
List of proofs

Proof of Lemma 1. First, note that

E
[
‖GX‖21

]
= E

[(∑n

i=1
‖gi‖∞ |ĝH

i X|
)2]

,

where gi is the ith column of G and ĝi = gi/‖gi‖∞. Using the condition ‖G‖∞,∗ ≤ 1 and Jensen’s
inequality, we find that

E
[
‖GX‖21

]
≤
∑n

i=1
‖gi‖∞E

[
|ĝH
i X|2

]
≤ |||X|||2.

The other inequality follows by noting that for any f ∈ Cn with ‖f‖∞ ≤ 1, the matrix G with first
row equal to fH and all other rows zero satisfies the constraint ‖G‖∞,∗ ≤ 1. That (26) is the dual
norm of the ∞-norm follows from straightforward verification, or see [27, Proposition 7.2].

Proof of Lemma 2. The result holds in n = 1 dimensions. Suppose that the result holds in n − 1
dimensions. We will show that it must also therefore hold in n dimensions and conclude, by
induction, that the result holds in any dimension.

Let Ã be the (n− 1)× (n− 1) principle submatrix of an n×n matrix A. For any vector f ∈ Cn
we can write

fHAf =
∑n

i=1
|fi|2Aii + 2<

[∑n

i=1

∑i−1

j=1
f̄iAijfj

]
= f̃HÃf̃ + |fn|2Ann + 2<

[
f̄n
∑n−1

j=1
Anj f̃j

]
,

where f̃ ∈ Cn−1 has entries equal to the first n− 1 entries of f.
By the induction hypothesis, we can choose the first n − 1 entries of f (i.e., f̃) so that the

right-hand side of the last display is not less than∑n−1

i=1
Aii + |fn|2Ann + 2<

[
f̄n
∑n−1

j=1
Anj f̃j

]
.

If, for this choice of f̃ ,
∑n−1

j=1 Anj f̃j is nonzero, then choose fn as

fn =

∑n−1
j=1 Anj f̃j∣∣∣∑n−1
j=1 Anj f̃j

∣∣∣ .
Otherwise set fn = 1. With the resulting choice of fn,

|fn|2Ann + 2<
[
f̄n
∑n−1

j=1
Anj f̃j

]
≥ Ann.

We have therefore shown that
sup
‖f‖∞≤1

fHAf ≥
∑n

i=1
Aii.

Proof of Theorem 1. Let V m
t be generated by (11). Let Y m

t = Φm
t (V m

t ) and notice that

U(V m
t ) = U(M(Y m

t−1))

≤ R+ αU(V m
t−1) + α

(
U(Y m

t−1)− U(V m
t−1)

)
.

Using the fact that U is twice differentiable with bounded second derivative, this last expression is
bounded above by

U(V m
t ) ≤ R+ αU(V m

t−1) + α∇U(V m
t−1)

(
Y m
t−1 − V m

t−1

)
+
ασ

2
‖G
(
Y m
t−1 − V m

t−1

)
‖21.

Taking the expectation and using (30) yields

E [U(V m
t )] ≤ R+ αE

[
U(V m

t−1)
]

+
ασ

2
E
[
‖G
(
Y m
t−1 − V m

t−1

)
‖21
]
.
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An application of Lemma 1 reveals that
E
[
‖G
(
Y m
t−1 − V m

t−1

)
‖21
]
≤ |||Y m

t−1 − V m
t−1|||

2.
As a consequence, noting (28), we arrive at the upper bound

E [U(V m
t )] ≤ R+ αE

[
U(V m

t−1)
]

+
αγ2σ

2m
E
[
‖V m

t−1‖21
]

≤ R+ α

(
1 +

βγ2σ

2m

)
E
[
U(V m

t−1)
]
,

from which we can conclude that

E
[
‖V m

t ‖21
]
≤ βE [U(V m

t )] ≤ βR

[
1− αt

(
1 + βγ2σ

2m

)t
1− α

(
1 + βγ2σ

2m

) ]+ βαt
(

1 +
βγ2σ

2m

)t
U(V m

0 ).

Proof of Theorem 2. We begin with a standard expansion of the scheme’s error.
|||V m

t − vt||| =
∣∣∣∣∣∣V m

t −Mt
0(v0)

∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣∣∑t−1

r=0
Mt

r+1(V m
r+1)−Mt

r(V
m
r )
∣∣∣∣∣∣∣∣∣ .

Now notice that if we define Y m
r = Φm

r (V m
r ), then V m

r+1 =M(Y m
r ) and the last equation becomes

|||V m
t − vt||| =

∣∣∣∣∣∣∣∣∣∑t−1

r=0
Mt

r(Yr)−Mt
r(V

m
r )
∣∣∣∣∣∣∣∣∣ .

The right-hand side of the last equation is bounded above by∣∣∣∣∣∣∣∣∣∑t−1

r=0
Mt

r(Yr)−E[Mt
r(Yr) | V m

r ]
∣∣∣∣∣∣∣∣∣+

∑t−1

r=0
|||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||.

Considering the first term in the last display, note that, for any fixed f ∈ Cn,

E
[∣∣fH

∑t−1

r=0

(
Mt

r(Yr)−E[Mt
r(Yr) | V mr ]

)∣∣2] =
∑t−1

r=0
E
[∣∣fH(Mt

r(Yr)−E[Mt
r(Yr) | V mr ]

)∣∣2]
+ 2

∑t−1

s=0

∑t−1

r=s+1
<
{
E
[(
fH(Mt

r(Yr)−E[Mt
r(Yr) | V mr ])

)
×
(
fH(Mt

s(Ys)−E[Mt
s(Ys) | V ms ])

)]}
.

Letting Fr denote the σ-algebra generated by {V m
s }rs=0 and {Y m

r }r−1
s=0, for s < r we can write

E
[(
fH(Mt

r(Yr)−E[Mt
r(Yr) | V mr ])

)
×
(
fH(Mt

s(Ys)−E[Mt
s(Ys) | V ms ])

)]
= E

[
E
[
fH(Mt

r(Yr)−E[Mt
r(Yr) | V mr ])

∣∣ Fr]× (fH(Mt
s(Ys)−E[Mt

s(Ys) | V ms ])
)]
.

Because, conditioned on V m
r , Y m

r is independent of Fr, the expression above vanishes exactly.
Supremizing over the choice of f , we have shown that

|||V m
t − vt||| ≤

(∑t−1

r=0
|||Mt

r(Yr)−E[Mt
r(Yr) | V m

r ]|||2
)1/2

+
∑t−1

r=0
|||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||.

Expanding the term inside of the square root, we find that

|||V m
t − vt||| ≤

(∑t−1

r=0

(
|||Mt

r(Yr)−Mt
r(V

m
r )|||+ |||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||

)2)1/2

+
∑t−1

r=0
|||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||

≤
(∑t−1

r=0
|||Mt

r(Yr)−Mt
r(V

m
r )|||2

)1/2
+
(∑t−1

r=0
|||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||2

)1/2

+
∑t−1

r=0
|||E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r )|||,

where, in the second inequality, we have used the triangle inequality for the `2-norm in Rt. Noting
that E [A(V m

r )(Yr − V m
r ) | V m

r ] = 0 yields
E[Mt

r(Yr) | V m
r ]−Mt

r(V
m
r ) = E

[(
Mt

r −Ar
)
(Yr)

∣∣ V m
r

]
−
(
Mt

r −Ar
)
(V m
r ).

As a consequence, applying our assumptions (31) and (32), we obtain the upper bound

|||V m
t − vt||| ≤ (L1 +L2)

(∑t−1

r=0
α2(t−r)|||Φm

r (V m
r )− V m

r |||
2
)1/2

+L2

∑t−1

r=0
αt−r|||Φm

r (V m
r )−V m

r |||
2.

Bounding the error from the random compressions, we arrive at the error bound

|||V m
t − vt||| ≤

γ(L1 + L2)√
m

(∑t−1

r=0
α2(t−r)E

[
‖V m

r ‖21
])1/2

+
γ2L2

m

∑t−1

r=0
αt−rE

[
‖V m

r ‖21
]
.
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Proof of Corollary 1. We have already seen that when M(v) = Kv we can take α = ‖K‖1 in the
statement of Theorem 2 to verify conditions (31) and (32). We have also commented above that
when K is nonnegative, the quantities E

[
‖V m

r ‖21
]

can be bounded independently of n.
When M(v) = Kv/‖Kv‖1, bounding the size of the iterates is not an issue, but it becomes

slightly more difficult to verify (31) and (32). That K is aperiodic and irreducible implies that
the dominant left and right eigenvectors, vL and vR, of K are unique and have all positive entries.
Because power iteration is invariant to scalar multiples of K we can assume that the dominant
eigenvalue of K is 1. We will assume that vL is normalized so that ‖vL‖∞ = 1 and that vR is
normalized so that vT

LvR = 1. Let D be the diagonal matrix with Dii = (vL)i (i.e., D1 = vL).
Our matrix K can be written K = D−1SD where S is an aperiodic, irreducible, column-stochastic
matrix. Let

K̃ = K − vRvT
L = D−1SPD,

where we have defined the projection P = I −DvR1T. Note that ‖P‖1 ≤ 2 and that PSP = SP
so that for any positive integer r, K̃r = D−1SrPD. Letting

C =
1

minj{(vL)j}
≥ 1

we find that, for any positive integer r,

‖K̃r‖1 ≤ ‖D−1‖1‖D‖1‖SrP‖1 ≤ 2C sup
‖v‖1=1

1
Tv=0

‖Srv‖1 ≤ 2C αr

where
α = sup

‖v‖1=1

1
Tv=0

‖Sv‖1

Aperiodicity and irreducibility of S implies that α < 1. We also have that

sup
vTLv=1

‖Krv‖1 ≤ C and inf
vTLv=1
vj≥0

‖Krv‖1 ≥ 1.

Now let u and v be any two non-negative vectors normalized so that vT
Lu = vT

Lv = 1 and, for
θ ∈ [0, 1], define wθ = (1− θ)u+ θv. Note that wθ also has non-negative entries and that vT

Lwθ = 1.
For any fixed f ∈ Rn with ‖f‖∞ ≤ 1, define the function

ϕr(u, v; θ) =
fTKrwθ
‖Krwθ‖1

− fTKru

‖Kru‖1
.

Our goal is to establish bounds on

ϕr(u, v; 1) =
fTKrv

‖Krv‖1
− fTKru

‖Kru‖1
.

To that end note that
d

dθ
ϕr(u, v; θ) =

fTKr(v − u)

‖Krwθ‖1
− (fTKrwθ)(1

TKr(v − u))

‖Krwθ‖21
and

d2

dθ2
ϕr(u, v; θ) = −2

(fTKr(v − u))(1TKr(v − u))

‖Krwθ‖21
+ 2

(fTKrwθ)(1
TKr(v − u))2

‖Krwθ‖31
.

Observing that Kr(v − u) = K̃r(v − u), and applying our bounds we find that

|ϕr(u, v; 1)| ≤ max
θ

∣∣∣∣ ddθϕr(u, v; θ)

∣∣∣∣
≤ |fTK̃r(v − u)|+ C|1TK̃r(v − u)|
≤ 4C2 αr ‖G(v − u)‖1 (52)

3



where G ∈ Rn×n is the matrix with first row equal to fTK̃r/‖2fTK̃r‖∞, second row equal to
1

TK̃r/‖21TK̃r‖∞, and all other entries equal to 0.
Defining the matrix valued function

Ar(u) =
1

‖Kru‖1

[
I − Kru1T

‖Kru‖1

]
Kr

we observe that
d

dθ
ϕr(u, v; 0) = fTAr(u)(v − u)

so that

|ϕr(u, v; 1)− fTAr(u)(v − u)| ≤ 1

2
max
θ

∣∣∣∣ d2

dθ2
ϕr(u, v; θ)

∣∣∣∣
≤ |fTK̃r(v − u)||1TK̃r(v − u)|+ C|1TK̃r(v − u)|2

≤ 16C3 α2r ‖G(v − u)‖21 (53)

Expressions (52) and (53) verify the stability conditions in the statement of Theorem 2 with
L1 and L2 dependent only on C yielding the first term on the right-hand side of (33). The second
term follows similarly when one observes that (31) implies

sup
v,ṽ∈X

‖Mr
s(v)−Mr

s(ṽ)‖1
‖v − ṽ‖1

≤ L1α
r−s.

Proof of Lemma 3. If Y m
t = Φm

t (V m
t ), then

E
[
|fHΦm

t (V m
t )− fHV m

t |2 | Y m
t−1

]
= E

[
|fHΦm

t

(
Y m
t−1 + εb(Y m

t−1)
)
− fH

(
Y m
t−1 + εb(Y m

t−1)
)
|2 | Y m

t−1

]
≤ γp

ε

m
‖b(Y m

t−1)‖1‖V m
t ‖1

for some constant C. Our assumed bound on the growth of b along with (29) implies that

E
[
‖b(Y m

t−1)‖21
]
≤ C ′

(
1 + E

[
‖V m

t−1‖21
])

for some constant C ′. From these bounds it follows that for some constant γ̃,

|||Φm
t (V m

t )− V m
t |||

2 ≤ γ̃2 ε

m

√
E
[
‖V m

t ‖21
]√

1 + E
[
‖V m

t−1‖21
]
.

Proof of Theorem 5. By exactly the same arguments used in the proof of Theorem 2 we arrive at
the bound

|||V m
t − vt||| ≤ (L1 + L2)

(∑t−1

r=0
e−2β(t−r)ε|||Φm

r (V m
r )− V m

r |||
2
)1/2

+ L2

∑t−1

r=0
e−β(t−r)ε|||Φm

r (V m
r )− V m

r |||
2.

Bounding the error from the random compressions, we arrive at the error bound

|||V mt − vt||| ≤
γ̃(L1 + L2)√

m

(
e−2βtεE

[
‖V m0 ‖21

]
+ ε

∑t−1

r=1
e−2β(t−r)ε

√
E [‖V mr ‖21]

√
1 + E

[
‖V mr−1‖21

]) 1
2

+
γ̃2L2

m

∑t−1

r=1
e−β(t−r)ε

√
E [‖V mr ‖21]

√
1 + E

[
‖V mr−1‖21

]
.

Proof of Theorem 6. By an argument very similar to that in the proof of Theorem 2, we arrive at
the bound

|||V m
t − vt||| ≤

(∑t−1

r=0
|||Mt

r+1(V m
r + εb(Y m

r ))−Mt
r+1(V m

r + εb(V m
r ))|||2

)1/2

+
(∑t−1

r=0
|||E

[
Mt

r+1(V m
r + εb(Y m

r )) | V m
r

]
−Mt

r(V
m
r )|||2

)1/2

+
∑t−1

r=0
|||E

[
Mt

r+1(V m
r + εb(Y m

r )) | V m
r

]
−Mt

r+1(V m
r + εb(V m

r ))|||,
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which, also as in that proof, is bounded above by

|||V m
t − vt||| ≤ (L1 + L2)

(
ε2
∑t−1

r=0
α2(t−r−1)|||b(Y m

r )− b(V m
r )|||2

)1/2

+ L2ε
2
∑t−1

r=0
αt−r|||b(Y m

r )− b(V m
r )|||2.

From (37) and Lemma 1 we find that

|||b(Y m
r )− b(V m

r )||| ≤ L1|||Y m
r − V m

r |||.
The rest of the argument proceeds exactly as in the proof of Theorem 2.

Proof of Lemma 4. Observe that if τmv > 0, then condition∑n

j=`+1
|vσj | ≤

m− `
m
‖v‖1

holds for ` = 0. Assume that ∑n

j=`
|vσj | ≤

m− `+ 1

m
‖v‖1

for some ` ≤ τmv . From the definition of τmv and the fact that ` ≤ τmv , we must also have that

1

m− `
∑n

j=`+1
|vσj | < |vσ`+1

|.

Combining the last two inequalities yields∑n

j=`+1
|vσj | ≤

m− `
m
‖v‖1.

Proof of Lemma 5. First we assume that, for all j, |vj + wj | ≤ ‖v + w‖/m. We will remove this
assumption later. With this assumption in place, Nj ∈ {0, 1} and the while loop in Algorithm 1
is inactive so that

fHΦt(v + w) =
∑n

j=1
f̄j
vj + wj
|vj + wj |

‖v + w‖
m

Nj ,

E
[
|fHΦt(v + w)− fH(v + w)|2

]
=
‖v + w‖21

m2
E

[∣∣∣∣∑n

j=1
f̄j
vj + wj
|vj + wj |

(
Nj −

m|vj − wj |
‖v + w‖1

)∣∣∣∣2].
The random variables in the sum are independent, so the last expression becomes

E
[
|fHΦt(v + w)− fH(v + w)|2

]
=
‖v + w‖21

m2

∑n

j=1
|fj |2E

[∣∣∣∣Nj −
m|vj − wj |
‖v + w‖1

∣∣∣∣2]
≤ ‖v + w‖21

m2

∑n

j=1
var [Nj ] .

Since Nj ∈ {0, 1}, the expression for the variance of Nj becomes

var [Nj ] = E [Nj ] (1−E [Nj ]) =
m|vj + wj |
‖v + w‖1

(
1− m|vj + wj |

‖v + w‖1

)
,

so that

E
[
|fHΦt(v + w)− fH(v + w)|2

]
≤ ‖v + w‖21

m2

[
m−

(
m

‖v + w‖1

)2

‖v + w‖22
]
.

Because this scheme does not depend on the ordering of the entries of v + w we can assume
that the entries have been ordered so that vj = 0 for j > m. In this case we can write

‖v + w‖22 =
∑m

j=1
|vj + wj |2 +

∑n

j=m+1
|wj |2 ≥

1

m

(∑m

j=1
|vj + wj |

)2
,

5



which then implies that

E
[
|fHΦt(v + w)− fH(v + w)|2

]
≤ ‖v + w‖21

m

(
1− 1

‖v + w‖21

(
‖v + w‖1 −

∑n

j=m+1
|wj |

)2
)

≤ 2‖w‖1‖v + w‖1
m

.

We now remove the assumption that |vj +wj | ≤ ‖v+w‖/m. Let σ be a permutation of the indices
of v +w resulting in a vector vσ +wσ with entries of nonincreasing magnitude. Since Algorithm 1
preserves the largest τmv+w entries of v+w and the remaining entries, vσj +wσj for j > τmv+w, satisfy

|vσj + wσj | ≤
1

m− τmv+w

∑n

k=τmv+w
|vσk + wσk |,

we can apply the sampling error bound just proved to find that

|||Φt(v + w)− v − w||| ≤
√

2

(∑n
j=τmv+w+1|wj |

) 1
2
(∑n

j=τmv+w+1|vj + wj |
) 1

2√
m− τmv+w

.

An application of Lemma 4 then yields (43).
In bounding the size of Φm

t (v + w) we will again assume that τmv+w = 0 and that the entries
have been ordered so that vj = 0 for j > m. The size of the resampled vector can be bounded by
first noting that, since the Nj are independent and are in {0, 1},

E
[(∑n

j=1
Nj

)2]
=
∑n

j=1

m|vj + wj |
‖v + w‖1

+ 2
∑n

i=1

∑n

j=i+1

m|vi + wi|
‖v + w‖1

m|vj + wj |
‖v + w‖1

=
∑n

j=1

(
m|vj + wj |
‖v + w‖1

)2

+ 2
∑n

i=1

∑n

j=i+1

m|vi + wi|
‖v + w‖1

m|vj + wj |
‖v + w‖1

+
∑n

j=1

m|vj + wj |
‖v + w‖1

−
(
m|vj + wj |
‖v + w‖1

)2

= m2 +
∑n

j=1

m|vj + wj |
‖v + w‖1

−
(
m|vj + wj |
‖v + w‖1

)2

.

Breaking up the last sum in this expression, we find that∑m

j=1

m|vj + wj |
‖v + w‖1

−
(
m|vj + wj |
‖v + w‖1

)2

≤ m
∑m

j=1

|vj + wj |
‖v + w‖1

−m
(∑m

j=1

|vj + wj |
‖v + w‖1

)2

≤ m
(

1−
∑

j=1

|vj + wj |
‖v + w‖1

)
≤ m‖w‖1
‖v + w‖1

and that ∑n

j=m+1

m|wj |
‖v + w‖1

−
(

m|wj |
‖v + w‖1

)2

≤ m‖w‖1
‖v + w‖1

,

so that

E
[(∑n

j=1
Nj

)2]
≤ m2 + 2

m‖w‖1
‖v + w‖1

.

It follows then that (at least when τmv+w = 0)

E
[
‖Φm

t (v + w)‖21
]
≤ ‖v + w‖1 + 2

‖v + w‖1‖w‖1
m

.

Writing the corresponding formula for τmv+w > 0 and applying Lemma 4 gives the bound in the
statement of the lemma.
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Finally we consider the probability of the event {Φm
t (v + w) = 0} . If τmv+w = 0, then Nj ∈ {0, 1},

so that P [Nj = 0] = 1−m|vj + wj |/‖v + w‖1, and, since the Nj are independent,

P [Nj = 0 for all j] =

n∏
j=1

(
1− m|vj + wj |

‖v + w‖1

)
≤

∏
j≤n, vj 6=0

(
1− m|vj + wj |

‖v + w‖1

)
.

The first product in the last display is easily seen to be bounded above by e−m. The second product
is maximized subject to the constraint∑

j≤n, vj 6=0

(
1− m|vj + wj |

‖v + w‖1

)
≤ m‖w‖1
‖v + w‖1

when the terms in the product are all equal, in which case we get

P [Nj = 0 for all j] ≤
(
‖w‖1
‖v + w‖1

)m
.
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