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Fundamental Problem

Problem
Learn a function

f : X → Y

from partial information on f .

Data: Know f on a (very small) subset Ω ⊆ X , i.e. know

{(ω, f (ω)) | ω ∈ Ω} ⊆ X × Y .

Model: Know that f belongs to some class of functions
F(X ,Y ) ⊆ Y X .
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Fundamental Objective

Objective

Want graph of f , i.e. want (x , f (x)) for all x ∈ X.

Prediction: Given x 6∈ Ω, want f (x).

Approximation: Y has some measure of nearness, want f̂ such that
d(f̂ (x), f (x)) is small.

Classification: Y no intrinsic measure of nearness, want f̂ such that
Pr{f̂ (x) 6= f (x) | x 6∈ Ω} is small.
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Familiar Example: Dirichlet Problem

Problem: Want f : X → Y where X ⊆ Rn, Y = R.

Data: Know f on ∂X , boundary value/initial value.

Model: f satisfies
∆f = ϕ

for some given ϕ (say, fluid potential).

Objective: Want f or an approximation f̂ on X , i.e. solve pde
analytically or numerically.
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Another Example: Spam Filter

Problem: Want f : X → Y where X ⊆ emails,
Y = {spam, ham}.

Data: Know f on T ⊆ X , training set, i.e. for email ∈ T , we
know whether f (email) = spam or f (email) = ham.

Model: What equations do f satisfies? What class of functions
should it belong to?

Objective: Want f or an approximation f̂ on X , i.e. design a spam
filter.
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One Major Difference

PDE: We have a physical law of nature describing how f
behaves:

∆f = ϕ.

Spam: No law of nature — the ‘fundamental laws of emails’
too numerous and imprecise to list.

How to get a reasonable F(X ,Y ) for spam filters?

Use Green functions, just like in pde (cf. Lecture II).
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More Examples

Problems of the latter type increasingly common.

Collaborative filtering: f : movies× viewers→ ratings.

Computer vision: f : handwritten digits→ {0, 1, 2, . . . , 9}
Machine translation: f : French→ Japanese.

Cancer genetics: f : SNPs→ [0, 1]; f = likelihood of cancer.

Cancer metabonomics: f : metabolytes→ {cancer, healthy}.
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Modern Massive Data Sets

Characteristics of modern data sets: complex, high-dimensional,
massive, nonlinear, non-Gaussian.

Human-generated data
I digitization of the entire collections of libraries, medical records

of a country;
I user information collected by data centers of Facebook, Google,

Twitter, etc.

Scientific data
I genome → proteome → transcriptome → metabolome →

physiome [P. Hunter];
I sequencing entire ecosystem with high-speed sequencers

[C. Venter].

Plug: http://mmds.stanford.edu.
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Trouble with Massive Data Sets

Traditional statistical tools may not work.

Take example of ranking.

I Statistics:
F order statistics,
F rank statistics,
F beautiful work of Diaconis with Fourier analysis on Sn.

I Problems:
F combinatorial in nature,
F |Sn| = n!,
F Kemeny optimal is NP-hard.

I OK if n = 7:
F Number of political parties in Japan.

I Not OK if n = 1,000,000,000,000:
F Unique URLs indexed by Google (July 2008).
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Continuum Approximation for Massive Data Sets?

Some examples that we will discuss in these four lectures.

Heat flow: Web search (PageRank).

Green’s functions: Spam filtering (Kernel Learning).

Helmholtz decomposition: Product recommendations (HodgeRank).

Elasticity: Cancer metabonomics (Higher-order Tensors).
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Web Search

Suppose you type in a term, say, ‘iPod’ in Google. What
happens next?

Essentially two things:

Retrieval: Find all webpages (inverted index) containing or
concerning the term ‘iPod’ and return them.

Ranking: Order the results and present them to you through your
browser.

Second step particularly important.

Sets modern search engines apart from older ones:
I Ask.com, Baidu, Bing, Google, Yahoo!
I Alta Vista, Excite, HotBot, Infoseek, Lycos
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Web Search (2009)

Question: How does Google rank its search results nowadays?

Short Answer: No one (not even Google folks) really knows.

Longer Answer: From reliable sources,

PageRank accounts for about 70% of its ranking methodology.

Remaining 30% accounted for by about 100 other factors:
I click-through rate,
I immediacy,
I term document analysis,
I training by human test users,
I . . .

These factors are used to tweak the PageRank result.

Seeks to maximize happiness index, i.e. the likelihood that
what you want is the first result/among the first five results/in
the first screen full of results returned.
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Web Search (1999)

Question: How did Google rank its search results in 1999?

Figure: Original Google site http://google.stanford.edu

Answer: PageRank.
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The Web as a Directed Graph

Gwww = (V ,E ):
I nodes i ∈ V are webpages,
I directed edges (i , j) ∈ E are hyperlinks,
I n = |V |.

Adjacency matrix A = [aij ] ∈ Rn×n,

aij =

{
1 if (i , j) ∈ E ,

0 otherwise.

Stochastic adjacency matrix P = [pij ] ∈ Rn×n,

pij =

{
1/ deg(i) if (i , j) ∈ E ,

0 otherwise.

L.-H. Lim (Berkeley) Lectures I & II: The Mathematics of Data December 21, 2009 14 / 23



PageRank

Proposed by Larry Page, 1998.

Used by Google, eigenfactor.org (new ISI impact factor).

Intuition: a webpage is important if it is pointed to by other
important webpages:[

αP> +
(1− α)

n
ee>

]
x = x.

Random surfer model: e = [1, . . . , 1]>, α = 0.85.

Matrix is irreducible.

Perron-Frobenius theorem guarantees existence of x > 0.

xi = PageRank of webpage i .
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HITS

Proposed by Jon Kleinberg, 1999.

Used by Ask.com, Teoma.

Each webpage i has a hub score vi and an authority score ui .

Intuition: a good authority is pointed to by may good hubs and
a good hub points to many good authorities:

u′i =
∑

j :(j ,i)∈E

vj , v ′i =
∑

j :(i ,j)∈E

uj ; ui = u′i/‖u′‖, vi = v ′i /‖y′‖.

Singular values and singular vectors:

u′ = A>v, v′ = Au; u = u′/‖u′‖, v = v′/‖v′‖.

ui = authority score of i , vi = hub score of i .
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Diffusion Geometry

Ronald Coifman’s generalization, 2006.

Graph replaced by data set X . (X ,A, µ) measure space.

Kernel K : X × X → R continuous, K (x , y) = K (y , x), and
K (x , y) ≥ 0.

Degree replaced by volume d(x) =
∫

X
K (x , y) dµ(y).

Transition matrix replaced by transition kernel
p(x , y) = K (x , y)/d(x). Note that

∫
X

p(x , y) dµ(y) = 1.

Markov chain replaced by diffusion operator

Pf (x) =

∫
X

p(x , y)f (y)dµ(y).

Random surfer model becomes random walk on data set X .

Connections with Fokker-Plank diffusion, Neumann heat kernel.
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Mercer Kernels

Stronger condition on K : for any n ∈ N, x1, . . . , xn ∈ X , want
[K (xi , xj)]ni ,j=1 ∈ Rn×n to be positive definite.

Canonical example: Gaussian K (x , y) = exp(−‖x − y‖2/2σ2).

Integral transform L is compact operator on L2(X , µ) (clearly
self-adjoint)

Lf (x) =

∫
X

K (x , y)f (y)dµ(y).

Spectral Theorem: λk , ϕk kth eigenvalue/function of L

K (x , y) =
∑∞

k=1
λkϕk(x)ϕk(y),

absolutely for any (x , y), uniformly on X (assumed compact).

What I meant by ‘Green functions’ earlier (cheated a bit).
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Reproducing Kernel Hilbert Space

Given Mercer kernel K , there is unique Hilbert space HK with
1 K (x , ·) ∈ HK ;
2 span{K (x , ·) | x ∈ X} dense in HK ;
3 f (x) = 〈K (x , ·), f 〉K for all f ∈ HK .

Furthermore Φ : X → `2(N), x 7→ (
√
λkϕk(x))k∈N well-defined,

continuous, and

K (x , y) = 〈Φ(x),Φ(y)〉.

Earlier question revisited. What class of function to use for spam
filter? Answer:

F(X ,R) = HK

for appropriate K .
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How to Design a Spam Filter

f : X → Y where X ⊆ emails, Y = {spam, ham}.
Pick kernel K , Galerkin approach:

f (x) =
∑n

i=1
αiK (xi , x)

where xj ∈ T , training set.

Since we know f (xj) = yj , may solve linear system

f (xj) =
∑n

i=1
αiK (xi , xj), j = 1, . . . , n,

for coefficients α1, . . . , αn.

Finite element method without pde!
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Classification and Regression

In practice, need to approximate. E.g. regularized least squares:

min
1

n

∑n

j=1
(f (xj)− yj)

2 + λ‖f ‖2K .

Other loss functions possible. E.g. support vector machines use
V (y , f (x)) = (1− yf (x))+ in place of (f (x)− y)2.

Given x 6∈ T , f (x) > 0⇒ x is ham, f (x) < 0⇒ x is spam.

Applies to other problems as well: collaborative filtering,
computer vision, machine translation, cancer genetics.
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