List of proofs
Proof of Lemma 1. First, note that

B (16X 3] = B[( ol I3 X1) ],

where g; is the ith column of G and §; = gi/||¢il|co- Using the condition ||G||c« < 1 and Jensen’s
inequality, we find that

EIGX3] <D lgilloe Bl X ] <[]

The other inequality follows by noting that for any f € C™ with || f|lco < 1, the matrix G with first
row equal to f* and all other rows zero satisfies the constraint ||G||c« < 1. That (26) is the dual
norm of the co-norm follows from straightforward verification, or see [27, Proposition 7.2]. t

Proof of Lemma 2. The result holds in n = 1 dimensions. Suppose that the result holds in n — 1
dimensions. We will show that it must also therefore hold in n dimensions and conclude, by
induction, that the result holds in any dimension.

Let A be the (n—1) x (n— 1) principle submatrix of an n x n matrix A. For any vector f € C"

we can write
n n i—1 -
FrAf =30 IR A+ 2R [ ST R
— FUAT 4 1l A+ 2R [ D Ani ]

where f € C"! has entries equal to the first n — 1 entries of f. 3
By the induction hypothesis, we can choose the first n — 1 entries of f (i.e., f) so that the
right-hand side of the last display is not less than

n—1 _ n—1 ~
S At Ul Au 2R [£ 30 Aus].
If, for this choice of f, Z;l:_ll Apj fj is nonzero, then choose f, as
0 Anif
‘Z?;l Anjfj‘
Otherwise set f, = 1. With the resulting choice of f,,

fn

ol A + 2R [0 3 Anify] = Aun.

We have therefore shown that

sup fUAf > n Aji. m
I £lloo<1 ZZ:I

Proof of Theorem 1. Let V™ be generated by (11). Let Y, = ®*(V;/™) and notice that
UWV™) = UM(Y))
< R+ al(V™) +a M) —Uvi™)).

Using the fact that i/ is twice differentiable with bounded second derivative, this last expression is
bounded above by

UWV™) < R+ alU(V) +aVUVE) (Y = Vi) + 7HG (Y™ = V)3
Taking the expectation and using (30) yields
BEU(V™) < R+aB[UV)] + S E[IG (Y7 - vim)lE] -



An application of Lemma 1 reveals that
2
E [l (Y™ = V)R] < 1Y = vl
As a consequence, noting (28), we arrive at the upper bound

EUV™] < R+ aEUV™)] + o’

E [V ]

2
<R+« <1 + B;ﬂj) E [U(V;™)],

from which we can conclude that

B (V1) < 9B R < o S coa(1+ T uw. o

Proof of Theorem 2. We begin with a standard expansion of the scheme’s error.
V™ = well = [||Ve™ = MG (vo)

t—1
|5 vz - st
Now notice that if we define Y, = &7*(V,™), then ! +1 M(Y,,m) and the last equation becomes
v . ) - Muvm)|.
The right-hand silde of the last equation i1s bounded above by
tf
320 M) = BIME,) |V + 30 IBIME) | V) = ME)
Considering the first term in the last display, note that for any fixed f € C",
B[l —EML) V)] = 30 B[l (i) — Bl s 1)
T zz’; lZT R B[ ) = BIMAY) |V) x (FTOME(YS) — BIMEY:) TVD)] -

Letting F, denote the o-algebra generated by {V,"};_, and {Y,"}._ 0, for s < r we can write

E[(/"(ME(Y2) = EIML(Y:) | V7)) x (FROME(Y:) — BIME(Y.) [ Vo))

= E[B[f(ML(Y,) - BIML(Y,) | V) | 7] x (FROME(Y:) — BIME(Y:) TVD)) -

Because, conditioned on V", Y,* is independent of F,., the expression above vanishes exactly.
Supremizing over the choice of f, we have shown that

v el < (M) — B [ veR) o S M) | v - MEv)

Expanding the term inside of the square root, we find that

v =l < (320 (I05) = M 077+ M) 77~ MV

1/2

+Z HIEMt ) LV = MV

S(Z:\IIJW(Y)—Mt(vm)HF) (B v - )
3 IRMLY,) | V] = M)

where, in the second inequahty, we have used the triangle inequality for the /?>-norm in R?. Noting
that E[A(V™) (Y, — V™) | V"] = 0 yields
E[M(Y;) | V"] = ML) = B[(ME — 4,) (V) | V"] = (ML = A,) (V7).
As a consequence, applying our assumptions (31) and (32), we obtain the upper bound
t-1 2(t—r) m/ym m|2 1/ t r m/yym my||2
IV el = (B L) (3008 02Dy — vl) o 3 et ()~ v

Bounding the error from the random compressmns we arrlve at the error bound

Ly+ L t—1 - m L r m
v — ol < LELEEL (5 g o)+ T2 St rm ).




Proof of Corollary 1. We have already seen that when M(v) = Kv we can take a = | K||; in the
statement of Theorem 2 to verify conditions (31) and (32). We have also commented above that
when K is nonnegative, the quantities E [||V;"[|}] can be bounded independently of n.

When M(v) = Kv/||Kv|1, bounding the size of the iterates is not an issue, but it becomes
slightly more difficult to verify (31) and (32). That K is aperiodic and irreducible implies that
the dominant left and right eigenvectors, v, and vg, of K are unique and have all positive entries.
Because power iteration is invariant to scalar multiples of K we can assume that the dominant
eigenvalue of K is 1. We will assume that vy, is normalized so that ||vL|lc = 1 and that vg is
normalized so that vJvg = 1. Let D be the diagonal matrix with D;; = (vr); (i.e., D1 = vp).
Our matrix K can be written K = D™1SD where S is an aperiodic, irreducible, column-stochastic
matrix. Let
K =K —vgvl = D"'SPD,
where we have defined the projection P = I — Duvgr1™. Note that ||P||; < 2 and that PSP = SP
so that for any positive integer r, K" =D 18"PD. Letting

1
¢ minj{(UL)j} < 1
we find that, for any positive integer r,
1K™ s < [DTHRIDIL ISPl <2C sup [[STw]ly <2Ca

lv]l1=1
1Ty=0
where
a= sup ||Sv|1
llolli=1
1Tv=0

Aperiodicity and irreducibility of S implies that o < 1. We also have that

sup |[K"vlli <O and inf |[K"o|; > 1.
vy v=1 vE’u:l
’UjZO

Now let v and v be any two non-negative vectors normalized so that v;u = vjv = 1 and, for
6 € [0, 1], define wp = (1 — 0)u + Ov. Note that wy also has non-negative entries and that v7wy = 1.
For any fixed f € R™ with ||f||cc < 1, define the function
( 0) f"K™wg  fTK™u
®r (U, U; = - .
K7 welly  [[K"ullx

Our goal is to establish bounds on
fPK™v  f"K"u

r\W, 71 - — .
or(u,v;1) Kol | Kl
To that end note that

d fIR (v —u) _ (fK wp) (1K (v — u))
—r(u,v;0) = _
d@L’O ( ) | K7 wpl|y HKTUJOH%

and , i ) ) ) 2

K7(v — w)(A K" (v - K7 wp)(1"K" (v —
d—ngT(u,u;e) _ RO W)UK v =), (K we) (K (v = v))

do | wo I3 [ K wel [}
Observing that K" (v —u) = K" (v — u), and applying our bounds we find that

({3 1)| < max

d

@gpr(u, v; 9)‘

< |fTK" (v = u)| + CJ1"K" (v — u)

< 4072 a"||G(v — )| (52)



where G € R™™ is the matrix with first row equal to fTK"/||2f"K"|ls, second row equal to
1TK"/||21" K" |00, and all other entries equal to 0.
Defining the matrix valued function

Ap(u) =

1 Krul?®
i - T &
[ KT ully [ KTl
we observe that p

@gpr(u,v;O) = fTA-(u)(v —u)
so that
2

1 d
W¢T<uvv;0)

[or(u,051) = [T AN (u) (v — )] < o max

<K (0 = w)|[17K (0 — u)| + C[1"K" (v — u)[?
<16C° o™ [|G(v — )|} (53)
Expressions (52) and (53) verify the stability conditions in the statement of Theorem 2 with

L; and L9 dependent only on C' yielding the first term on the right-hand side of (33). The second
term follows similarly when one observes that (31) implies

wp M) = M)y

v,0eX ”U - UH1

< Lija" %

Proof of Lemma 3. If Y = <I>{”(Vtm), then
E |10 (V") = AV P Y] = B (V0 +eb(Yi™)) — £ (Y +eb(Y™) P | Y]
< = I IV
for some constant C. Our assumed bound on the growth of b along with (29) implies that

E [|o(Y2)[7] < " (1 +E [[IV;™I7])
for some constant C’. From these bounds it follows that for some constant 7,

o (V) = VimllE < 32 S JB[IV 8] /1 + B [V 8], 0

Proof of Theorem 5. By exactly the same arguments used in the proof of Theorem 2 we arrive at
the bound

t—1 1/2
IV = wll < (Ly + Lo) (32— e 20l (vm) = v ?)

t—1
+Lyy . e P | (V) — V2.
r=
Bounding the error from the random compressions, we arrive at the error bound

=

m :}/(L1+L2) — € m -1 _ —7)e m m
v =l < L) (aategy [y 1 320 20 Ji v 2] 1+ B 1V, ]

Jm
27, t—1
+ 2N s B[V T+ E V7] O

Proof of Theorem 6. By an argument very similar to that in the proof of Theorem 2, we arrive at
the bound

1/2
Ve = welll < (30 IIME L (V4 b)) = M (V™ + eb(Vm) 1)

/
(X e M+ 27) | V] = ML)

+ Z |||E [Mea (VT 4 b (V) | V] = Mo (VP 4 eb(V)I



which, also as in that proof, is bounded above by

t—1 1/2
IV = el < (Ly + Lo) (230~ a2 o(x) = b(v;)||P?)

+ Lz&QZ o T[[b(Y;") = bV,
From (37) and Lemma 1 we find that
Io(Y;™) = bV < LalllY;™ = V-

The rest of the argument proceeds exactly as in the proof of Theorem 2. O

Proof of Lemma 4. Observe that if 7, > 0, then condition

DINIEE
eVl =

n m—ﬁ—&-l
< —
P o e P

for some ¢ < 7. From the definition of 7,"* and the fact that ¢ < 7,"*, we must also have that

1 n
" Zj:£+1|vcrj| < |vogyy |-

Combining the last two inequalities yields

Sy < T
j=tg1 sl =

Proof of Lemma 5. First we assume that, for all j, |v; + w;| < [[v + wl||/m. We will remove this
assumption later. With this assumption in place, N; € {0,1} and the while loop in Algorithm 1
is inactive so that

[ollx

holds for ¢ = 0. Assume that

[o]]1- 0

n - v tw; |[vtw
fH(I)t(U+w):Z f J J ” HNj,

=17 +w;| m

no o v+ w; mlv; — w;|
Z " J j < N, — j J >
=1 |uj + wy| v+ wlh
The random variables in the sum are independent, so the last expression becomes
T

E[|fH<I>t(v+w) —fH(’U—FU))‘Q] ||U+w”1 Z] 1|fj| E|:

2
EUfHCI)t(U-i-w) — fH(v—|—w)|2] _ ”v;;UHIE{

|

mlvj — wj|
v+ wl|y

N; —

Since N; € {0,1}, the expression for the variance of N; becomes

mlvj + wj| mlvj + wj
var[N;] = E[N;] (1 — B[N;]) = 2% T Wil 1_Ja>7
N =BV - B3] = Sl (1 et

so that ) )
Bl oo+ w) - o+ )] < P o () )

m

Because this scheme does not depend on the ordering of the entries of v + w we can assume
that the entries have been ordered so that v; = 0 for j > m. In this case we can write

2N w2 n s LS )
||v+w|]2—zj:1\vj + wj| +Zj:m+1|w3’ ZE(ZJ.:1|UJ+MJ‘) )



which then implies that

H H + 2 1 n 2
E [|/"®y(v +w) — fMv+w)] < el (1 v+ w3 <Hv+w“1 Zj=m+1|wj’>>

m

< 2lwllflv+wlls
m
We now remove the assumption that |v; +w;| < ||lv+w||/m. Let o be a permutation of the indices
of v 4+ w resulting in a vector v, + w, with entries of nonincreasing magnitude. Since Algorithm 1
preserves the largest 7,71, entries of v+ w and the remaining entries, v, +w,, for j > 771, satisfy

1 n
”UO—]' + w"j‘ < m Zk, v+w‘v0k + wUk’7

we can apply the sampling error bound just proved to find that
1
(i alws])? (Z?:Tﬂ_w+1‘vj +wj])

m
m = Tyiw

NI

@:(v +w) — v —wl| < V2

An application of Lemma 4 then yields (43).

In bounding the size of ®{"(v + w) we will again assume that 7]}, = 0 and that the entries
have been ordered so that v; = 0 for j > m. The size of the resampled vector can be bounded by
first noting that, since the N; are independent and are in {0, 1},

n 2 n m|v =+ w; ‘ m|vl+wl|m|v—|—w|
E{( N-) ] _ mv; ~ Wil J J
YN = el P2 e Toswlh okl
B mlv; + w; mlv; + w;i| mlvj + wyl
Z] 1( v+ w1 > Zz IZ] i+l o+ w|1 |lv+w|
"’Z mlvj + wj| <m|vj+wj|>2
=1 v+ wls [v 4wl

2
— Y mlvj + wj| <m|vj+wj|) ‘
=1 v+ wiy lv+wll

Breaking up the last sum in this expression, we find that
2 2
Zm m|Uj —|—’LUj| B <m|vj +wj|> < mzm |’Uj —|—1Uj| . <Zm |’Uj +wj|)
=1 v+ wls lv+wl ) — i=1 v+ wl i=1 v+ wl
cn(1-y, Ll o mlul,
=1 [lv+ w1 v+ w1
2
Z” m|w;| _ ( m|w| ) < m|wl|y
j=mtl ot wl \[lot+wli) ~ [lo+wli’

"2 mljwls
EK N-) } < m2 4 oI
2 Ni) | =m Jo+wl

It follows then that (at least when 7]}, = 0)

and that

so that

[v + wlji[|wllx
E [||@}" (v +w)|ff] < [lv+wl + 25—

Writing the corresponding formula for T, > 0 and applying Lemma 4 gives the bound in the

statement of the lemma.

v+w



Finally we consider the probability of the event {®}"(v + w) = 0} . If 7/}, = 0, then N; € {0, 1},

v+w

so that P [N; = 0] = 1 — m|v; + w;|/||v + wl1, and, since the N; are independent,
“ mlv; + wj| mlv; + wj|
P[szoforallj]:H(l—H>§ 11 (1—”).
Ly, )= U o+ @l
J= j<n, v;#0

The first product in the last display is easily seen to be bounded above by e~"*. The second product
is maximized subject to the constraint

Z <1_ mlv; +ij> < ml|w|x
jsn, vjF0 lv+wli /) 7 [lv+wlh

when the terms in the product are all equal, in which case we get

P [N; =0 for all j] < b . O
[v 4wy



