable to obtain any significant findings in this case. Nevertheless, we provide
an impetus by showing that the closely related variants of simultaneously computing
the pair of matrix products

123

50 Found Comput Math (2018) 18:45–95

[
a b
c d

] [
e f
g h

]
and

[
a b
c d

] [
g h
e f

]
,

or the pair of matrix products

[
a b
c d

] [
e f
g h

]
and

[
a b
c d

] [
h g
e f

]
,

can be obtained with just eight multiplications and that the resulting algorithms have
optimum bilinear complexity. Note that computing the pair of products separately
via Strassen’s algorithm, which is optimum for 2 × 2 matrix–matrix product, would
require 14 multiplications.

Throughout this article, we work overC for simplicity but our results hold for more
general fields—quadratic, cyclotomic, infinite, or algebraically closed extensions of
an arbitrary field (say, a finite field), depending on the context.

Results in Sects. 2–6 and 17 are independent of our choice of field with a few excep-
tions: (1) any discussion of Gauss’s method is of course peculiar to C but generalizes
to any quadratic extension of an arbitrary field; (2) the discussion of numerical stability
in Sect. 3.2 require that we work over a subfield of C since they involve norms; (3)
Winograd’s theorem (Theorem 3) requires an infinite field; (4) Corollary 5 requires
an algebraically closed field. The results in Sects. 7–14 for n × n structured matrices
require that the field contains all nth roots of some element, usually 1 but some-
times −1 (for skew-circulant or skew-symmetric) or f (for f -circulant). Results in
Sects. 15 and 16 require an algebraically closed field.

2 The Structure Tensor of a Bilinear Operation

A bilinear operation is simply a bilinear map β : U × V → W where U, V, W
are vector spaces over the same field, henceforth assumed to be C. For example, the
operation of forming amatrix–vector product is a bilinear operation β : C

m×n ×C
n →

C
m, (A, x) �→ Ax , since

β(a A + bB, x) = aβ(A, x) + bβ(B, x), β(A, ax + by) = aβ(A, x) + bβ(A, y).

Likewise for the operations of matrix–matrix product and commutator product.
A simple but central observation in the study of bilinear complexity is that every

bilinear operation is characterized by a 3-tensor and that its tensor rank quantifies
the complexity, as measured solely in terms of the number of multiplications, of the
bilinear operation. We start by defining this 3-tensor.

Definition/Proposition 1 Let β : U × V → W be a bilinear map. Then there exists
a unique tensor μβ ∈ U∗ ⊗ V ∗ ⊗ W such that given any (u, v) ∈ U × V we have

β(u, v) = μβ(u, v, ·) ∈ W.

We call μβ the structure tensor of the bilinear map β.

123

Found Comput Math (2018) 18:45–95 51

By the definition of tensor product, there is a one-to-one correspondence between the
set of bilinear maps from U × V to W and the set of linear maps from U ⊗ V to W .
Therefore we do not distinguish between a bilinear map β : U × V → W and its
corresponding linear map β : U ⊗ V → W (and denote both by β).

In the special case when U = V = W = A is an algebra and the bilinear map
β : A × A → A , (u, v) �→ uv, is multiplication in A . The structure tensor of β is
called the structure tensor of the algebra A , and is denoted by μA .

Example 1 (Lie algebras) Let g be a complex Lie algebra of dimension n and let
{e1, . . . , en} be a basis of g. Let {e∗

1, . . . , e∗
n} be the corresponding dual basis defined

in the usual way as

e∗
i (e j) =

{
1 i = j,

0 i �= j,

for all i, j = 1, . . . , n. Then for each pair i, j ∈ {1, . . . , n},

[
ei , e j

] =
n∑

k=1

ck
i j ek,

for some constant numbers ck
i j ∈ C. The structure tensor of the Lie algebra g is

μg =
n∑

i, j,k=1

ck
i j e

∗
i ⊗ e∗

j ⊗ ek ∈ g∗ ⊗ g∗ ⊗ g.

The constants ck
i j are often called the structure constants of the Lie algebra and the

hypermatrix [31]

[ck
i j] ∈ C

n×n×n

is the coordinate representation of μA with respect to the basis {e1, . . . , en}.
For a specific example, take g = so3, the Lie algebra of real 3× 3 skew-symmetric

matrices and consider the basis of g comprising

e1 =
⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦ , e2 =

⎡
⎣
0 0 −1
0 0 0
1 0 0

⎤
⎦ , e3 =

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

with dual e∗
1, e∗

2, e∗
3. Then the structure tensor of so3 is

μso3 =
3∑

i, j,k=1

εk
i j e

∗
i ⊗ e∗

j ⊗ ek,

123

52 Found Comput Math (2018) 18:45–95

where

εk
i j = (i − j)(j − k)(k − i)

2
,

often called the Levi-Civita symbol.

Example 2 (Matrix multiplication) Consider the usual matrix product β : C
m×n ×

C
n×p → C

m×p, (A, B) �→ AB. We let Ei j be the elementary matrix with one in the
(i, j)th entry and zeros elsewhere and E∗

i j be the dual. Then the structure tensor for
this bilinear operation is

μm,n,p =
m,n,p∑

i, j,k=1

E∗
i j ⊗ E∗

jk ⊗ Eik,

the famous Strassen matrix multiplication tensor.With respect to these bases,μm,n,p is
anmn×np×mp hypermatrix whose entries are all zeros and ones.Whenm = n = p,
this becomes the structure tensor of the matrix algebra C

n×n .

Example 3 (Matrix–vector multiplication) Consider the bilinear map

β : C
n×n × C

n → C
n, (A, x) �→ Ax .

Let {Ei j ∈ C
n×n : i, j = 1, . . . , n} and {ei ∈ C

n : i = 1, . . . , n} be the standard
bases for C

n×n and C
n , respectively. Then the structure tensor of β is

μβ =
n∑

i, j=1

E∗
i j ⊗ e∗

j ⊗ ei .

With respect to these bases, μβ is an n2 × n × n hypermatrix whose entries are all
zeros and ones. This is of course nothing more than a special case of the previous
example with m = n and p = 1.

A comment is in order for those who are not familiar with multilinear algebra and
wonder about the difference between β andμβ . Given a bilinear map β : U ×V → W
there exists a unique trilinear function β̃ : U × V × W ∗ → C such that given any
(u, v, ω) ∈ U × V × W ∗ we have

ω(β(u, v)) = β̃(u, v, ω).

Furthermore, both β and β̃ correspond to the same tensor μβ ∈ U∗ ⊗ V ∗ ⊗ W and so
μβ quantifies both the bilinear operation β and the trilinear operation β̃. As a concrete
example, consider Example 3 where β : C

n×n × C
n → C

n is the matrix–vector
product

β(A, x) = Ax .

123

Found Comput Math (2018) 18:45–95 53

Then β̃ : C
n×n × C

n × C
n → C is

β̃(A, x, y) = yT Ax,

and they correspond to the same tensor μβ ∈ (Cn×n)∗ ⊗ (Cn)∗ ⊗C
n . More generally,

consider Example 2 where β : C
m×n × C

n×p → C
m×p is the matrix–matrix product

β(A, B) = AB.

Then β̃ : C
m×n × C

n×p × C
m×p → C is

β̃(A, B, C) = tr(ABCT),

and they correspond to the same tensor μβ ∈ (Cm×n)∗ ⊗ (Cn×p)∗ ⊗ C
m×p.

We conclude this section with the simplest example, but worked out in full details
for the benefit of readers unfamiliar with multilinear algebra.

Example 4 (Complex number multiplication) Complex numbers form a two-dimen-
sional algebra over R and the multiplication of complex numbers is an R-bilinear
map

β : C × C → C, (a + bi, c + di) �→ (ac − bd) + (ad + bc)i,

for any a, b, c, d ∈ R. Let e1 = 1+ 0i = 1 and e2 = 0+ 1i = i be the standard basis
of C over R and let e∗

1, e∗
2 be the corresponding dual basis. The structure tensor of C

is, by definition, the structure tensor of β and is given by

μC = μβ = e∗
1 ⊗ e∗

1 ⊗ e1 − e∗
2 ⊗ e∗

2 ⊗ e1 + e∗
1 ⊗ e∗

2 ⊗ e2 + e∗
2 ⊗ e∗

1 ⊗ e2, (2)

or, as a hypermatrix with respect to these bases,

μC =
[
1 0
0 −1

∣∣∣∣
0 1
1 0

]
∈ R

2×2×2. (3)

We provide here a step-by-step verification that μC is indeed the structure tensor for
complex numbermultiplication overR. Given two complex numbers z1 = a+bi, z2 =
c + di ∈ C, we write them as z1 = ae1 + be2, z2 = ce1 + de2. Then

μC(z1, z2) = [(e∗
1(z1)e

∗
1(z2) − e∗

2(z1)e
∗
2(z2)]e1 + [e∗

1(z1)e
∗
2(z2) + e∗

2(z1)e
∗
1(z2)]e2

= [(e∗
1(ae1 + be2)e

∗
1(ce1 + de2) − e∗

2(ae1 + be2)e
∗
2(ce1 + de2)]e1

+ [e∗
1(ae1 + be2)e

∗
2(ce1 + de2) + e∗

2(ae1 + be2)e
∗
1(ce1 + de2)]e2

= (ac − bd)e1 + (ad + bc)e2 = (ac − bd, ad + bc)

= (ac − bd) + (ad + bc)i.

For the uninitiated wondering the usefulness of all these, we will see in Sect. 3 that
the notion of tensor rank and its associated rank decomposition allow us to discover

123

54 Found Comput Math (2018) 18:45–95

faster, possibly fastest, algorithms for various bilinear operations. For instance, the
four-term decomposition in (3) gives us the usual algorithm for multiplying complex
numbers but as we will see, one may in fact obtain a three-term decomposition for
μC,

μC = (e∗
1 + e∗

2) ⊗ (e∗
1 + e∗

2) ⊗ e2 + e∗
1 ⊗ e∗

1 ⊗ (e1 − e2) − e∗
2 ⊗ e∗

2 ⊗ (e1 + e2). (4)

This gives us Gauss’s method for multiplying two complex numbers with three real
multiplications that we saw in (1). We will have more to say about Gauss’s method
in Sect. 8—it turns out to be identical to the simplest case of our algorithm for skew-
circulant matrix–vector product.

3 Tensor Rank, Border Rank, and Bilinear Complexity

The Strassen tensor rank method that we have alluded to in the introduction studies
the optimal bilinear complexity of a bilinear operation by studying the rank and border
rank [5,28] of its structure tensor.

Definition 1 Let μβ be the structure tensor of a bilinear map β : U × V → W , we
say that the tensor rank or just rank of μβ is r if r is the smallest positive integer such
that there exist u∗

1, . . . , u∗
r ∈ U∗, v∗

1 , . . . , v
∗
r ∈ V ∗, and w1, . . . , wr ∈ W with

μβ =
r∑

i=1

u∗
i ⊗ v∗

i ⊗ wi . (5)

We denote this by rank(μβ) = r . We say that the border rank of μβ is r if r is the
smallest positive integer such that there exists a sequence of tensors {μn}∞n=1 of rank
r that

lim
n→∞ μn = μβ.

We denote this by rankμβ = r . We define the rank and border rank of the zero tensor
to be zero.

Our interest in tensor rank is that it gives us exactly the least number of multiplica-
tions required to evaluate β(u, v) for arbitrary inputs u and v. This is established later
in Proposition 3. In which case border rank gives the least number of multiplication
required to evaluate β(u, v) up to arbitrarily high accuracy for arbitrary inputs u and
v. The study of complexity of bilinear operations in this manner is called bilinear
complexity, originally due to Strassen [42,43] and has developed into its own subfield
within complexity theory [6, Chapter 14].

To illustrate this, we will start with a simple analysis to show that the usual way of
computing matrix–vector product has optimal bilinear complexity, i.e., computing the
product of an m × n matrix and a vector of dimension n requires mn multiplications
and one cannot do better.

123

Found Comput Math (2018) 18:45–95 55

Proposition 1 Let β : U × V → W be a bilinear map and suppose span(μβ(U ⊗
V)) = W . Then

rank(μβ) ≥ dim W.

The role of W may be replaced by U or V .

Proof If not, then

μβ =
r∑

i=1

u∗
i ⊗ v∗

i ⊗ wi ∈ U∗ ⊗ V ∗ ⊗ W

for some integer r < dim W and vectors u∗
i ∈ U∗, v∗

i ∈ V ∗, wi ∈ W . Hence

span(μβ(U ⊗ V)) � span{wi : i = 1, . . . , r}.

But this contradicts the assumption that μβ(U ⊗ V) = W .
�
Asan immediate application of Proposition 1,wewill show that for a generalmatrix,

the usual way of doing matrix–vector product is already optimal, i.e., Strassen-type
fast algorithms for matrix–matrix product do not exist when one of the matrices is a
vector (has only one column or row).

Corollary 1 Let β : C
m×n × C

n → C
m be the bilinear map defined by the matrix–

vector product. Then

rank(μβ) = mn.

Proof It is easy to see that rank(μβ) ≤ mn. On the other hand,

μβ(Cn ⊗ (Cm)∗) = (Cm×n)∗,

since for the matrix Ei j with (i, j)th entry one and zero elsewhere, we have

μβ(e j ⊗ e∗
i)(Ei j) = e∗

i (Ei j e j) = 1.

Here, {e j : j = 1, . . . , n} is the standard basis of C
n and {e∗

i : i = 1, . . . , m} is its
dual basis for (Cm)∗.
�
This establishes our earlier claim that mn is the minimum number of required mul-
tiplications for computing a matrix–vector product. Next we show that we cannot do
better than mn even if we are only interested in computing matrix–vector product up
to arbitrary accuracy.

Clearly we have

rank(μβ) ≤ rank(μβ)

123

56 Found Comput Math (2018) 18:45–95

in general but equality is attained in the following special case. The next proposition
turns out to be a very useful result for us—we will rely on it repeatedly to find border
ranks of various structure tensors in Sects. 6–17.

Proposition 2 Let β : U × V → W be a bilinear map and assume μβ(U ⊗ V) = W
and rank(μβ) = dim W ≤ dimU dim V . Then

rank(μβ) = rank(μβ).

Proof Assume that rank(μβ) < rank(μβ). Notice that we may regard β as a linear
map

β : U ⊗ V → W.

Since μβ(U ⊗ V) = W and rank(μβ) = dim W , the rank of β as a linear map (or a
matrix) is dim W . Let r ′ = rank(μβ). Then there is a sequence {μn}∞n=1 of tensors of
rank r ′ such that

lim
n→∞ μn = μβ.

We can similarly regard μn as a linear map μn : U ⊗ V → W . Since rank(μn) = r ′
we see that the rank of μn as a linear map is at most r ′. By the choice of the sequence
{μn}∞n=1, we see that

lim
n→∞ μn = μβ

as linear maps (or matrices). Hence, the border rank ofμβ as a linear map (or a matrix)
is at most r ′. However, for matrices, the notion of rank is the same as border rank.
This contradicts the assumption that rankμβ = dim W > r ′.
�

We deduce that the usual way of performing matrix–vector product is also optimal
even if we are only interested in approximating the result up to arbitrary accuracy.
The following result may also be deduced from the proof (but not the statement) of
[37, Lemma 6.1].

Corollary 2 The border rank of the structure tensor of m × n matrix–vector product
is mn.

We now give the deferred proof establishing the role of tensor rank in bilinear com-
plexity. This simple result is well-known, classical (see the discussions in [6,41–43]),
and has a trivial proof. But given its central importance in our article, we include the
statement and proof for easy reference.

Proposition 3 The rank of μβ equals the least number of multiplications needed to
compute the bilinear map β.

123

Found Comput Math (2018) 18:45–95 57

Proof Given u ∈ U and v ∈ V , then by definition

μβ(u, v, ·) = β(u, v) ∈ W.

Since rank(μβ) = r we may write μβ as

μβ =
r∑

i=1

u∗
i ⊗ v∗

i ⊗ wi

for some u∗
i ∈ U∗, v∗

i ∈ V ∗ and wi ∈ W . Hence

β(u, v) =
r∑

i=1

u∗
i (u)v∗

i (v)wi ∈ W.

Notice that u∗
i (u) and v∗

i (v) are complex numbers and thus to compute β we only
need r multiplications.
�

3.1 Remarks on Arithmetic

We highlight a common pitfall in the precise meaning of the word ‘multiplication’
used in the context of bilinear complexity. Here, it refers strictly to the multiplications
of indeterminates but excludes multiplications of a constant and an indeterminate or
of two constants. For example, we need one multiplication to calculate (x, y) �→ x · y
but zero multiplication to calculate x �→ cx for any constant c ∈ C. We will use the
term ’scalar multiplication’ to refer to the multiplication of two scalars or that of a
scalar and an indeterminate over the given field. For instance, 2 ·3 or 2 ·x each requires
one scalar multiplication to compute.

So in the context of bilinear complexity, a discrete Fourier transform (dft) may
be computed with just O(1), in fact zero, multiplications. The usual O(n log n) com-
plexity in fast Fourier transform (fft) counts scalar multiplications. As the case of
fft illustrates, one reason for the exclusion of multiplication involving constants is
that this part may often be performed with specialized subroutines or implemented
in hardware. On the other hand, bilinear complexity counts only multiplications of
variable quantities that could change from input to input.

In particular, traditional studies of structured matrix–vector product, e.g., the
superfast algorithms in [36, Chapter 2], rely on the usual measure of computational
complexity, counting all arithmetic operations (addition, multiplication, scalar addi-
tion, scalar multiplication, etc) as opposed to bilinear complexity. That is why the
complexity estimates in [36, Chapter 2] differ substantially from those in Sects. 7–10.

In themost widely studied case ofmatrixmultiplicationβ : C
n×n ×C

n×n → C
n×n ,

the rank of μβ informs us about the total arithmetic complexity of β, i.e., counting
both additions and multiplications of indeterminates, as the following theorem from
[6] shows.

123

58 Found Comput Math (2018) 18:45–95

Theorem 2 (Strassen) Let Rn be the rank of μβ and let Mn the computational com-
plexity of the matrix multiplication. Then

inf{τ ∈ R : Mn = O(nτ)} = inf{τ ∈ R : Rn = O(nτ)}.

This says that asymptotically, the order of rank of μβ equals the order of the compu-
tational complexity of matrix multiplication. Moreover, combined with Proposition 3,
the number of multiplications needed in matrix multiplication dominates the number
of additions. This is a very special phenomenon. In general, the number of multipli-
cations cannot dominate the number of additions.

3.2 Remarks on Numerical Stability

Numerical stability has been discussed extensively for Gauss’s complexmultiplication
algorithm in [22], for Strassen–style matrix multiplication algorithms in [16], and for
general bilinear operations in [33].Our goal in this section is to highlight the connection
between numerical stability of a bilinear operation β and the nuclear norm [17] of its
structure tensor μβ .

Since numerical stability is an analytic notion, we will need to assume thatU∗, V ∗,
and W are norm spaces. For notational simplicity, we will denote the norms on all
three spaces by ‖ · ‖. Let β : U × V → W be a bilinear map and μβ ∈ U∗ ⊗ V ∗ ⊗ W
be its structure tensor. We will rewrite the tensor decomposition (5) in the form

μβ =
r∑

i=1

λi u
∗
i ⊗ v∗

i ⊗ wi (6)

where ‖u∗
i ‖ = ‖v∗

i ‖ = ‖wi‖ = 1, i = 1, . . . , r . As we saw in Proposition 3, any
r -term decomposition of the form (6), irrespective of whether r is minimum or not,
gives an explicit algorithm for computing β: For any input u ∈ U, v ∈ V, β(u, v) ∈ W
is computed as

β(u, v) =
r∑

i=1

λi u
∗
i (u)v∗

i (v)wi .

Since the coefficient λi captures the increase in magnitude at the i th step, we may
regard the sum2 of (magnitude of) coefficients,

r∑
i=1

|λi |, (7)

as a measure of the numerical stability of the algorithm corresponding to (6).

2 This is essential; (7) cannot be replaced by
(∑r

i=1|λi |p)1/p for p > 1 or maxi=1,...,r |λi |.
See [17, Section 3].

123

Found Comput Math (2018) 18:45–95 59

As we saw in Proposition 3, when r is minimum, the tensor rank

rank(μβ) = min
{

r : μβ =
∑r

i=1
λi ui ⊗ vi ⊗ wi

}

gives the least number of multiplications needed to compute β. Analogously, the
nuclear norm

‖μβ‖∗ = inf
{∑r

i=1
|λi | : μβ =

∑r

i=1
λi ui ⊗ vi ⊗ wi , r ∈ N

}
(8)

quantifies the optimal numerical stability of computing β.
The infimum in (8) is always attained by an r -term decomposition although r may

not be rank(μβ). For example [17, Proposition 6.1], the structure tensor of complex
multiplication in (3) has nuclear norm

‖μC‖∗ = 4,

and is attained by the decomposition (2) corresponding to the usual algorithm for
complex multiplication but not the decomposition (4) corresponding to Gauss’s
algorithm—since the sum of coefficients (upon normalizing the factors) in (4) is
2(1 + √

2). In other words, Gauss’s algorithm is less stable than the usual algorithm.
Nevertheless, in this particular instance, there is a decomposition

μC = 4

3

([√
3

2
e1 + 1

2
e2

]⊗3

+
[
−

√
3

2
e1 + 1

2
e2

]⊗3

+ (−e2)
⊗3

)

that attains both rank(μC) and ‖μC‖∗, i.e., the corresponding algorithm is simultane-
ously optimal in bilinear complexity and numerical stability.

Numerical stability is a moderately complicated notion [20] and cannot in general
be adequately captured by a single number. The sum of coefficients in (7) captures one
aspect of numerical stability—it is a measure akin to the growth factor in Gaussian
elimination with a specific pivoting scheme. The nuclear norm of the structured tensor
may then be regarded as an analogue of the minimum growth factor over all possible
pivoting strategies.

4 Tensor Ranks of Structure Tensors of Algebras

LetA be an algebra of dimension n. Let a1, . . . , an be a basis ofA and a∗
1 , . . . , a∗

n be
its dual basis forA ∗. Recall that the structure constants ck

i j determine themultiplication
operation in A , which we denote by mA : A × A → A ,

mA (ai , a j) =
n∑

k=1

ck
i j ak, i, j = 1, . . . , n.

123

60 Found Comput Math (2018) 18:45–95

The structure tensor μA ∈ A ∗ ⊗ A ∗ ⊗ A is then

μA =
n∑

i, j,k=1

ck
i j a

∗
i ⊗ a∗

j ⊗ ak .

Note that μA does not depend on the choice of basis and neither does the tensor and
border ranks of μA .

When A = C
n×n, μA = μn,n,n is the Strassen matrix multiplication tensor for

product of square matrices. Inspired by the Cohn–Umans approach [9] that we will
discuss in the next section, we would like to study the rank of μA for an arbitrary
algebra, with a view toward embedding an operation whose bilinear complexity is
difficult to analyze into an algebra where the task is easier. The first question that we
need to answer is the relation between ranks of the respective multiplication tensors.
The following proposition appears in [6, Proposition 14.12] but is stated without a
proof. While we do not need to use this proposition, we provide a proof that we think
is instructive for our tensor rank calculations in Sects. 7–15.

Proposition 4 If an algebra A can be embedded into another algebra B, i.e., A is
isomorphic to a subalgebra of B, then rank(μA) ≤ rank(μB).

Proof Let j : A ↪→ B be an embedding of A into B as algebras.3 Then it induces
a surjection j∗ : B∗ � A ∗ and thus a surjection

j∗ ⊗ j∗ ⊗ idB : B∗ ⊗ B∗ ⊗ B � A ∗ ⊗ A ∗ ⊗ B.

Let δ := j∗ ⊗ j∗ ⊗ idB . We claim that δ(μB) = μA and to show this, it suffices to
show that

δ(μB)(a, a′, ·) = μA (a, a′, ·) = mA (a, a′),

which is obvious from the definition of δ. Let r be the rank of μB and suppose μB
has a tensor decomposition

μB =
r∑

i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ bi,3

where b∗
i,1, b∗

i,2 ∈ B∗ and bi,3 ∈ B for i = 1, . . . , r . For notational simplicity, we

identify the image of j inB with A , regarding A as a subalgebra ofB. Let A ⊥ be
a subspace of B so that

B = A ⊕ A ⊥.

3 Later on in the article we will consider embedding of vector spaces into algebras.

123

Found Comput Math (2018) 18:45–95 61

Then we have bi,3 = ai,3 + a⊥
i,3 for i = 1, . . . , r and thus

μB =
(

r∑
i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ ai,3

)
+

(
r∑

i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ a⊥
i,3

)
.

Since δ(μB) = μA , we conclude that

δ

(
r∑

i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ a⊥
i,3

)
= 0 and δ

(
r∑

i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ ai,3

)
= μA .

So we obtain an expression of μA as a sum of r rank-one terms,

δ

(
r∑

i=1

b∗
i,1 ⊗ b∗

i,2 ⊗ ai,3

)
=

r∑
i=1

j∗(b∗
i,1) ⊗ j∗(b∗

i,2) ⊗ ai,3 ∈ A ∗ ⊗ A ∗ ⊗ A ,

and therefore rank(μA) ≤ rank(μB).
�
The map j∗ : B∗ � A ∗ above may be viewed as the restriction of linear forms on
B to A .

Corollary 3 If the algebra C
n×n can be embedded into an algebraB, then the compu-

tational complexity of multiplying two matrices is bounded by the rank of the structure
tensor μB of B.

If we fix bases forA andB then we can identifyA with its dualA ∗ andB with its
dualB∗. Hence wemay regardμA ∈ A ∗⊗A ∗⊗A as an element ofB∗⊗B∗⊗B.
We would like to compare the rank of μA as an element of A ∗ ⊗ A ∗ ⊗ A and as
an element of B∗ ⊗ B∗ ⊗ B. We denote these by rankA (μA) and rankB(μA)

respectively. We will rely on the following proposition found in [15].

Proposition 5 Let U1, . . . , Un be vectors spaces and let U ′
1, . . . , U ′

n be linear sub-
spaces of U1, . . . , Un, respectively. Let T ∈ U ′

1 ⊗ · · · ⊗ U ′
n. Suppose T has rank r ′

as an element in U ′
1 ⊗ · · · ⊗ U ′

n and has rank r as an element in U1 ⊗ · · · ⊗ Un, then
r = r ′.

Corollary 4 If an algebra A can be embedded into another algebra B, then

rankA (μA) = rankB(μA).

Even though rank stays unchanged under embedding of vector spaces over the same
ground field, the same tensor may well have different ranks over different fields. For
example [4],

T = e0 ⊗ (e0 ⊗ e0 − e1 ⊗ e1) + e1 ⊗ (e0 ⊗ e1 + e1 ⊗ e0),

has rank three (over R) when viewed as an element of (R2)⊗3, but it has rank two
(over C) when viewed as an element of (C2)⊗3.

123

62 Found Comput Math (2018) 18:45–95

We state here a result of Winograd [26,48], rephrased slightly differently in terms
of structure tensors of algebras.

Theorem 3 (Winograd) Let p(x) be a monic polynomial of degree n whose complete
factorization over a given infinite field k is

p(x) = p1(x)e1 . . . pq(x)eq .

Then the rank of the structure tensor of the algebra k[x]/(p(x)) is 2n − q.

5 Generalized Cohn–Umans Method and Tensor Rank

A major advance in the study of bilinear complexity of matrix multiplication is the
Cohn–Umans group theoretic method proposed in [9]. The gist of this idea is that one
may compute multiplication in the matrix algebra by ‘embedding’ it in a judiciously
chosen group algebra [9] or, more recently, in an adjacency algebra of a coherent
configuration [10]. The embedding in the Cohn–Umans method is, however, not an
embedding of algebras as in Sect. 4, but an embedding of vector spaces. As such one
needs a certain ‘triple product property’ to hold to ensure that the entries of the matrix
product may still be read off from the entries of the element in the group algebra. In
this section, we will generalize the Cohn–Umans method and relate it to tensor rank.

We start by briefly summarizing the Cohn–Umans method. We assume working
over C but the discussions in this and the next section hold for any field. Let G be a
finite group and let C[G] denote its group algebra over C.

Theorem 4 (Cohn–Umans) Suppose that G contains subsets S, T, U of cardinality
m, n, p respectively such that for any s, s′ ∈ S, t, t ′ ∈ T, u, u′ ∈ U, stu = s′t ′u′
implies s = s′, t = t ′, u = u′. Then for matrices A = (ai j) ∈ C

m×n, B = (bi j) ∈
C

n×p we can associate elements Â, B̂ ∈ C[G] as follows:

Â =
m,n∑

i, j=1

ai j si t
−1
j , B̂ =

n,p∑
i, j=1

bi j ti u
−1
j . (9)

The (i, j)th entry of AB is the coefficient of si u
−1
j in Â · B̂.

The condition in the first sentence of the theorem is called the triple product property.
If such a condition is met, we say that G realizes 〈m, n, p〉.

The first step toward generalizing the Cohn–Umans method is to view the triple
product property in an alternative manner, namely, it is equivalent (see Example 5) to
saying that the following diagram commutes:

C
m×n ⊗ C

n×p
C[G] ⊗ C[G]

C
m×p

C[G]

j

m mG

proj

(10)

123

Found Comput Math (2018) 18:45–95 63

Here j is the embedding of vector spaces defined by (9), proj is the projection map
reading off entries of AB from the coefficients of Â· B̂, andm andmG are, respectively,
the multiplications of matrices and elements in the group algebra.

To bemore precise about the projectionmap, the translation ofmatrixmultiplication
into the multiplication of elements in C[G] via (9) introduces some ‘junk terms’, i.e.,
Â· B̂ containsmany coefficients that are not needed for obtaining the entries of AB. The
projectionmap is simply amap that picks up the relevant coefficients. Aswewill see in
Sect. 17, there are occasions when that those ‘junk terms’ could turn out to be useful.

Another important feature of the Cohn–Umans method is that by Wedderburn the-
orem, C[G] can be identified with a direct sum of matrix algebras of smaller sizes
determined by the irreducible representations of G, giving an efficient way to compute
the product Â · B̂. Since Wedderburn theorem holds not just for group algebras but
for any semisimple algebras, one may in principle use any semisimple algebra A in
place of C[G]. However, motivated by later examples, we will not insist that A be
semisimple—there will be occasions when it is useful to allow A to have nilpotent
elements.

The commutative diagram view of the triple product property (10) allows us to
generalize it on an abstract level to arbitrary bilinear operations. Let β : U × V → W
be a bilinear map and let A be an algebra. If there is an injective linear map j :
U ⊗ V → A ⊗A and a linear map proj : A → W such that the following diagram
commutes:

U ⊗ V A ⊗ A

W A

j

β mA

proj

(11)

then we can translate the computation of β into multiplication in the algebra A . If
this is the case, we will say that the algebra A realizes the bilinear map β.

In case the reader is wondering why β : U × V → W became β : U ⊗ V → W in
(11), recall that we do not distinguish between a bilinear map and its corresponding
linear map, as we had explained after Proposition 1. We will adopt this convention in
the rest of the article without further elaboration.

For readers unfamiliar with such constructions, we used tensor product rather than
product in diagrams like (11) because we want to preserve linear structures. If we had
used product in (11), then β : U × V → W has to be a bilinear map, but this does not
make sense in the category of vector spaces over C as morphisms in this category are
linear maps (and bilinear maps are in general not linear).

Note that the embedding of U ⊗ V intoA ⊗A and the projection fromA onto W
incur zero computational costs in the context of bilinear complexity (no multiplication
involved). Hence we obtain

rank(μβ) ≤ rank(μA).

There are occasions (see Sects. 14 and 15) when it is useful to allow a more general
framework where the multiplication of the algebra A is replaced by another bilinear
map in (11).

123

64 Found Comput Math (2018) 18:45–95

U ⊗ V U ′ ⊗ V ′

W W ′

j

β β ′

proj

(12)

For readers familiar with modules [1,29], a further generalization of (12) is to have
free modules over a ring in place of vector spaces over a field, i.e.,

M ⊗R N M ′ ⊗R N ′

L L ′

j

β β ′

proj

(13)

where M, N , M ′, N ′, L , L ′ are freemodules over a ring R,⊗R denotes tensor product
of R-modules, and all maps are morphisms of R-modules with j injective.

The commutative diagrams (11), (12), (13) and may be viewed as a generalized
triple product property. They are similar to [6, Lemma 14.10] but we require j to be
injective. Another difference is that we require an embedding of U ⊗ V → U ′ ⊗ V ′
and this may not necessarily arise from an embedding of U × V → U ′ × V ′ as in
[6, Lemma 14.10].

Wewill call the commutative diagrams (11), (12), or (13) generalized Cohn–Umans
method. We will see several concrete realizations of this abstract framework later.
Most of our applications of the generalized Cohn–Umans method will involve (11),
but there is one occasion (in Sect. 15) where we need the more general version in (12)
and another (in Example 6) where we need (13). In the following, we will establish
some existential guarantees for this framework.

Theorem 5 Let k be a field. Then every bilinear map over k can be realized by an
algebra A over k where the rank of the structure tensor of A is equal to the rank of
the structure tensor of the bilinear map.

Proof Let β : U × V → W be a bilinear map and let μβ be the structure tensor
of β. Without loss of generality, we may assume that β is surjective since otherwise
we may replace W by the image of β. Assume that rank(μβ) = r and that μβ has a
decomposition

μβ =
r∑

i=1

u∗
i ⊗ v∗

i ⊗ wi

for some u∗
i ∈ U∗, v∗

i ∈ V ∗, wi ∈ W . LetA = kr , equipped with entrywise addition
and multiplication. Consider the map

j : U × V → kr × kr

123

Found Comput Math (2018) 18:45–95 65

defined by j (u, v) = (
(u∗

1(u), . . . , u∗
r (u), v∗

1(v), . . . , v∗
r (v)

)
. Lastly define the pro-

jection map

proj : kr → W,

r∑
i=1

xi ei �→
r∑

i=1

xiwi ,

where {ei : i = 1, . . . , r} is the standard basis of kr . It is clear that we have a
commutative diagram

U ⊗ V kr ⊗ kr

W kr

j

β mkr

proj

and hence β is realized by the algebra A = kr .
�
Corollary 5 If k is an algebraically closed field, then every bilinear map over k can
be realized by the algebra k[x]/(xr − 1) where r is the rank of the structure tensor of
the bilinear map.

Proof Apply Theorem 5 and Wedderburn theorem.
�
One may argue that Theorem 5 and Corollary 5 are essentially tautological and

not particularly useful since the algebraA involved is commutative (bearing in mind
that the Cohn–Umans method becomes uninteresting when the group G is abelian).
We will consider another construction that yields a noncommutative algebra. The
following construction gives a step-by-step recipe that starts from any given bilinear
map β and producesA , a polynomial identity ring or PI ring [32], for the generalized
Cohn–Umans, i.e., (11) is automatically a commutative diagram for this choice ofA .

Construction 6 Let {u1, . . . , um} and {v1, . . . , vn} be bases of U and V . Let
{u∗

1, . . . , u∗
m} and {v∗

1 , . . . , v
∗
n} be the corresponding dual bases of U∗ and V ∗. We

may assume that β is nondegenerate since otherwise we may simply replace U or
V by an appropriate subspace. In which case we may write the structure tensor
μβ ∈ U∗ ⊗ V ∗ ⊗ W as

μβ =
∑

(i, j) : β(ui ,v j) �=0

u∗
i ⊗ v∗

j ⊗ wi j ,

i.e., the sum runs over all pairs of (i, j) where β(ui , v j) �= 0. Let k〈x1, . . . , xm,

y1, . . . , yn〉 be the free algebra over k with generators x1, . . . , xm and y1, . . . , yn. We
consider an ideal I0 generated by the relations

L(xi y j) ∼ 0 if and only if L(wi j) = 0,

123

66 Found Comput Math (2018) 18:45–95

where L is a linear form over k in mn variables. Next let I ⊃ I0 be an ideal of
k〈x1, . . . , xm, y1, . . . , yn〉 such that I does not contain linear forms in x1, . . . , xm or
in y1, . . . , yn and whenever there is a linear form L with L(xi y j) ∈ I, L(xi y j) ∈ I0
where at least one (i, j) is a pair of indices such that wi j �= 0 in the representation
of μβ . Then it is easy to verify that the above commutative diagram holds for A =
k〈x1, . . . , xm, y1, . . . , yn〉/I , by sending ui to xi and v j to y j . Such an algebra A is
called a polynomial identity or PI ring.

We will see in Sect. 9 how Construction 6 can be used to obtain the optimum algo-
rithm for Toeplitz matrix–vector product. In principle, it could also be used to obtain
the optimum algorithms for Hankel, symmetric, and Hankel-plus-Toeplitz matrix–
vector product independently. However, the relations between these structures have
allowed us to build upon the algorithms that we obtained earlier and avoid repetitive
use of Construction 6.

Example 5 (Triple product property) Here U = C
m×n, V = C

n×p, W = C
m×p, we

may take {Ei j : i = 1, . . . , m; j = 1, . . . , n}, {Eik : i = 1, . . . , m; k = 1, . . . , p} to
be the standard basis for U and V . The structure tensor may be expressed as

βm,n,p =
m,p∑

i,k=1

⎛
⎝

n∑
j=1

E∗
i j ⊗ E∗

jk

⎞
⎠ ⊗ Eik .

We see that {Eik : i = 1, . . . , m; k = 1, . . . , p} is a basis of W and so there is no
linear relation among them except the trivial relation Eik = Eik . Hence, we obtain an
ideal I0 generated by xi j y jk − xi j ′ y j ′k for all choices of i, j, j ′, k. As we claim above,
find any ideal I such that I ⊃ I0 does not contain linear forms in xi j or yi j , thus the
commutative diagram holds.

Now let us understand the triple product property in this framework. Let G be a
group with subsets S, T, U satisfying the triple product property. Then it is obvious
that in k[G] there is no nontrivial linear relation for elements of the form si t

−1
j and

t j u
−1
k . The triple product property guarantees that (si t

−1
j)(tku−1

l) = (si t
−1
j)(tku−1

l)

if and only if i = i ′, j = j ′, k = k′. Hence, for such G, the commutative diagram
holds.

Our construction ofA from the structure tensor is purely formal. Usually, all we could
say is that A is a polynomial identity ring, which does not tell us a lot. However, in
special circumstances, when the ideal I is suitably chosen, we can obtain algebras
with well-understood properties that we can exploit, as we will see in the rest of this
paper.

Before beginning our discussion of structured matrix computations, we give an
example to show the broad applicability of the generalized Cohn–Umans method.

Example 6 (Fast Integer Multiplication) The algorithms of Karatsuba [25], Toom–
Cook [44], [11, pp. 51–77], Schönhage–Strassen [38], Fürer [18], are all instances of
(13). In these algorithms, Z is embedded in the p-adic integers Zp, and integers are

123

Found Comput Math (2018) 18:45–95 67

then multiplied via p-adic multiplication of their images. Consider the commutative
diagram of Z-modules

Z ⊗Z Z Z[x] ⊗Z Z[x]

Z Z[x]

jp

β β ′

evp

(14)

where β and β ′ are multiplications in Z and Z[x], respectively. For any n ∈ Z, we
define fn(x) := ∑d

i=0 ai xi ∈ Z[x] where a0, . . . , ad ∈ {0, . . . , p − 1} are such that
n = ∑d

i=0 ai pi , the base-p (i.e., p-adic) expansion of n. The embedding jp is defined
by

jp(m ⊗ n) = fm(x) ⊗ fn(x),

and the evaluation map evp sends f (x) ∈ Z[x] to f (p) ∈ Z. Now we may use divide-
and-conquer, interpolation, discrete Fourier transform, and fast Fourier transform to
multiply the twopolynomials, givingusKaratsuba,Toom–Cook, Schönhage–Strassen,
and Fürer algorithms respectively.

6 Sparse, Banded, and Triangular Matrices

We begin our study of structured matrices with sparse matrices, a particularly sim-
ple case that does not require the use of Cohn–Umans method. The results are also
unsurprising.

One might wonder what happens to Corollaries 1 and 2 when the matrix involved
has zero entries. The answer is what onewould expect— the tensor and border rank are
both given by the number of nonzero entries. For any Ω ⊆ {1, . . . , m} × {1, . . . , n},
the set of matrices with sparsity pattern Ω is

C
m×n
Ω := {A ∈ C

m×n : ai j = 0 for all (i, j) /∈ Ω},

which is clearly a vector space of dimension #Ω .

Proposition 6 Let βΩ : C
m×n
Ω × C

n → C
m, (A, x) �→ Ax. Let μΩ ∈ (Cm×n

Ω)∗ ⊗
(Cn)∗ ⊗ C

m be the corresponding structure tensor. Then

rank(μΩ) = rank(μΩ) = #Ω.

Proof Since the dimension of C
m×n
Ω is #Ω and the usual matrix–vector product costs

#Ω multiplications, the required result follows from Propositions 1, 2, and 3.
�
The set of n × n banded matrices with upper bandwidth k and lower bandwidth l

is the special case when

Ω = {(i, j) ∈ {1, . . . , n} × {1, . . . , n} : k < j − i < l}.

123

68 Found Comput Math (2018) 18:45–95

Such matrices are called diagonal if (k, l) = 0, lower bidiagonal if (k, l) = (0, 1),
upper bidiagonal if (k, l) = (1, 0), tridiagonal if (k, l) = (1, 1), pentadiagonal if
(k, l) = (2, 2), lower triangular if (k, l) = (0, n − 1), upper triangular if (k, l) =
(n − 1, 0).

Corollary 6 The rank and border rank of the structure tensor of n×n banded matrix–
vector product are both n + [(n − 1) + (n − 2) + · · · + (n − k)] + [(n − 1) + (n −
2) + · · · + (n − l)].
Corollary 7 The rank and border rank of the structure tensor of n × n upper (or
lower) triangular matrix–vector product are both n(n + 1)/2.

7 Circulant Matrix

In this section, we consider the problem of computing the product of a circulant
matrix with a vector or, equivalently (as we shall see), the product of two circulant
matrices.Wewill obtain an algorithmwith optimal bilinear complexity (i.e., minimum
number ofmultiplications). This algorithmwill turn out to be similar to thewell-known
algorithm (e.g. [19, Section 4.8.2] or [36, Section 2.4]) for computing product of two
circulant matrices using fft [12] but we will derive it (i) purely from the perspective of
optimal bilinear complexity and (ii) using the Cohn–Umans group theoretic method.
However, a key difference is that while the well-known algorithm in [19,36] crucially
depends on the use of fft, our algorithm is indifferent to how dft is computed—as
we have pointed out in Sect. 3.1, dft incurs no cost in bilinear complexity. This serves
as our first example of using the Cohn–Umans method for problems other than matrix
multiplication.

We begin by considering a special case of matrix multiplication where we multiply
a 1×n matrix and an n ×1 matrix. Let aT = [a1, . . . , an] ∈ C

1×n be a row vector and
let b = [b1, . . . , bn]T ∈ C

n×1 be a column vector. It is easy to verify that the cyclic
group Cn = 〈g | gn = 1〉 realizes 〈1, n, 1〉 via subsets S = {1}, T = Cn, U = {1}
that clearly satisfy the triple product property. By (9), we have

â =
n∑

i=1

ai g
i , b̂ =

n∑
i=1

bi g
−i .

The coefficients of gk where k = 0, 1, . . . , n − 1 are

n∑
i=1

ai+kbi , where as = as′ iff s ≡ s′ mod n. (15)

To calculate aTb we just need the coefficient of 1 ∈ C[Cn] but not the coefficients of
the remaining n − 1 terms (what we called ‘junk terms’ earlier). On the other hand,
if we calculate the product of two circulant matrices, then these n − 1 terms become
useful.

123

Found Comput Math (2018) 18:45–95 69

Let Circn(C) be the linear space of all circulant matrices. It is well-known that
Circn(C) is closed under the matrix multiplication and so is an algebra.

Proposition 7 Let βc : Circn(C)×C
n → C

n, (Circ(x), y) �→ Circ(x)y be the circu-
lant matrix–vector product and μc ∈ Circn(C)∗ ⊗ (Cn)∗ ⊗ C

n be the corresponding
structure tensor. Let μC ∈ Circn(C)∗ ⊗Circn(C)∗ ⊗Circn(C) be the structure tensor
of the algebra Circn(C). Then

rank(μc) = rank(μC) = n.

Proof A circulant matrix is completely specified by its first column or first row. In
particular, since the product of two circulant matrices is still circulant, the product is
determined by its first column. Let x = [x1, . . . , xn]T ∈ C

n and let Circ(x) denote the
circulant matrix

Circ(x) =

⎡
⎢⎢⎢⎢⎢⎣

x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1
...

...
. . .

...
...

x3 x4 . . . x1 x2
x2 x3 . . . xn x1

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n .

Observe that to calculate the matrix–matrix product Circ(x)Circ(y), it suffices to
calculate the matrix–vector product Circ(x)[y1, yn, . . . , y2]T. This implies that the
structure tensor of the algebra μC can be obtained from the structure tensor μc of the
bilinear map βc and that

rank(μc) = rank(μC).

To compute rank(μc), observe that for two vectors x, y ∈ C
n , we have

Circ(x)y =
[

n∑
i=1

xi yi ,

n∑
i=1

xi yi+1, . . . ,

n∑
i=1

xi yi+n−1

]T

.

Here, we adopt the same convention in (15) that ys = ys′ iff s ≡ s′ mod n. Since the
entries of Circ(x)y are exactly the coefficients of the product x̂ · ŷ ∈ C[Cn], where
x̂, ŷ ∈ C[Cn] are obtained as in (9), it remains to count the number of multiplica-
tions needed to form x̂ · ŷ in C[Cn]. Since Cn is the cyclic group of order n, it has
exactly n representations, all of dimension one; these are indexed by the roots of unity
1, ω, . . . , ωn−1 where ω = e2kπ i/n . Denote these representations by V0, . . . , Vn−1
where Vi � C is given by4

ρi : Cn → C, g �→ ωi , i = 0, . . . , n − 1.

4 We do not distinguish between an irreducible representation of G and its irreducible C[G]-submodule.

123

70 Found Comput Math (2018) 18:45–95

On the other hand, by Wedderburn theorem we have

C[Cn] �
n−1⊕
i=0

V ∗
i ⊗ Vi ,

i.e., we may express elements in C[Cn] as n × n diagonal matrices. Explicitly, x̂ =∑n−1
i=0 xi gi corresponds to the diagonal matrix

diag

(
n−1∑
i=0

xiω
i ,

n−1∑
i=0

xiω
2i , . . . ,

n−1∑
i=0

xiω
(n−1)i ,

n−1∑
i=0

xi

)
,

and ŷ = ∑n−1
i=0 yi g−i corresponds to the diagonal matrix

diag

(
n−1∑
i=0

yiω
−i ,

∑
yiω

−2i , . . . ,

n−1∑
i=0

yiω
−(n−1)i ,

n−1∑
i=0

yi

)
.

Therefore, we need n multiplications to compute x̂ · ŷ and thus

rank(μc) ≤ n.

On the other hand, it follows from Proposition 1 that rank(μC) ≥ n since the image
μC(Circn(C) ⊗ Circn(C)) is the whole of Circn(C).
�
The proof of Proposition 7 is constructive—it gives an algorithm with optimal
bilinear complexity that computes a circulant matrix–vector product or a circulant
matrix–circulant matrix product using only n multiplications. In fact, this algorithm is
essentially the same as the well-known algorithm for circulant matrix–vector product
using fft.

A departure from usual considerations in numerical linear algebra is that we only
care about the number of multiplications used in the algorithm. We minimize the
number of multiplications by paying the price of using more additions. We require
n2 additions to execute our algorithm if we have our input (Circ(x), y) and output
Circ(x)y expressed in the standard basis e1, . . . , en on C

n . However, if we use the
Fourier basis f1, . . . , fn onC

n , i.e., the dft of e1, . . . , en ; then, we require no addition
at all to execute our algorithm.

The dft is a linearmap and so computing f1, . . . , fn from e1, . . . , en would involve
only additions and scalar multiplications. Hence, the use of different bases will not
change the number of multiplications needed to multiply a circulant matrix to a vector
(or two circulant matrices). This agrees with our expectation— a tensor and therefore
its rank do not depend on the choice of bases.

Proposition 2 immediately gives us the border rank analogue of Proposition 7. It is
also straightforward to obtain the analogue of Proposition 7 for inversion of circulant
matrices.

123

Found Comput Math (2018) 18:45–95 71

Corollary 8 The border ranks of the structure tensor of the bilinear operation βc and
the structure tensor of the algebra Circn(C) are both n, i.e.,

rank(μc) = rank(μC) = n.

Corollary 9 Let X = Circ(x) be a nonsingular circulant matrix. Then one requires
just n divisions to compute its inverse X−1.

Proof Let X = Circ(x) where x = [x1, . . . , xn]T ∈ C
n and let Y = X−1 be given by

Y = Circ(y) where y = [y1, . . . , yn]T ∈ C
n . As in the proof of Proposition 7, their

corresponding images in C[Cn] are

X̂ = diag

(
n−1∑
i=0

xiω
i ,

n−1∑
i=0

xiω
2i , . . . ,

n−1∑
i=0

xiω
(n−1)i ,

n−1∑
i=0

xi

)
,

Ŷ = diag

(
n−1∑
i=0

yiω
−i ,

∑
yiω

−2i , . . . ,

n−1∑
i=0

yiω
−(n−1)i ,

n−1∑
i=0

yi

)
.

Since X̂ · Ŷ = I , we obtain

Ŷ = diag

⎛
⎝

(
n−1∑
i=0

xiω
i

)−1

,

(
n−1∑
i=0

xiω
2i

)−1

, . . . ,

(
n−1∑
i=0

xiω
(n−1)i

)−1

,

(
n−1∑
i=0

xi

)−1⎞
⎠ .

Hence inverting X requires n divisions.5
�

8 f -Circulant and Skew-Circulant Matrices

We now extend the work of the previous section to f -circulant matrices. For any
f ∈ C, an f -circulant matrix is one of the form

⎡
⎢⎢⎢⎢⎢⎣

x1 x2 . . . xn−1 xn

f xn x1 . . . xn−2 xn−1
...

...
. . .

...
...

f x3 f x4 . . . x1 x2
f x2 f x3 . . . f xn x1

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n .

We denote the vector space of n × n f -circulant matrices by Circn, f (C). Evidently,
a 1-circulant matrix is just a usual circulant matrix. If f = −1, an f -circulant matrix
is also called a skew-circulant matrix.

5 The reader is reminded that scalar multiplications by a constant like ωi are not counted in bilinear
complexity.

123

72 Found Comput Math (2018) 18:45–95

It is well-known [36, Theorem 2.6.1] and straightforward to see that Circn, f (C) �
C[x]/(xn − f) and is therefore also an algebra. We may employ the same techniques
we used in the case f = 1 to prove the following.

Proposition 8 The rank and border rank of the structure tensor of the f -circulant
matrix–vector product over C are both n. Furthermore, one can invert a nonsingular
f -circulant matrix over C using just n divisions.

The proofs of these statements are near identical to those in the previous section and
we will not repeat them.What we will instead investigate is an interesting special case
when n = 2 and f = −1 but over R instead of C.

Proposition 9 The rank of the structure tensor of 2× 2 skew-circulant matrix–vector
product over R is three.

Proof The product of a 2 × 2 real skew-circulant matrix with a vector is given by

X =
[

a b
−b a

]
∈ R

2×2, v =
[

c
−d

]
∈ R

2, Xv =
[

ac − bd
−ad − bc

]
∈ R

2.

Observe that to compute Xv we require just three real multiplications:

M1 = (a + b)(c + d), M2 = ac, M3 = bd

to obtain
ac − bd = M2 − M3, −ad − bc = −(M1 − M2 − M3). (16)

Therefore, the rank r of the structure tensor of 2 × 2 skew-circulant matrix–vector
product over R is at most three. We show that r cannot be two. Suppose r = 2, then
there exist polynomials M1, M2 in a, b, c, d, each costing only one multiplication to
evaluate, such that

ac − bd = α1M1 + α2M2, ad + bc = β1M1 + β2M2.

Since a, b, c, d are independent variables, we must also have that

det

[
α1 α2
β1 β2

]
�= 0.

Hence, M1 and M2 are both linear combination of ac − bd and ad + bc. In particular,
there exist s, t ∈ R such that

M1 = s(ac − bd) + t (ad + bc).

But as M1 can only involve one multiplication, it must have the form

M1 = (s1a + s2b + s3c + s4d)(t1a + t2b + t3c + t4d).

123

Found Comput Math (2018) 18:45–95 73

Without loss of generalitywemay assume that s1 = 0 and t1 = 1. Then s2 = 0, s3 = s,
and s4 = t . These imply that t2 = t/s and t3 = t4 = 0 and thus

M1 = (sc + td)

(
a + t

s
b

)
,

giving us t2/s = −s, a contradiction since both s and t are real.
�

We show a somewhat unexpected link between Proposition 9 and Example 4.

Corollary 10 The rank and border rank of μC, the structure tensor of C as an R-
algebra, or equivalently, the structure tensor of the R-bilinear map

β : C × C → C, (a + bi, c + di) �→ (ac − bd, ad + bc),

are both three.

Proof Let z1 = a + bi and z2 = c + di . If we identify C with R
2, then z1z2 = Xv

where X and v are as defined in Proposition 9. From which it is clear that the structure
tensor μC ∈ (R2)∗ ⊗ (R2)∗ ⊗ R

2 has rank three over R. The conclusion regarding
border rank follows from [15, Theorem 7.1].
�

Onemay check that the optimal algorithm for skew-circulant matrix–vector product in
(16) is in fact the same as Gauss’s method for multiplication of complex numbers (1).

9 Toeplitz Matrices

Let Toepn(C) be the vector space of n × n Toeplitz matrices. The following result
is well-known, proved in [2] using methods different from those we employ below.
Our objective of including this is to provide another illustration of the generalized
Cohn–Umans approach where a bilinear operation is embedded in an algebra, in this
case, the algebra of circulant matrices Circ2n(C) in Sect. 7.

Theorem 7 (Bini–Capovani) Let βt : Toepn(C) × C
n → C

n be the Toeplitz matrix–
vector product. Let μt ∈ Toepn(C)∗ ⊗ (Cn)∗ ⊗ C

n be the structure tensor of βt .
Then

rank(μt) = 2n − 1.

Proof Webegin by observing [14, p. 71] that there is an embedding of an n×n Toeplitz
matrix Xn = [x j−i] as a subblock of a 2n × 2n circulant matrix C2n as follows

C2n =
[

Xn Yn

Yn Xn

]
, (17)

123

74 Found Comput Math (2018) 18:45–95

where

Yn =

⎡
⎢⎢⎢⎢⎢⎣

y x−n+1 x−n+2 . . . x−1
xn−1 y x−n+1 . . . x−2
xn−2 xn−1 y . . . x−3

...
...

...
. . .

...

x1 x2 x3 . . . y

⎤
⎥⎥⎥⎥⎥⎦

and y ∈ C can be arbitrarily chosen. We will choose

y = −
n−1∑

i=−(n−1)

xi .

and by this choice of y, we only need 2n − 1 multiplications to compute the 2n × 2n
circulant matrix–vector product. To see this, recall that in our proof of Proposition 7,
the multiplication of Yn by a vector of dimension 2n is computed by multiplying a pair
of 2n×2n diagonalmatrices. In our case, the 2n×2n diagonalmatrix corresponding to
Yn is one whose (1, 1)th entry is zero. Hence, an n ×n Toeplitz matrix–vector product
can be computed with just 2n −1 multiplications and so the rank of the corresponding
structure tensor μt is at most 2n − 1. On the other hand, by Proposition 1, rank(μt)

is at least 2n − 1 since μt (C
n ⊗ (Cn)∗) is the whole of Toepn(C)∗.
�

As in Sect. 7, Proposition 2 and Theorem 7 together give the corresponding result
for border rank.

Corollary 11 The structure tensor of the Toeplitz matrix–vector product has border
rank

rank(μt) = 2n − 1.

We embedded Toepn(C) into Circ2n(C) � C[C2n] and the Toeplitz matrix–
vector product inherits a group theoretic interpretation via this embedding. Given
X = [x j−i] ∈ Toepn(C) and a vector z = [z1, . . . , zn]T ∈ C

n , we may explicitly
construct the product Xz as follows. First construct two vectors

a = [x0, x1, . . . , xn−1, y, x−n+1, x−n+2, . . . , x−1]T ∈ C
2n,

b = [z1, . . . , zn, 0, . . . , 0]T ∈ C
2n,

where y = − ∑n−1
i=−(n−1) xi . Notice that

aTb =
n∑

i=1

xi−1zi

is the first entry of the vector Xz. As we had observed in Sect. 7, the cyclic group
C2n = 〈

g | g2n = 1
〉
realizes 〈1, 2n, 1〉. Hence, we may construct two elements in

C[C2n], â and b̂ as in Sect. 7 by

123

Found Comput Math (2018) 18:45–95 75

â =
n∑

i=1

xi−1gi + ygn+1 +
2n∑

i=n+2

xi−2n−1gi ∈ C[C2n], b̂ =
n∑

i=1

zi g
−i ∈ C[C2n].

It is easy to see that coefficients of g2n, g2n−1, . . . , gn+1 in â · b̂ give the required
entries of Xz.

We have seen in Corollary 9 that inverting a circulant matrix can be done with just
n divisions. Although we may embed Toepn(C) into Circ2n(C) via (17) and C2n may
be inverted with 2n division, there does not seem to be a way to obtain X−1

n from C−1
2n .

Suppose we are unaware of the fact that we may embed a Toeplitz matrix into a
circulant matrix of larger size, how could we have discovered it? We now provide
an illustration of how Construction 6 may be applied systematically to discover the
appropriate algebra to use in the generalizedCohn–Umansmethod forToeplitzmatrix–
vector product. Let {Tk ∈ C

n×n : k = 1, . . . , 2n − 1} be the standard basis for the
space of Toeplitz matrices Toepn(C), i.e., the entries of Tk = [ti j] are

ti j =
{
0 if j − i �= k,

1 if j − i = k.

Let {ei ∈ C
n : i = 1, . . . , n} be the standard basis of C

n . Then

Tkei = en−k+i ,

where ei := 0 whenever i ≥ n + 1 or i ≤ 0. As described in Sect. 5, we start from
the free algebra C〈x1, . . . , x2n−1, y1, . . . , yn〉 and let I0 be the ideal generated by the
relations

xk yi = xk′ yi ′ whenever 0 ≤ k − i = k′ − i ′ ≤ n − 1,

or, equivalently,

xk y1 = xk+i−1yi for all 1 ≤ i ≤ n, 1 ≤ k ≤ 2n − i. (18)

Next we construct an ideal I such that (i) I0 ⊂ I , (ii) I does not contain any linear
form in xi or y j , and (iii) whenever F = L(xk yi) where L is a linear form and at least
one xk yi appears in F for some 0 ≤ k − i ≤ n − 1, then F ∈ I0. Without loss of
generality, we may assume that y1 = 1 and so (18) simplifies to

xk = xk+i−1yi for all 1 ≤ i ≤ n, 1 ≤ k ≤ 2n − i.

A moment’s thought would then lead us to taking xk = xk where x is such that
x2n = 1, and also yi = x−i+1 = x2n−i+1 for i = 1, . . . , n. It is straightforward to
check the restrictions we imposed on I are satisfied by these choices, which yield the
algebra C[x]/(x2n − 1) � C[C2n] that we seek.

We end this section with a brief word on Toeplitz matrix–Toeplitz matrix product
βT : Toepn(C) × Toepn(C) → C

n×n . Note that Toepn(C) is not closed under matrix

123

76 Found Comput Math (2018) 18:45–95

multiplication [50]. The corollary below follows from Theorem 7 and the fact that
XY = [X y1, . . . , X yn] for X, Y ∈ Toepn(C) where yi is the i th column of Y .

Corollary 12 The restriction of the matrix multiplication tensor μn,n,n to the space
Toepn(C) of n×n Toeplitz matrices, regarded as a tensor inToepn(C)∗⊗Toepn(C)∗⊗
C

n×n, has rank at most n(2n − 1).

From the perspective of iterative methods for Toeplitz matrices (both linear systems
and least squares), understanding βt is more important than understanding βT .

10 Hankel Matrices

The results in this short section follows from those in Sect. 9. However we state
them explicitly as these results on Hankel matrices are crucial for those on symmetric
matrices in Sect. 14, which might come as a surprise.

We introduce a few notations that we will use in Sect. 14. Given a vector x =
[x0, x1, . . . , x2n−1]T ∈ C

2n , we let

Hank(x) :=

⎡
⎢⎢⎢⎢⎢⎣

x0 x1 xn−2 xn−1
x1 xn−1 xn
...

...
...

...
...

...

xn−2 xn−1 x2n−2
xn−1 xn x2n−2 x2n−1

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n (19)

be the Hankel matrix defined by x . Let Hankn(C) denote the vector space of n × n
Hankel matrices.

The corresponding results for Hankel matrices may be obtained from the ones for
Toeplitz matrices essentially via the well-known observation [36, Theorem 2.1.5] that
X ∈ C

n×n is a Hankel matrix if and only if J X and X J are both Toeplitz matrices.
Here, J is the permutation matrix

J :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n .

Since J is a nonsingular linear transformation, μh and μt must have the same rank
and border rank and we obtain the following from Theorem 7, Corollary 11, and
Corollary 12.

Corollary 13 Let μh ∈ Hankn(C)∗⊗(Cn)∗⊗C
n be the structure tensor of the Hankel

matrix–vector product βh : Hankn(C) × C
n → C

n. Then

rank(μh) = rank(μh) = 2n − 1.

123

Found Comput Math (2018) 18:45–95 77

Let μH ∈ Hankn(C)∗ ⊗ Hankn(C)∗ ⊗ C
n be the structure tensor of the Hankel

matrix–Hankel matrix product βH : Hankn(C) × Hankn(C) → C
n×n. Then

rank(μH) ≤ n(2n − 1).

Since Hankn(C) = J Toepn(C) = Toepn(C)J , one expects a group theoretic realiza-
tion of the Hankel matrix–vector multiplication. The construction is similar to that of
the Toeplitz case.

11 Triangular Toeplitz/Hankel Matrices

We include a discussion of triangular Toeplitz (or Hankel) matrix–vector product
because the result may be somewhat unexpected—its optimal bilinear complexity is
exactly the same as that of a general Toeplitz (or Hankel) matrix–vector product.
The fact that half the entries are zeros cannot be exploited to reduce the number of
multiplications in an algorithm. Contrast this with Corollaries 1 and 7. Our methods
in this section are new but the results are not, they follow from the work of Bini and
Capovani [2].

Let ToepΔ
n (C) be the linear space of n × n upper-triangular Toeplitz matrices and

let βΔ : ToepΔ
n (C) × C

n → C
n, (A, v) �→ Av denote the upper-triangular Toeplitz

matrix–vector product. We claim that the algebraA = C[x]/(xn) realizes βΔ. To see
this, let

A =

⎡
⎢⎢⎢⎣

a0 a1 . . . an−1
0 a0 . . . an−2
...

...
. . .

...

0 0 . . . a0

⎤
⎥⎥⎥⎦ ∈ ToepΔ

n (C) and v =

⎡
⎢⎢⎢⎣

v0
v1
...

vn−1

⎤
⎥⎥⎥⎦ ∈ C

n,

we have

Av =

⎡
⎢⎢⎢⎣

a0v0 + a1v1 + · · · + an−1vn−1
a0v1 + . . . + an−2vn−1

...

a0vn−1

⎤
⎥⎥⎥⎦ ∈ C

n .

Let A0, A1, . . . , An−1 be the ‘obvious’ basis of ToepΔ
n (C), i.e., the (i, j)th entry of

Ak is one when j − i = k and zero otherwise. Let e0, . . . , en−1 be the standard basis
ofC

n . We define an embedding of ToepΔ
n (C)⊗C

n intoC[x]/(xn)⊗C[x]/(xn) taking
the bases elements

Ai �→ xi , ei �→ xn−1−i , i = 0, 1, . . . , n − 1.

123

78 Found Comput Math (2018) 18:45–95

For A = ∑n−1
i=0 ai Ai ∈ ToepΔ

n (C) and v = ∑n−1
i=0 vi ei ∈ C

n , the images Â, v̂ ∈
C[x]/(xn) are given by

Â = a01 + a1x + · · · + an−1xn−1, v̂ = v0xn−1 + v1xn−2 + · · · + vn−11.

It is straightforward to verify that C[x]/(xn) realizes βΔ. Note that C[x]/(xn) is the
cohomology ring of the complex projective space CP

n−1. In particular it contains
nilpotent elements and is not semisimple.

By Theorem 3, the structure tensor of C[x]/(xn) has rank 2n − 1, from which we
may deduce the following.

Theorem 8 Let μΔ ∈ ToepΔ
n (C)∗ ⊗ (Cn)∗ ⊗C

n be the structure tensor of the upper-
triangular Toeplitz matrix–vector product βΔ. Then

rank(μΔ) = 2n − 1.

Since ToepΔ
n (C) is a linear subspace of Toepn(C), the structure tensor of upper-

triangular Toeplitz matrix–vector product is a projection of the structure tensor of
Toeplitz matrix–vector product. However, the tensor ranks of the two structure tensors
are both 2n − 1.

12 Toeplitz-Plus-Hankel Matrices

Let S1 and S2 be two linear subspaces of C
n×n . Then the set S1 + S2 = {X1 + X2 ∈

C
n×n : X1 ∈ S1, X2 ∈ S2} is clearly also a linear subspace. If the structure tensors

of the matrix–vector product for S1 and S2 have ranks r1 and r2, respectively, one
might guess that the structure tensor of the matrix–vector product for S1 + S2 has rank
r1 + r2. However, this is not true as we will see below.

Example 7 Let ToepΔ
n (C) be the linear subspace of upper-triangular Toeplitz matrices

as in Sect. 11. Let ToepΔ
n (C)T be the linear subspace of lower triangualr Toeplitz

matrices. Clearly,

ToepΔ
n (C) + ToepΔ

n (C)T = Toepn(C).

However, by Theorems 7 and 8, the structure tensors of ToepΔ
n (C),ToepΔ

n (C)T, and
Toepn(C) all have the same rank 2n − 1.

In the special case S1 = Toepn(C) and S2 = Hankn(C), a matrix in S1 + S2 is
often called a Toeplitz-plus-Hankel matrix [34,39]. We show that the value of its rank
is one less than the naive guess.

Proposition 10 The structure tensor of the Toeplitz-plus-Hankel matrix–vector prod-
uct has rank 4n − 3.

Proof Let E ∈ C
n×n be the matrix of all ones. For any T ∈ Toepn(C) and H ∈

Hankn(C) we have

T + H = (T + aE) + (H − aE)

123

Found Comput Math (2018) 18:45–95 79

and T + aE ∈ Toepn(C), H − aE ∈ Hankn(C) for all a ∈ C. We show that we may
choose an appropriate a ∈ C so that the matrix–vector product for T + aE requires
only 2n−2multiplications. As in the proof of Theorem 7, wemay embed X = T +aE
into a 2n × 2n circulant matrix

C2n =
[

X Y
Y X

]

that corresponds to a diagonal matrix whose (1, 1)th entry is zero. We may choose
a ∈ C so that the (2, 2)th entry of this diagonal matrix is also zero. Hence, the matrix–
vector product with T + aE costs at most 2n − 2 multiplications. Combined with
Corollary 13, we see that the structure tensor of the matrix–vector product for T + H
has rank at most 4n −3. On the other hand, we may check that Toepn(C)+Hankn(C)

has dimension 4n − 3. So by Proposition 1, the rank is exactly 4n − 3.
�

13 Block Toeplitz–Toeplitz Block Matrices

One of the most common Toeplitz-like structure in numerical linear algebra is that
of a block Toeplitz–Toeplitz block or bttb matrix [7,24,34]. As the name suggests,
these are nk × nk matrices that are n × n block Toeplitz matrices whose blocks are
themselves k × k Toeplitz matrices, i.e.,

A =

⎡
⎢⎢⎢⎢⎢⎣

X0 X1 · · · Xn−2 Xn−1
X−1 X0 · · · Xn−3 Xn−2

...
...

. . .
...

...

X2−n X3−n · · · X0 X1
X1−n X2−n · · · X−1 X0

⎤
⎥⎥⎥⎥⎥⎦

∈ C
nk×nk,

where Xi ∈ Toepk(C) for all i = −(n − 1), . . . ,−1, 0, 1, . . . , n − 1. We write
bttbn,k(C) for the set of n × n block Toeplitz matrices with k × k Toeplitz blocks.

There is of course nothing particularly special about the Toeplitz structure —
we may also define block-Hankel-Hankel-block or bhhb matrices, block-circulant-
circulant-block or bccb matrices, etc. In fact we will establish a general result that
holds not only for any block matrices with structured blocks but those with multiple
level block structures (e.g., block Hankel matrices whose blocks are bttbmatrices or
block bhhb matrices whose blocks are bccb matrices).

For each j = 1, . . . , s, let Uk j be a linear subspace of C
k j ×k j . We define the

following linear subspace

Uk1 � · · · � Uks ⊆ C
k1×k1 � · · · � C

ks×ks

where ‘�’ denotes the Kronecker product [45]. Note that

C
k1×k1 � · · · � C

ks×ks = C
k1···ks×k1···ks .

123

80 Found Comput Math (2018) 18:45–95

In particular, the linear subspace of bttbmatrices is obtained by setting s = 2, k1 =
n, k2 = k, and Uk1 = Toepn(C), Uk2 = Toepk(C), i.e.,

Toepn(C) � Toepk(C) = bttbn,k(C).

For s = 3 andUki = Toepki
(C), i = 1, 2, 3, we obtain k1×k1 block Toeplitz matrices

whose blocks are k2k3 × k2k3 bttb matrices,

Toepk1(C) � Toepk2(C) � Toepk3(C) = Toepk1(C) � bttbk2,k3(C).

Lemma 1 Let U ⊆ C
n×n and V ⊆ C

k×k be linear subspaces. Let

βU : U × C
n → C

n, βV : V × C
k → C

k, βU�V : (U � V) × C
nk → C

nk

be the corresponding matrix–vector products with respective structure tensors

μU ∈ U∗ ⊗ (Cn)∗ ⊗ C
n, μV ∈ V ∗ ⊗ (Ck)∗ ⊗ C

k,

μU�V ∈ (U � V)∗ ⊗ (Cnk)∗ ⊗ C
nk .

Suppose
rank(μU) = dimU, rank(μV) = dim V (20)

and
μU (U ⊗ C

n) = C
n, μV (V ⊗ C

k) = C
k . (21)

Then

rank(μU�V) = rank(μU) rank(μV).

Proof It is clear that rank(μU�V) is bounded above by rank(μU) rank(μV). So it
suffices to show that rank(μU�V) is bounded below by rank(μU) rank(μV), but this
follows from Proposition 1 applied to the matrix–vector product (U�V)⊗C

nk→C
nk .

�

The desired result for bttb matrices follows immediately from Theorem 7 and
Lemma 1.

Corollary 14 The rank of the structure tensor of the matrix–vector product βbttb :
bttbn,k(C) × C

nk → C
nk is (2k − 1)(2n − 1).

We state a more general version of Lemma 1 that applies to multilevel block struc-
tures.

Theorem 9 For j = 1, . . . , s, let Uk j ⊆ C
k j ×k j be a linear subspace of Toeplitz,

Hankel, f -circulant, Toeplitz-plus-Hankel, symmetric, or sparse matrices (each Uk j

may have a different structure). Let μ j be the structure tensor of the matrix–vector

123

Found Comput Math (2018) 18:45–95 81

product Uk j × C
k j → C

k j , j = 1, . . . , s, and let μ be that of (U1 � · · · � Us) ×
C

k1···ks → C
k1···ks . Then

rank(μ) =
s∏

j=1

rank(μ j).

Proof Byour discussions in theprevious and later sections, the conditions (20) and (21)
are met for these structured matrices. The result follows by applying Lemma 1 induc-
tively.
�
f -circulant matrices include circulant and skew-circulant ones; sparse matrices
include banded and triangular ones. Note that we have excluded skew-symmetric
matrices and triangular Toeplitz matrices since they do not satisfy (21).

Next we will discuss a Cohn–Umans realization of the matrix–vector product for
U1 � · · · � Us .

Proposition 11 If the algebra A j realizes the bilinear map β : Uk j × C
k j → C

k j

for j = 1, . . . , s, then the tensor product A = A1 ⊗ · · · ⊗As realizes the Kronecker
product U1 � · · · � Us.

Proof It suffices to prove the statement for βU�V : (U � V) × C
nk → C

nk when
βU : U × C

n → C
n and βV : V × C

k → C
k are realized by A and B respectively.

But this follows from routine arguments: The embeddings U ↪→ A and V ↪→ B
induce an embedding of U � V ↪→ A ⊗ B and the projections of A onto C

n and
B onto C

k induce a projection ofA ⊗B onto C
kn . The more general statement then

follows from induction.
�
For example the matrix–vector product βbttb : bttbn,k(C) × C

nk → C
nk is realized

by the algebra

A = C[x, y]/(x2k − 1, y2n − 1),

from which we may also deduce the rank of the structure tensor of βbttb.

14 Symmetric Matrices

We saw in Corollaries 1 and 2 that the usual way of performing matrix–vector product
is already optimal for general matrices. A natural question is: What if the matrix is
symmetric? This is a very common situation sincemany, if notmost, linear systems and
least-squares problems that arise in practice involve symmetric coefficient matrices.
Despite this, we are unaware of any previous study. We show here that the optimal
bilinear complexity for symmetric matrix–vector product is n(n + 1)/2. Surprisingly
the solution involves Hankel matrices.

We begin with the observation that every symmetric matrix may be expressed as a
sum of symmetric Hankel matrices bordered by zeros. A 2 × 2 symmetric matrix is
already a Hankel matrix. The 3 × 3 and 4 × 4 cases are shown explicitly below.

123

82 Found Comput Math (2018) 18:45–95

[
a b
b c

]
,

⎡
⎣

a b c
b d e
c e f

⎤
⎦ =

⎡
⎣

a b c
b c e
c e f

⎤
⎦ +

⎡
⎣
0 0 0
0 d − c 0
0 0 0

⎤
⎦ ,

⎡
⎢⎢⎣

a b c d
b e f g
c f h i
d g i j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a b c d
b c d g
c d g i
d g i j

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
0 e − c f − d 0
0 f − d e − c 0
0 0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 h − g − e + c 0
0 0 0 0

⎤
⎥⎥⎦ .

The generalization of this observation to n ×n symmetric matrices will be established
in our proof below, and together with Corollary 13, be used to deduce the optimal
bilinear complexity of symmetric matrix–vector product. Let S2(Cn) be the space of
all n × n symmetric matrices. Let βs : S2(Cn) × C

n → C
n be the bilinear map of

symmetric matrix–vector product and μs ∈ S2(Cn)∗ ⊗ (Cn)∗ ⊗ C
n .

Theorem 10 The optimal bilinear complexity of symmetric matrix–vector product is
n(n + 1)/2, i.e., rank(μs) = n(n + 1)/2.

Proof By Proposition 1, we see that rank(μβ) ≥ dim S2(Cn) = n(n + 1)/2. On the
other hand, for a given

A =

⎡
⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n−1 a1,n
a1,2 a2,2 . . . a2,n−1 a2,n
...

...
. . .

...
...

a1,n−1 a2,n−1 . . . an−1,n−1 an−1,n
a1,n a2,n . . . an−1,n an,n

⎤
⎥⎥⎥⎥⎥⎦

∈ S2(Cn)

and a column vector v = [v1, . . . , vn]T ∈ C
n , we claim that (A, v) �→ Av can be

computed as the sum of several Hankel matrix–vector products of decreasing sizes.
Let

H1 = Hank(a1,1, . . . , a1,n, a2,n, . . . , an,n) ∈ Hankn(C),

notation as in (19). Then A − H1 is a symmetric matrix of the form

⎡
⎣
0 0 0
0 A2 0
0 0 0

⎤
⎦ ∈ S2(Cn),

where A2 ∈ S(n−2)(C). Also we notice that

(A − H1)v =
⎡
⎣

0
A2v

(2)

0

⎤
⎦

123

Found Comput Math (2018) 18:45–95 83

where v(2) = [v2, . . . , vn−1]T ∈ C
n−2. Now we can repeat the above procedure and

inductively we can prove our claim. Explicitly,

Av = H1v +
⎡
⎣

0
H2v

(2)

0

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

0
0

H3v
(3)

0
0

⎤
⎥⎥⎥⎥⎦

+ · · · ,

where Hi ∈ Hankn−2i (C) and v(i) ∈ C
n−2i , i = 1, . . . , �n/2�. Hi and v(i) are linear

in the entries of A and v, respectively. By Corollary 13, one can compute Hiv
(i) in

2(n − 2i) − 1 multiplications. Hence, we obtain

rank(μs) ≤
�n/2�∑
i=0

[2(n − 2i) − 1] = n(n + 1)

2

and therefore rank(μs) = n(n + 1)/2.
�
One may also interpret the proof of Theorem 10 as an instance of the generalized
Cohn–Umans method. We have an embedding of vector spaces

S2(Cn)∗ ⊗ (Cn)∗ ⊗ C
n ↪→

�n/2�⊕
i=0

Hankn−2i (C)∗ ⊗ (Cn−2i)∗ ⊗ C
n−2i , (22)

and for each i = 0, . . . , �n/2�, the bilinear map Hankn−2i (C) × C
n−2i →

C
n−2i , (Hi , v

(i)) �→ Hiv
(i) is in turn realized by the algebra C[x]/(x2(n−2i) − 1).

Note that the object on the right-hand side of (22) is not an algebra but only a vector
space—this is an application of the commutative diagram (12).

15 Skew-Symmetric Matrices

A departure from other sections in this article is that in this section we do not have
the optimal bilinear complexity, only upper bounds for it. We first discuss the case of
3 × 3 skew-symmetric matrix–vector product. Let

A =
⎡
⎣

0 a b
−a 0 c
−b −c 0

⎤
⎦ ∈ �2(C3).

Then the usual matrix–vector multiplication gives

A

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

ay + bz
−ax + cz
−bx − cy

⎤
⎦ ,

123

84 Found Comput Math (2018) 18:45–95

which costs six multiplications. So the rank of the structure tensor of the skew-
symmetric matrix–vector product is at most six.Wewill rely on the following theorem
[35,41] for the lower bound of the border rank (hence the rank) of a special 3-tensor.

Theorem 11 Let T ∈ U ⊗ V ⊗ W where dimU = dim V = dim W = 3. Let
u1, u2, u3 be a basis of U. If we can write T as

T = u1 ⊗ X1 + u2 ⊗ X2 + u3 ⊗ X3,

with X1, X2, X3 ∈ V ⊗ W regarded6 as 3 × 3 matrices and if the following block
matrix is nonsingular,

MT =
⎡
⎣

0 X3 −X2
−X3 0 X1
X2 X1 0

⎤
⎦ ∈ C

9×9,

then rank(T) ≥ 5. The same result holds with V or W in the role of U.

Let �2(Cn) be the space of all n × n skew-symmetric matrices. Note that
dim�2(C3) = 3 and we may apply Theorem 11 to T = μ∧, the structure tensor
of the bilinear map

β∧ : �2(C3) × C
3 → C

3,

⎛
⎝

⎡
⎣

0 a b
−a 0 c
−b −c 0

⎤
⎦ ,

⎡
⎣

x
y
z

⎤
⎦

⎞
⎠ �→

⎡
⎣

ay + bz
−ax + cz
−bx − cy

⎤
⎦ .

Let e1, e2, e3 be the standard basis of C
3 and

F1 =
⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ , F2 =

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦ , F3 =

⎡
⎣
0 0 0
0 0 1
0 −1 0

⎤
⎦ .

be a basis of �2(C3). Then we may decompose μ∧ as

μ∧ = F1 ⊗ (e2 ⊗ e1 − e1 ⊗ e2) + F2 ⊗ (e3 ⊗ e1 − e1 ⊗ e3)

+F3 ⊗ (e3 ⊗ e2 − e2 ⊗ e3)

and it is easy to verify that Mμ∧ is nonsingular, giving us the following.

Proposition 12 The rank and border rank of the structure tensor of skew-matrix–
vector product for 3 × 3 matrices are given by

rank(μ∧) = 5 or 6,

6 The result is, however, coordinate independent, i.e., it does not depend on our choice of the bases.

123

Found Comput Math (2018) 18:45–95 85

and

rank(μ∧) = 5 or 6.

Next we construct an algebra that realizes the 3 × 3 skew-symmetric matrix–vector
product. Our candidate is

A = C 〈x1, x2〉 /(x21 , x22 , x1x2 + x2x1).

The embedding �2(C3) × C
3 ↪→ A × A is given by

a1 �→ −x1, a2 �→ −x2, a3 �→ 1, b1 �→ 1, b2 �→ −x2, b3 �→ x1.

Then given A = ∑3
i=1 ui ai ∈ �2(C3) and x = ∑3

i=1 vi bi ∈ C
3, their images

Â, x̂ ∈ A are given by

Â = −u1x1 − u2x2 + u3, x̂ = v1 − v2x2 + v3x1,

and their product is given by

Â · x̂ = (−u1v1 + u3v3) · x1 + (u1v2 + u2v3) · x1x2 + (−u2v1 − u3v2) · x2
+(u3v1) · 1 ∈ A .

Hence A realizes 3 × 3 skew-symmetric matrix–vector product. We observe that
A may be regarded as the cohomology ring of a torus, i.e., an exterior algebra of a
two-dimensional vector space.

We now discuss the general case of n × n skew-symmetric matrix–vector product
β∧ : �2(Cn) × C

n → C
n . We construct an algebra that realizes β∧ starting with the

inclusion of vector spaces

�2(Cn) ↪→ (
C[x]/(xn + 1)

) ⊕ W, (23)

where W is a linear subspace of C
n×n matrices satisfying the following conditions

(i) entries in the first row are all zeros;
(ii) diagonal entries are all zeros;
(iii) entries in the first column satisfy the relation ai,1+an+2−i,1 = 0 for i = 2, . . . , n.

Given A ∈ �2(Cn), the embedding is given by the decomposition

A =

⎡
⎢⎢⎢⎢⎢⎣

0 a1,2 · · · a1,n−1 a1,n
−a1,2 0 · · · a2,n−1 a2,n

...
...

. . .
...

...

−a1,n−1 −a2,n−1 · · · 0 an−1,n
−a1,n −a2,n · · · −an−1,n 0

⎤
⎥⎥⎥⎥⎥⎦

= Ac + Aw,

123

86 Found Comput Math (2018) 18:45–95

where

Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 a1,2 · · · a1,n−1 a1,n
−a1,n 0 · · · a1,n−2 a1,n−1

...
...

. . .
...

...

−a1,3 −a1,4 · · · 0 a1,2
−a1,2 −a1,3 · · · −a1,n 0

⎤
⎥⎥⎥⎥⎥⎦

∈ Circn,−1(C)

is a skew-circulant matrix and

Aw =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
−a1,2 + a1,n 0 · · · a2,n−1 − a1,n−2 a2,n − a1,n−1

...
...

. . .
...

...

a1,3 − a1,n−1 a1,4 − a2,n−1 · · · 0 an−1,n − a1,2
a1,2 − a1,n a1,3 − a2,n · · · a1,n − an−1,n 0

⎤
⎥⎥⎥⎥⎥⎦

∈ W.

Note that Ac, being skew-circulant, may be regarded as an element of C[x]/(xn + 1)
as we have discussed in Sect. 8 and we obtain the embedding in (23).

Since we also have

C
n � C[x]/(xn + 1),

the bilinear map β∧ : �2(Cn) × C
n → C

n may be realized as follows.

�2(Cn) ⊗ C
n

(
C[x]/(xn + 1) ⊕ W

) ⊗ C
n

�2(Cn) ⊗ C
n

(
C[x]/(xn + 1) ⊗ C

n
) ⊕ (W ⊗ C

n)

�2(Cn) ⊗ C
n

(
C[x]/(xn + 1) ⊗ C[x]/(xn + 1)

) ⊕ (W ⊗ C
n)

C
n

C[x]/(xn + 1) � C
n

j

id �
j

id �
j

β∧ m

proj

We have identified the skew-circulant matrix vector product with the skew-circulant
matrix–matrix product (see Sect. 8), i.e., the multiplication

C[x]/(xn + 1) × C
n → C

n

is identified with the multiplication

C[x]/(xn + 1) × C[x]/(xn + 1) → C[x]/(xn + 1).

123

Found Comput Math (2018) 18:45–95 87

This realization is another instance of the commutative diagram (12). To put all these
in concrete terms, given A ∈ �2(Cn) and x ∈ C

n , we compute the matrix–vector
product via

Ax = (
first row of Ac Circ(x)

) + Awx .

Theorem 12 The rank of the structure tensor of skew-symmetric matrix–vector prod-
uct is bounded above by n2 − n − �(n − 1)/2� + 1.

Proof The first factor of the realization is the multiplication in the algebra

C[x]/(xn + 1) × C[x]/(xn + 1) → C[x]/(xn + 1).

By Theorem 3 we see that the rank of the structure tensor of the algebraC[x]/(xn +1)
is n. The second factor of the realization is a bilinear map

W × C
n → C

n .

A matrix–vector product with a matrix in W costs n2 − (2n − 1) − �(n − 1)/2�
multiplications — there are 2n − 1 zeros by (i) and (ii) and we invoke Proposition 6;
moreover, there are �(n − 1)/2� identical terms by (iii). Therefore, this realization
gives an upper bound of n2 − n − �(n − 1)/2� + 1.
�
This upper bound is n +�(n − 1)/2�− 1 multiplications fewer than the usual matrix–
vector product. In particular, for n = 3 we obtain the upper bound in Proposition 12.

16 Commutator

Our study of the bilinear complexity of commutators in this section covers only the
case of 2 × 2 matrices. We do not yet know how to extend it to n × n matrices when
n > 2.

We consider the bilinear map [·, ·] : C
2×2 × C

2×2 → C
2×2 defined by [A, X] =

AX − X A. We will write

A =
[

a b
c d

]
, X =

[
x y
z w

]
,

and therefore

[A, X] =
[

bz − cy (a − d)y − b(x − w)

−(a − d)z + c(x − w) −(bz − cy)

]
.

Hence the rank of μ[·,·] ∈ (C2×2)∗ ⊗ (C2×2)∗ ⊗ C
2×2, the structure tensor of [·, ·], is

at most six.

123

88 Found Comput Math (2018) 18:45–95

Now consider the matrix–vector product between matrices and vectors of the fol-
lowing forms

⎡
⎣

0 −c b
−b a − d 0
c 0 −a − d

⎤
⎦ ∈ C

3×3,

⎡
⎣

x − w

y
z

⎤
⎦ ∈ C

3.

Notice that
⎡
⎣

0 −c b
−b a − d 0
c 0 −(a − d)

⎤
⎦

⎡
⎣

x − w

y
z

⎤
⎦ =

⎡
⎣

bz − cy
(a − d)y − b(x − w)

−(a − d)z + c(x − w)

⎤
⎦ .

So the rank and border rank of the structure tensor μ[·,·] of [·, ·] is the same as the rank
of the following bilinear operation

β : C
3 × C

3 → C
3,

⎛
⎝

⎡
⎣

s1
s2
s3

⎤
⎦ ,

⎡
⎣

t1
t2
t3

⎤
⎦

⎞
⎠ �→

⎡
⎣

s1t2 + s2t3
−s2t1 + s3t2
−s1t1 − s3t3

⎤
⎦ , (24)

where

s1 = −c, s2 = b, s3 = a − d, t1 = x − w, t2 = y, t3 = z.

We will need to distinguish the three copies of C
3 in (24), so for clarity let us denote

them by U, V , and W respectively, i.e.,

β : U × V → W.

Let {u1, u2, u3}, {v1, v2, v3}, {w1, w2, w3} be the standard bases of U, V, W . Then
the structure tensor μβ of β may be decomposed as

μβ = (u1 ⊗ v2 + u2 ⊗ v3) ⊗ w1 + (−u2 ⊗ v1 + u3 ⊗ v2) ⊗ w2

+(−u1 ⊗ v1 − u3 ⊗ v3) ⊗ w3

and we may apply Theorem 11 to obtain the following.

Corollary 15 The rank and border rank of the commutator for 2 × 2 matrices are
given by

rank
(
μ[·,·]

) = 5 or 6

and

rank
(
μ[·,·]

) = 5

respectively.

123

Found Comput Math (2018) 18:45–95 89

In otherwords, for A, X ∈ C
2×2, computing AX requires at least sevenmultiplications

(e.g., Strassen’s algorithm), whereas computing [A, X] = AX − X A requires at most
sixmultiplications.We suspect that this is always the case, i.e., computing commutator
is always faster than computing matrix multiplication for n × n matrices.

We now construct an algebra A that realizes β and therefore [·, ·]. Let

A = C〈x1, x2〉/(x21 , x22 , x1x2 + x2x1)

and consider the embedding U ⊗ V → A ⊗ A induced by

u1 �→ x1, u2 �→ x2, u3 �→ 1, v1 �→ −1, v2 �→ x2, v3 �→ −x1.

Given s = ∑3
i=1 si ui ∈ U and t = ∑3

i=1 tivi ∈ V , the images ŝ and t̂ in A are

ŝ = −s1x1 − s2x2 + s31, t̂ = −t11 + t2x2 − t3x1

respectively. Their product is

ŝ · t̂ = (s1x1 + s2x2 + s31)(−t11 + t2x2 − t3x1)

= (−s1t1 − s3t3)x1 + (s1t2 + s2t3)x1x2 + (−s2t1 + s3t2)x2 + (−s3t1)1,

i.e., A realizes the bilinear map [·, ·]. Observe that A is the same algebra that we
used to realize the 3 × 3 skew-symmetric matrix–vector product in Sect. 15.

17 Simultaneous Matrix Multiplication

We round out our list of bilinear operations with two examples of simultaneous matrix
product.

Proposition 13 The following two matrix–matrix products:

[
a b
c d

] [
e f
g h

]
and

[
a b
c d

] [
g h
e f

]
(25)

can be computed simultaneously with eight multiplications.

Proof Let D4 = 〈x, y | x4 = y2 = 1, yxy = x−1〉 be the dihedral group of order
eight. The multiplication of 2 × 2 matrices is realized by the subsets

H1 = 〈y〉 = {y, 1}, H2 = 〈x2y〉 = {x2y, 1}, S3 = {x−1y, 1}.

Let

A =
[

a b
c d

]
, B =

[
e f
g h

]
. (26)

123

90 Found Comput Math (2018) 18:45–95

Then A, B correspond to Â, B̂ ∈ C [D4] where

Â = a · (y−1x2y) + b · (y−1) + c · (x2y) + d · (1)

= a · (x2) + b · (y) + c · (x2y) + d · (1),

B̂ = e · ((x2y)−1x−1y) + f · ((x2y)−1) + g · (x−1y) + h · (1)

= e · (x3) + f · (x2y) + g · (x3y) + h · (1).

We compute the product Â · B̂ in C [D4],

Â · B̂ = (ae + bg) · (x) + (a f + bh) · (y) + (ce + dg) · (x3y) + (c f + dh) · (1)

+ (ag + be) · (xy) + (ah + b f) · (x2)

+ (cg + de) · (x3) + (ch + d f) · (x2y)

and observe that the first four terms and last four terms are precisely the entries of

M1 :=
[

a b
c d

] [
e f
g h

]
and M2 :=

[
a b
c d

] [
g h
e f

]

respectively. In other words, we can calculate M1 and M2 simultaneously by calcu-
lating Â · B̂. On the other hand, D4 has four irreducible representations of dimension
one and one of dimension two:

(i) trivial: (1, x, x2, x3, y, xy, x2y, x3y)
ρ�→ (1, 1, 1, 1, 1, 1, 1, 1)

(ii) sign type 1 : (1, x, x2, x3, y, xy, x2y, x3y)
ρ�→ (1, 1, 1, 1,−1,−1,−1,−1)

(iii) sign type 2 : (1, x, x2, x3, y, xy, x2y, x3y)
ρ�→ (1,−1, 1,−1, 1,−1, 1,−1)

(iv) sign type 3 : (1, x, x2, x3, y, xy, x2y, x3y)
ρ�→ (1,−1, 1,−1,−1, 1,−1, 1)

(v) two-dimensional:

1 �→
[
1 0
0 1

]
, x �→

[
0 −1
1 0

]
, x2 �→

[−1 0
0 −1

]
, x3 �→

[
0 1

−1 0

]
,

y �→
[
1 0
0 −1

]
, xy �→

[
0 1
1 0

]
, x2y �→

[−1 0
0 1

]
, x3y �→

[
0 −1

−1 0

]
.

By Wedderburn theorem we have

C [D4] � C ⊕ C ⊕ C ⊕ C ⊕ C
2 ⊗ C

2,

where the first four C’s correspond to the four 1-dimensional representations and the
C
2 ⊗ C

2 corresponds to the 2-dimensional representation. Under this isomorphism,
we may identify Â and B̂ as 6 × 6 block diagonal matrices,

Â =

⎡
⎢⎢⎢⎢⎢⎣

a + b + c + d 0 0 0 0 0
0 a − b − c + d 0 0 0 0
0 0 a + b + c + d 0 0 0
0 0 0 a − b − c + d 0 0
0 0 0 0 −a + b − c + d 0
0 0 0 0 0 −a − b + c + d

⎤
⎥⎥⎥⎥⎥⎦

123

Found Comput Math (2018) 18:45–95 91

and

B̂ =

⎡
⎢⎢⎢⎢⎢⎣

e + f + g + h 0 0 0 0 0
0 e − f − g + h 0 0 0 0
0 0 −e + f − g + h 0 0 0
0 0 0 −e − f + g + h 0 0
0 0 0 0 − f + h e − g
0 0 0 0 −e − g f + h

⎤
⎥⎥⎥⎥⎥⎦

.

Hence the computation of Â · B̂ costs eight multiplications.
�
Corollary 16 Suppose

[
a b
c d

] [
g h
e f

]
= 0.

Then the product

[
a b
c d

] [
e f
g h

]

can be computed with four multiplications.

Proof If the given condition holds, one may obtain the required product from the first
four diagonal entries of Â · B̂, which costs four multiplications.
�

We restate Proposition 13 in terms of the structure tensor μf of the bilinear map

βf : C
2×2 × C

2×2 → C
2×2 ⊕ C

2×2, (A, B) �→ (AB, ABf),

where Bf denotes the operation of switching the first and second row of B. Note that

μf ∈ (C2×2)∗ ⊗ (C2×2)∗ ⊗ (C2×2 ⊕ C
2×2) � C

4 ⊗ C
4 ⊗ C

8.

Proposition 14 The rank and border rank of the structure tensor for the simultaneous
matrix–matrix product in (25) are given by

rank(μf) = rank(μf) = 8.

Proof It is easy to verify that span(μf(C
2×2 ⊗ C

2×2)) = C
2×2. Hence, the required

result follows from Propositions 1, 2, and 13.
�
Corollary 17 Consider the matrices

A =
[

a b
c d

]
∈ C

2×2, B =
[

e1 e2 · · · e2n
f1 f2 · · · f2n

]
∈ C

2×2n, Bf =
[

f1 f2 · · · f2n
e1 e2 · · · e2n

]
∈ C

2×2n,

(27)
where n is any positive integer. Then AB and ABf can be computed simultaneously
with 8n multiplications.

123

92 Found Comput Math (2018) 18:45–95

Proof We may realize the bilinear map

C
2×2 × C

2×2n → C
2×2n ⊕ C

2×2n, (A, B) �→ (AB, ABf)

by the algebra C[D4] × · · · × C[D4] (n copies).
�
Suppose we are instead interested in computing

[
a b
c d

] [
e f
g h

]
and

[
a b
c d

] [
h g
e f

]

simultaneously.We start by realizing 2×2matrix product by the algebraC[x]/(x8−1).
Let A, B ∈ C

2×2 be as in (26). Consider the embedding

j : C
2×2 ⊗ C

2×2 → C[x]/(x8 − 1) ⊗ C[x]/(x8 − 1),

(A, B) �→ (ax3 + cx2 + bx + d, gx6 + ex4 + hx2 + f),

and the projection

proj : C[x]/(x8 − 1) → C
2×2,

7∑
i=1

ui xi �→
[

u7 u3
u6 u2

]
.

We may verify that for these choices, the diagram in (11) commutes. The product

(ax3 + cx2 + bx + d)(gx6 + ex4 + hx2 + f)

in C[x]/(x8 − 1) gives us the following counterpart of Proposition 13.

Proposition 15 The following two matrix–matrix products:

[
a b
c d

] [
e f
g h

]
and

[
a b
c d

] [
h g
e f

]
(28)

can be computed simultaneously with eight multiplications.

Again, wemay restate Proposition 15 in terms of the structure tensorμg of the bilinear
map

βg : C
2×2 × C

2×2 → C
2×2 ⊕ C

2×2, (A, B) �→ (AB, ABg)

where Bg is the matrix obtained from B by switching the first row and the second
row and then switching the first and the second entry in the first row. The following
analogue of Proposition 14 follows from Propositions 1, 2, and 15.

Proposition 16 The rank and border rank of the structure tensor for the simultaneous
matrix–matrix product in (28) are given by

rank(μg) = rank(μg) = 8.

123

Found Comput Math (2018) 18:45–95 93

We also have the following analogue of Corollary 17.

Corollary 18 Let A ∈ C
2×2 and B ∈ C

2×2n be as in (27). Let Bg ∈ C
2×2n be the

matrix obtained from B by switching the first and second row followed by switching
2i th and (2i − 1)th entry in the first row for i = 1, 2, . . . , �n/2�. Then AB and ABg

can be computed simultaneously with 8n multiplications.

Proof We may realize the bilinear map

C
2×2 × C

2×2n → C
2×2n ⊕ C

2×2n, (A, B) �→ (AB, ABg)

by the algebra C[x1, . . . , xn]/(x8i − 1 | i = 1, . . . , n).
�

18 Conclusion

The Strassen tensor rank approach gives us a simple way for quantifying bilinear
complexity, whereas the (generalized) Cohn–Umans approach gives us a constructive
way that allows the rich properties of various algebras to be used in analyzing bilinear
complexity. The two methods can be applied hand-in-hand to systematically discover
algorithms of optimal bilinear complexity.

Acknowledgements We thankHenryCohn for very helpful discussions that initiated thiswork.We are also
grateful to Andrew Chien, Nikos Pitsianis, and Xiaobai Sun for answering our questions about energy costs
and circuit complexity of various integer and floating point operations; to Mike Stein for suggesting that we
examine bttb matrices; and to Chris Umans for prompting Construction 6. We thank the two anonymous
referees and the handling editor for their exceptionally helpful comments and constructive suggestions. In
particular, we included Sects. 1.2 and 3.2 at the handling editor’s urging, which in retrospect were glaring
omissions. LHL and KY are partially supported by AFOSR FA9550-13-1-0133, DARPA D15AP00109,
NSF IIS 1546413, DMS 1209136, and DMS 1057064. In addition, KY’s work is also partially supported
by NSF CCF 1017760.

References

1. W. A. Adkins and S. H. Weintraub, Algebra: An approach via module theory, Graduate Texts in
Mathematics, 136, Springer, New York, 1992.

2. D. Bini and M. Capovani, “Tensor rank and border rank of band Toeplitz matrices,” SIAM J. Comput.,
16 (1987), no. 2, pp. 252–258.

3. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
4. J.-L. Brylinski, “Algebraic measures of entanglement,” pp. 3–23, G. Chen and R. K. Brylinski (Eds),

Mathematics of Quantum Computation, CRC, Boca Raton, FL, 2002.
5. J. Buczyński and J. M. Landsberg, “Ranks of tensors and a generalization of secant varieties,” Linear

Algebra Appl., 438 (2013), no. 2, pp. 668–689.
6. P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der

Mathematischen Wissenschaften, 315, Springer-Verlag, Berlin, 1997.
7. R. H.-F. Chan andX.-Q. Jin,An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms,

5, SIAM, Philadelphia, PA, 2007.
8. H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic algorithms for matrix multipli-

cation,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 46 (2005), pp. 379–388.
9. H. Cohn and C. Umans, “A group-theoretic approach to fast matrix multiplication,” Proc. IEEE Symp.

Found. Comput. Sci. (FOCS), 44 (2003), pp. 438–449.
10. H. Cohn and C. Umans, “Fast matrix multiplication using coherent configurations,” Proc. ACM–SIAM

Symp. Discrete Algorithms (SODA), 24 (2013), pp. 1074–1087.

123

94 Found Comput Math (2018) 18:45–95

11. S. A. Cook, On the Minimum Computation Time of Functions, Ph.D. thesis, Harvard University,
Cambridge, MA, 1966.

12. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,”
Math. Comp., 19 (1965), no. 90, pp. 297–301.

13. D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbolic
Comput., 9 (1990), no. 3, pp. 251–280.

14. P. J. Davis, Circulant Matrices, John Wiley, New York, NY, 1979.
15. V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation

problem,” SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.
16. J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix multiplication is stable,” Numer.

Math., 106 (2007), no. 2, pp. 199–224.
17. S. Friedland and L.-H. Lim, “Nuclear norm of higher-order tensors,” (2016). http://arxiv.org/abs/1410.

6072.
18. M. Fürer, “Faster integer multiplication,” SIAM J. Comput., 39 (2009), no. 3, pp. 979–1005.
19. G. Golub and C. Van Loan, Matrix Computations, 4th Ed., Johns Hopkins University Press, Baltimore,

MD, 2013.
20. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PA,

2002.
21. N. J. Higham, Functions of Matrices, SIAM, Philadelphia, PA, 2008.
22. N. J. Higham, “Stability of a method for multiplying complex matrices with three real matrix multi-

plications,” SIAM J. Matrix Anal. Appl., 13 (1992), no. 3, pp. 681–687.
23. Intel 64 and IA-32 Architectures Optimization Reference Manual, September 2015. http://www.intel.

com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-
manual

24. T. Kailath and J. Chun, “Generalized displacement structure for block-Toeplitz, Toeplitz-block, and
Toeplitz-derived matrices,” SIAM J. Matrix Anal. Appl., 15 (1994), no. 1, pp. 114–128.

25. A. Karatsuba and Yu. Ofman, “Multiplication of many-digital numbers by automatic computers,”
Dokl. Akad. Nauk SSSR, 145 (1962), pp. 293–294 [English translation: Soviet Phys. Dokl., 7 (1963),
pp. 595–596].

26. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical algorithms, 3rd Ed.,
Addison–Wesley, Reading, MA, 1998.

27. V. K. Kodavalla, “IP gate count estimation methodology during micro-architecture phase,” IP Based
Electronic System Conference and Exhibition (IP-SOC), Grenoble, France, December 2007. http://
www.design-reuse.com/articles/19171/ip-gate-count-estimation-micro-architecture-phase.html

28. J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS,
Providence, RI, 2012.

29. S. Lang, Algebra, Rev. 3rd Ed., Graduate Texts in Mathematics, 211, Springer, New York, NY, 2002.
30. F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc. Internat. Symp. Symbolic Algebr.

Comput. (ISSAC), 39 (2014), pp. 296–303.
31. L.-H. Lim, “Tensors and hypermatrices,” in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Ed.,

CRC Press, Boca Raton, FL, 2013.
32. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Rev. Ed., Graduate Studies in

Mathematics, 30, AMS, Providence, RI, 2001.
33. W. Miller, “Computational complexity and numerical stability,” SIAM J. Comput., 4 (1975), no. 2,

pp. 97–107.
34. M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.
35. G. Ottaviani, “Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited,” Quad.

Mat., 21 (2007), pp. 315–352.
36. V. Y. Pan, Structured Matrices and Polynomials: Unified superfast algorithms, Birkhäuser, Boston,

MA, 2001.
37. A. Schönhage, “Partial and total matrix multiplication,” SIAM J. Comput., 10 (1981), no. 3, pp. 434–

455.
38. A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing, 7 (1971), no. 3,

pp. 281–292.
39. G. Strang and S. MacNamara, “Functions of difference matrices are Toeplitz plus Hankel,” SIAM Rev.,

56 (2014), no. 3, pp. 525–546.
40. V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., 13 (1969), no. 4, pp. 354–356.

123

http://arxiv.org/abs/1410.6072
http://arxiv.org/abs/1410.6072
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual
http://www.design-reuse.com/articles/19171/ip-gate-count-estimation-micro-architecture-phase.html
http://www.design-reuse.com/articles/19171/ip-gate-count-estimation-micro-architecture-phase.html

Found Comput Math (2018) 18:45–95 95

41. V. Strassen, “Rank and optimal computation of generic tensors,” Linear Algebra Appl., 52/53 (1983),
pp. 645–685.

42. V. Strassen, “Relative bilinear complexity and matrix multiplication,” J. Reine Angew. Math., 375/376
(1987), pp. 406–443.

43. V. Strassen, “Vermeidung von Divisionen,” J. Reine Angew. Math., 264 (1973), pp. 184–202.
44. A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of

integers,” Dokl. Akad. Nauk SSSR, 150 (1963), pp. 496–498 [English translation: Soviet Math. Dokl.,
4 (1963), pp. 714–716].

45. C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl. Math., 123 (2000), no. 1–2,
pp. 85–100.

46. V.VassilevskaWilliams, “Multiplyingmatrices faster thanCoppersmith–Winograd,”Proc. ACM Symp.
Theory Comput. (STOC), 44 (2012), pp. 887–898.

47. D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadel-
phia, PA, 2007.

48. S.Winograd, “Some bilinear formswhosemultiplicative complexity depends on the field of constants,”
Math. Syst. Theory, 10 (1976/77), no. 2, pp. 169–180.

49. K. Ye and L.-H. Lim, “Algorithms for structuredmatrix-vector product of optimal bilinear complexity,”
Proc. IEEE Inform. Theory Workshop (ITW), 16 (2016), to appear.

50. K. Ye and L.-H. Lim, “Every matrix is a product of Toeplitz matrices,” Found. Comput. Math., 16
(2016), no. 3, pp. 577–598.

123

	Fast Structured Matrix Computations: Tensor Rank and Cohn--Umans Method
	Abstract
	1 Introduction
	1.1 Why Minimize Multiplications?
	1.2 Overview

	2 The Structure Tensor of a Bilinear Operation
	3 Tensor Rank, Border Rank, and Bilinear Complexity
	3.1 Remarks on Arithmetic
	3.2 Remarks on Numerical Stability

	4 Tensor Ranks of Structure Tensors of Algebras
	5 Generalized Cohn--Umans Method and Tensor Rank
	6 Sparse, Banded, and Triangular Matrices
	7 Circulant Matrix
	8 f-Circulant and Skew-Circulant Matrices
	9 Toeplitz Matrices
	10 Hankel Matrices
	11 Triangular Toeplitz/Hankel Matrices
	12 Toeplitz-Plus-Hankel Matrices
	13 Block Toeplitz--Toeplitz Block Matrices
	14 Symmetric Matrices
	15 Skew-Symmetric Matrices
	16 Commutator
	17 Simultaneous Matrix Multiplication
	18 Conclusion
	Acknowledgements
	References

