Lectures I \& II: The Mathematics of Data

 (for folks in partial differential equations, fluid dynamics, scientific computing)Lek-Heng Lim

University of California, Berkeley

December 21, 2009

Fundamental Problem

Problem

Learn a function

$$
f: X \rightarrow Y
$$

from partial information on f.
Data: Know f on a (very small) subset $\Omega \subseteq X$, i.e. know

$$
\{(\omega, f(\omega)) \mid \omega \in \Omega\} \subseteq X \times Y
$$

Model: Know that f belongs to some class of functions $\mathcal{F}(X, Y) \subseteq Y^{X}$.

Fundamental Objective

Objective

Want graph of f, i.e. want $(x, f(x))$ for all $x \in X$.
Prediction: Given $x \notin \Omega$, want $f(x)$.
Approximation: Y has some measure of nearness, want \hat{f} such that $d(\hat{f}(x), f(x))$ is small.
Classification: Y no intrinsic measure of nearness, want \hat{f} such that

$$
\operatorname{Pr}\{\hat{f}(x) \neq f(x) \mid x \notin \Omega\} \text { is small. }
$$

Familiar Example: Dirichlet Problem

Problem: Want $f: X \rightarrow Y$ where $X \subseteq \mathbb{R}^{n}, Y=\mathbb{R}$.
Data: Know f on ∂X, boundary value/initial value.
Model: f satisfies

$$
\Delta f=\varphi
$$

for some given φ (say, fluid potential).
Objective: Want f or an approximation \hat{f} on X, i.e. solve PDE analytically or numerically.

Another Example: Spam Filter

Problem: Want $f: X \rightarrow Y$ where $X \subseteq$ emails, $Y=\{$ spam, ham $\}$.
Data: Know f on $T \subseteq X$, training set, i.e. for email $\in T$, we know whether $f($ email $)=$ spam or $f($ email $)=$ ham.
Model: What equations do f satisfies? What class of functions should it belong to?
Objective: Want f or an approximation \hat{f} on X, i.e. design a spam filter.

One Major Difference

PDE: We have a physical law of nature describing how f behaves:

$$
\Delta f=\varphi
$$

Spam: No law of nature - the 'fundamental laws of emails' too numerous and imprecise to list.

- How to get a reasonable $\mathcal{F}(X, Y)$ for spam filters?
- Use Green functions, just like in PDE (cf. Lecture II).

More Examples

Problems of the latter type increasingly common.
Collaborative filtering: f : movies \times viewers \rightarrow ratings. Computer vision: f : handwritten digits $\rightarrow\{0,1,2, \ldots, 9\}$
Machine translation: $f:$ French \rightarrow Japanese.
Cancer genetics: $f:$ SNPs $\rightarrow[0,1] ; f=$ likelihood of cancer. Cancer metabonomics: f : metabolytes \rightarrow \{cancer, healthy $\}$.

Modern Massive Data Sets

Characteristics of modern data sets: complex, high-dimensional, massive, nonlinear, non-Gaussian.

- Human-generated data
- digitization of the entire collections of libraries, medical records of a country;
- user information collected by data centers of Facebook, Google, Twitter, etc.
- Scientific data
- genome \rightarrow proteome \rightarrow transcriptome \rightarrow metabolome \rightarrow physiome [P. Hunter];
- sequencing entire ecosystem with high-speed sequencers [C. Venter].
- Plug: http://mmds.stanford.edu.

Trouble with Massive Data Sets

- Traditional statistical tools may not work.
- Take example of ranking.
- Statistics:
* order statistics,
* rank statistics,
\star beautiful work of Diaconis with Fourier analysis on \mathfrak{S}_{n}.
- Problems:

ڤ combinatorial in nature,
$\star\left|\mathfrak{S}_{n}\right|=n!$,
\star Kemeny optimal is NP-hard.

- OK if $n=7$:
* Number of political parties in Japan.
- Not OK if $n=1,000,000,000,000$:
* Unique URLs indexed by Google (July 2008).

Continuum Approximation for Massive Data Sets?

Some examples that we will discuss in these four lectures. Heat flow: Web search (PageRank).
Green's functions: Spam filtering (Kernel Learning).
Helmholtz decomposition: Product recommendations (HodgeRank).
Elasticity: Cancer metabonomics (Higher-order Tensors).

Web Search

- Suppose you type in a term, say, 'iPod' in Google. What happens next?
- Essentially two things:

Retrieval: Find all webpages (inverted index) containing or concerning the term 'iPod' and return them.
Ranking: Order the results and present them to you through your browser.

- Second step particularly important.
- Sets modern search engines apart from older ones:
- Ask.com, Baidu, Bing, Google, Yahoo!
- Alta Vista, Excite, HotBot, Infoseek, Lycos

Web Search (2009)

Question: How does Google rank its search results nowadays? Short Answer: No one (not even Google folks) really knows.
Longer Answer: From reliable sources,

- PageRank accounts for about 70% of its ranking methodology.
- Remaining 30% accounted for by about 100 other factors:
- click-through rate,
- immediacy,
- term document analysis,
- training by human test users,
- These factors are used to tweak the PageRank result.
- Seeks to maximize happiness index, i.e. the likelihood that what you want is the first result/among the first five results/in the first screen full of results returned.

Web Search (1999)

Question: How did Google rank its search results in 1999?

Figure: Original Google site http://google.stanford.edu

Answer: PageRank.

The Web as a Directed Graph

- $G_{\text {wWw }}=(V, E)$:
- nodes $i \in V$ are webpages,
- directed edges $(i, j) \in E$ are hyperlinks,
- $n=|V|$.
- Adjacency matrix $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$,

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

- Stochastic adjacency matrix $P=\left[p_{i j}\right] \in \mathbb{R}^{n \times n}$,

$$
p_{i j}= \begin{cases}1 / \operatorname{deg}(i) & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

PageRank

- Proposed by Larry Page, 1998.
- Used by Google, eigenfactor.org (new ISI impact factor).
- Intuition: a webpage is important if it is pointed to by other important webpages:

$$
\left[\alpha P^{\top}+\frac{(1-\alpha)}{n} \mathbf{e e}^{\top}\right] \mathbf{x}=\mathbf{x}
$$

- Random surfer model: $\mathbf{e}=[1, \ldots, 1]^{\top}, \alpha=0.85$.
- Matrix is irreducible.
- Perron-Frobenius theorem guarantees existence of $\mathbf{x}>0$.
- $x_{i}=$ PageRank of webpage i.

HITS

- Proposed by Jon Kleinberg, 1999.
- Used by Ask.com, Teoma.
- Each webpage i has a hub score v_{i} and an authority score u_{i}.
- Intuition: a good authority is pointed to by may good hubs and a good hub points to many good authorities:

$$
u_{i}^{\prime}=\sum_{j:(j, i) \in E} v_{j}, \quad v_{i}^{\prime}=\sum_{j:(i, j) \in E} u_{j} ; \quad u_{i}=u_{i}^{\prime} /\left\|\mathbf{u}^{\prime}\right\|, \quad v_{i}=v_{i}^{\prime} /\left\|\mathbf{y}^{\prime}\right\|
$$

- Singular values and singular vectors:

$$
\mathbf{u}^{\prime}=A^{\top} \mathbf{v}, \quad \mathbf{v}^{\prime}=A \mathbf{u} ; \quad \mathbf{u}=\mathbf{u}^{\prime} /\left\|\mathbf{u}^{\prime}\right\|, \quad \mathbf{v}=\mathbf{v}^{\prime} /\left\|\mathbf{v}^{\prime}\right\|
$$

- $u_{i}=$ authority score of $i, v_{i}=$ hub score of i.

Diffusion Geometry

- Ronald Coifman's generalization, 2006.
- Graph replaced by data set X. (X, \mathcal{A}, μ) measure space.
- Kernel $K: X \times X \rightarrow \mathbb{R}$ continuous, $K(x, y)=K(y, x)$, and $K(x, y) \geq 0$.
- Degree replaced by volume $d(x)=\int_{X} K(x, y) d \mu(y)$.
- Transition matrix replaced by transition kernel $p(x, y)=K(x, y) / d(x)$. Note that $\int_{X} p(x, y) d \mu(y)=1$.
- Markov chain replaced by diffusion operator

$$
\operatorname{Pf}(x)=\int_{x} p(x, y) f(y) d \mu(y) .
$$

- Random surfer model becomes random walk on data set X.
- Connections with Fokker-Plank diffusion, Neumann heat kernel.

Mercer Kernels

- Stronger condition on K : for any $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X$, want $\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \in \mathbb{R}^{n \times n}$ to be positive definite.
- Canonical example: Gaussian $K(x, y)=\exp \left(-\|x-y\|^{2} / 2 \sigma^{2}\right)$.
- Integral transform L is compact operator on $L^{2}(X, \mu)$ (clearly self-adjoint)

$$
L f(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

- Spectral Theorem: $\lambda_{k}, \varphi_{k} k$ th eigenvalue/function of L

$$
K(x, y)=\sum_{k=1}^{\infty} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)
$$

absolutely for any (x, y), uniformly on X (assumed compact).

- What I meant by 'Green functions' earlier (cheated a bit).

Reproducing Kernel Hilbert Space

- Given Mercer kernel K, there is unique Hilbert space \mathcal{H}_{K} with
(1) $K(x, \cdot) \in \mathcal{H}_{K}$;
(2) $\operatorname{span}\{K(x, \cdot) \mid x \in X\}$ dense in \mathcal{H}_{K};
(3) $f(x)=\langle K(x, \cdot), f\rangle_{K}$ for all $f \in \mathcal{H}_{K}$.
- Furthermore $\Phi: X \rightarrow \ell^{2}(\mathbb{N}), x \mapsto\left(\sqrt{\lambda_{k}} \varphi_{k}(x)\right)_{k \in \mathbb{N}}$ well-defined, continuous, and

$$
K(x, y)=\langle\Phi(x), \Phi(y)\rangle
$$

- Earlier question revisited. What class of function to use for spam filter? Answer:

$$
\mathcal{F}(X, \mathbb{R})=\mathcal{H}_{K}
$$

for appropriate K.

How to Design a Spam Filter

- $f: X \rightarrow Y$ where $X \subseteq$ emails, $Y=\{$ spam, ham $\}$.
- Pick kernel K, Galerkin approach:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

where $x_{j} \in T$, training set.

- Since we know $f\left(x_{j}\right)=y_{j}$, may solve linear system

$$
f\left(x_{j}\right)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{j}\right), \quad j=1, \ldots, n
$$

for coefficients $\alpha_{1}, \ldots, \alpha_{n}$.

- Finite element method without PDE!

Classification and Regression

- In practice, need to approximate. E.g. regularized least squares:

$$
\min \frac{1}{n} \sum_{j=1}^{n}\left(f\left(x_{j}\right)-y_{j}\right)^{2}+\lambda\|f\|_{k}^{2} .
$$

- Other loss functions possible. E.g. support vector machines use $V(y, f(x))=(1-y f(x))_{+}$in place of $(f(x)-y)^{2}$.
- Given $x \notin T, f(x)>0 \Rightarrow x$ is ham, $f(x)<0 \Rightarrow x$ is spam.
- Applies to other problems as well: collaborative filtering, computer vision, machine translation, cancer genetics.

References I

- R. Coifman, S. Lafon, "Diffusion maps," Appl. Comput. Harmon. Anal., 21 (2006), no. 1, pp. 5-30.
- R. Coifman, I. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, "Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems," Multiscale Model. Simul., 7 (2008), no. 2, pp. 842-864.
- S.-I. Amari, H. Nagaoka, Methods of Information Geometry, AMS, 2000.
- B. Croft, D. Metzler, T. Strohman, Search Engines: Information retrieval in practice, Addison-Wesley, 2010.
- C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge, 2008.

References II

- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edition, Springer, 2009.
- C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- F. Cucker, D.-X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cambridge, 2007.
- F. Cucker, S. Smale, "On the mathematical foundations of learning," Bull. Amer. Math. Soc., 39 (2002), no. 1, pp. 1-49.
- S. Mallat, A Wavelet Tour of Signal Processing, 3rd edition, Academic Press, 2008.
- N. Nisan, T. Roughgarden, É. Tardos, V. Vazirani, Algorithmic Game Theory, Cambridge, 2007.

