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Tensor products

Vector Spaces ⊇ Norm Spaces ⊇ Inner Product Spaces

Tensor products of vector spaces: rank, decomposability, covari-

ance/contravariance, symmetry/antisymmetry

Tensor products of norm spaces: Eckart-Young theorem, low-

rank approximations

Tensor products of inner product spaces: orthogonal decompo-

sitions, singular value decompositions

Tensor products of other objects: modules, algebras, Banach

and Hilbert spaces, C∗-algebras, vector bundles

Tensor fields, ie. tensor-valued functions: higher order deriva-

tives, stress tensor, Riemann/Ricci curvature tensor
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Stuff marked in blue are pretty much irrelevant to this workshop.

Important to distinguish between properties marked in red, for

instance:

• there are many norms on tensors that do not arise from (and

are incompatible with) inner products;

• rank, as defined in Slide 4, is essentially an algebraic concept

while approximation is an analytic one — the fact that they

are closely related for matrices doesn’t necessarily carry over to

higher order tensors;

• in similar vein, there’s no reason to expect that a best low

orthogonal rank approximation (w.r.t. some inner product) would

turn out to be also the best low rank approximation (w.r.t. some

compatible norm) cf. [Kolda 2001/2003].



Tensor products of vector spaces

V1, . . . , Vk all real (or all complex) vector spaces, dim(Vi) = di.

Tensor product space V1⊗· · ·⊗Vk is a vector space of dimension

d1d2 . . . dk; element t ∈ V1 ⊗ · · · ⊗ Vk is called a tensor of order k.

A tensor of the form v1 ⊗ · · · ⊗ vk with vi ∈ Vi is called a decom-

posable tensor.

Fix a choice of basis ei
1, . . . , ei

di
for each Vi, i = 1, . . . , k, then t

has coordinate representation

t =
d1∑

j1=1

· · ·
dk∑

jk=1

tj1,...,jke
1
j1
⊗ · · · ⊗ ek

jk
.

The coefficients form a k-way array, [[tj1,...,jk]] ∈ Rd1×···×dk.
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A k-way array [[tj1,...,jk]] ∈ Rd1×···×dk is decomposable if there ex-

ists (a1
1, . . . , a1

d1
) ∈ Rd1, . . . , (ak

1, . . . , ak
dk

) ∈ Rdk such that

tj1,...,jk = a1
j1

a2
j2

. . . ak
jk

.

Tensor product space V1 ⊗ · · · ⊗ Vk is really a vector space of

dimension d1d2 · · · dk together with a mapping of the form

V1 × · · · × Vk → V1 ⊗ · · · ⊗ Vk,

(v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk.

This structure is lost when one ‘unfolds’ or ‘vectorizes’

Rm ⊗ Rn ⊗ Rl unfold−−−−→ Rmn ⊗ Rl.

Good read: Timothy Gowers, “How to lose your fear of tensor

products,” http://www.dpmms.cam.ac.uk/~wtg10/tensors3.html



Tensorial Rank

F.L. Hitchcock, “The expression of a tensor or a polyadic as a
sum of products,” J. Math. and Phys., 6 (1), 1927, pp. 164–189.

Definition. If t 6= 0, the rank of t, denoted rank(t), is defined
as the minimum r ∈ N such that t may be expressed as a sum of
r decomposable tensors:

t =
r∑

i=1

v1
i ⊗ · · · ⊗ vk

i

with v
j
i ∈ Vj, j = 1, . . . , k. We set rank(0) = 0.

Well-defined, ie. there exists a unique r = rank(t) for every t ∈
V1 ⊗ · · · ⊗ Vk, and it agrees with the usual definition of matrix
rank when k = 2.

Computing the rank of an order 3 tensor over a finite field is NP-
complete while computing it over Q is NP-hard [Håstad 1990].
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Aside: Alfeld-Trefethen Bet

Knowing the rank can be a useful thing (the concept cannot be

completely replaced by other notions such as strong/free orthog-

onal rank)

25 June 1985

L.N. Trefethen hereby bets Peter Alfeld that by December 31,

1994, a method will have been found to solve Ax = b in O(n2+ε)

operations for any ε > 0. Numerical stability is not required.

The winner gets $100 from the loser.

Signed: Peter Alfeld, Lloyd N. Trefethen

Witnesses: Per Erik Koch, S.P. Norsett.

Trefethen paid up in 1996. Bet renewed for another 10 years (1

January 2006).
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Observe for A = (aij), B = (bjk) ∈ Rn×n,

AB =
n∑

k=1

n∑
j=1

n∑
i=1

aikbkjeij =
n∑

k=1

n∑
j=1

n∑
i=1

εik(A)εkj(B)eij

where eij = (δipδjq) ∈ Rn×n.

εi
k ⊗ εk

j ⊗ e
j
i =

n∑
k=1

n∑
j=1

n∑
i=1

εik ⊗ εkj ⊗ eij

where the first term is just the second written with Einstein
summation convention (rule: sum over an index when it appears
twice — once in superscript and once in subscript).

O(n2+ε) algorithm for multiplying two n×n matrices gives O(n2+ε)
algorithm for solving system of n linear equations [Stassen 1969].

Corollary. Trefethen wins if and only if log2(rank(εi
k⊗εk

j ⊗e
j
i)) ≤

2 + ε for ε arbitrarily small.

Best known result: O(n2.376) [Coppersmith-Winograd 1987]



Tensor products of norm spaces

To discuss approximations, need norm on V1 ⊗ · · · ⊗ Vk. Assume
that vector spaces V1, . . . , Vk are equipped with norms ‖ · ‖1, . . . , ‖ · ‖k.

Canonical norm defined first on the decomposable tensors by

‖v1 ⊗ · · · ⊗ vk‖ := ‖v1‖1 · · · · · ‖vk‖k

and then extended to all t ∈ V1 ⊗ · · · ⊗ Vk by taking infimum
over all possible representations of t as a sum of decomposable
tensors:

‖t‖ = inf

{ n∑
i=1

‖v1
i ‖1 · · · · · ‖v

k
i ‖k

∣∣∣∣∣ t =
n∑

i=1

v1
i ⊗ · · · ⊗ vk

i

}
.

Let ei
1, . . . , ei

di
be a basis of unit vectors for each Vi, i = 1, . . . , k

(ie. ‖ei
j‖i = 1) and let coordinate representation of t be

t =
d1∑

j1=1

· · ·
dk∑

jk=1

tj1,...,jke
1
j1
⊗ · · · ⊗ ek

jk
.
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Frobenius norm of [[tj1,...,jk]] ∈ Rd1×···×dk is defined by

‖[[tj1,...,jk]]‖
2
F :=

d1∑
j1=1

· · ·
dk∑

jk=1

t2j1,...,jk
.

Easy to see: ‖t‖ = ‖[[tj1,...,jk]]‖F

Definition. A best rank-r approximation to a tensor t ∈ V1 ⊗
· · · ⊗ Vk is a tensor smin with

‖smin − t‖ = inf
rank(s)≤r

‖s− t‖.

Eckart-Young problem: find a best rank-r approximation for

tensors of order k.

A fact that’s often overlooked: in a norm space, the minimum

distance of a point t to a non-closed set S may not be attained

by any point in S



Non-existence of low rank approximations

x, y two linearly independent vectors in V , dim(V ) = 2. Consider
tensor t in V ⊗ V ⊗ V ,

t := x⊗ x⊗ x + x⊗ y ⊗ y + y ⊗ x⊗ y.

If unaccustomed to abstract vector spaces, may take V = R2,
x = (1,0)t, y = (0,1)t and

t =

[
1 0 0 1
0 0 1 0

]
∈ R2 ⊗ R2 ⊗ R2.

We will show that rank(t) = 3 and that t has no best rank-2
approximation.

t is a rank-3 tensor: easy to verify.

t has no best rank-2 approximation: consider sequence {sn}∞n=1
in V ⊗ V ⊗ V ,

sn := x⊗ x⊗ (x− ny) +
(
x +

1

n
y

)
⊗

(
x +

1

n
y

)
⊗ ny
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Clear that rank(sn) ≤ 2 for all n. By multilinearity of ⊗,

sn = x⊗ x⊗ x− nx⊗ x⊗ y + nx⊗ x⊗ y

+ x⊗ y ⊗ y + y ⊗ x⊗ y +
1

n
y ⊗ y ⊗ y

= t +
1

n
y ⊗ y ⊗ y.

For any choice of norm on V ⊗ V ⊗ V ,

‖sn − t‖ =
1

n
‖y ⊗ y ⊗ y‖ → 0 as n →∞.



Another example

Previous example not pathological. Examples of tensors with

no best low-rank approximation easy to construct. Let V =

span{x, y, z, w}, dim(V ) = 4. Define

v := x⊗x⊗x+x⊗y⊗z+y⊗z⊗x+y⊗w⊗z+z⊗x⊗y+y⊗z⊗w

and sequence

un :=
(
y +

1

n
x

)
⊗

(
y +

1

n
w

)
⊗ nz +

(
y +

1

n
x

)
⊗ nx⊗

(
x +

1

n
y

)
− ny ⊗ y ⊗

(
x + z +

1

n
w

)
− nz ⊗

(
x + y +

1

n
z

)
⊗ x

+ n(y + z)⊗
(
y +

1

n
z

)
⊗

(
x +

1

n
w

)
May check that: rank(un) ≤ 5, rank(v) = 6 and ‖un − v‖ → 0.

v is a rank-6 tensor that has no best rank 5 approximations.
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A third example

Here’s an example that can ‘jump rank’ by more than 1.

x, y, a, b four linearly independent vectors in V , dim(V ) = 4. Con-
sider tensor t in V ⊗ V ⊗ V ,

t := x⊗ x⊗ x + x⊗ y ⊗ y + y ⊗ x⊗ y

+ a⊗ a⊗ a + a⊗ b⊗ b + b⊗ a⊗ b.

t is a rank-6 tensor: tedious but straightforward.

t has no best rank-4 approximation: {sm,n}∞m,n=1 in V ⊗ V ⊗ V ,

sm,n := x⊗ x⊗ (x−my) +
(
x +

1

m
y

)
⊗

(
x +

1

m
y

)
⊗my

+ a⊗ a⊗ (a− nb) +
(
a +

1

n
b

)
⊗

(
a +

1

n
b

)
⊗ nb

Clearly rank(sm,n) ≤ 4 and limm,n→∞ sm,n = t.
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Norm independence

The choice of norm in the previous slides is inconsequential be-

cause of the following result.

Fact. All norms on finite-dimensional spaces are equivalent and

thus induce the same topology (the Euclidean topology).

Since questions of convergence and whether a set is closed de-

pend only on the topology of the space, the results here would

all be independent of the choice of norm on V1 ⊗ · · · ⊗ Vk, which

is finite-dimensional.
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Exceptional cases: order-2 tensors and rank-1 tensors

Set of tensors of rank not more than r,

S(k, r) := {t ∈ V1 ⊗ · · · ⊗ Vk | rank(t) ≤ r}.

When k = 2 (matrices) and when r = 1 (decomposable tensors),
S(k, r) is closed — Eckart-Young problem solvable in these cases.

Proposition. For any r ∈ N, the set S(2, r) = {A ∈ Rm×n |
rank(s) ≤ r} is closed in Rm×n under any norm-induced topology.

Corollary. Let U and V be vector spaces. The set S(2, r) = {s ∈
U ⊗ V | rank(s) ≤ r} is closed in U ⊗ V .

Proposition. The set of decomposable tensors, S(k,1) = {s ∈
V1 ⊗ · · · ⊗ Vk | rank(s) ≤ 1}, is closed in V1 ⊗ · · · ⊗ Vk under any
norm-induced topology.

[Thanks to Pierre Comon for help with the last proposition]
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Topological properties of matrix rank

Set of tensors of rank exactly r,

R(k, r) := {t ∈ V1 ⊗ · · · ⊗ Vk | rank(t) = r}.

R(k, r) not closed even in the case k = 2 — higher-rank matrices

converging to lower-rank ones easily constructed:[
1 1 + 1

n
1 1

]
→

[
1 1
1 1

]
,

[
1
n 0

0 1
n

]
→

[
0 0
0 0

]
.

R(2, r) not closed often a source of numerical instability: the

problem of defining matrix rank in a finite-precision context

[Golub-Van Loan 1996], the inherent difficulty of computing a

Jordan canonical form [Golub-Wilkinson 1976], may all be viewed

as consequences of the fact that R(2, r) is not closed.
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However, the closure of R(2, r) can be easily described. The

same is not true for higher-order tensors.

Proposition. With R(2, r) = {A ∈ Rm×n | rank(A) = r} and

S(2, r) = {A ∈ Rm×n | rank(A) ≤ r}, we have

R(2, r) = S(2, r).

Here R denotes the topological closure of a non-empty set R.

That is, matrices of rank r are dense in matrices of rank ≤ r.



Aside: ambiguity in Eckart-Young theorem

Eckart-Young problem for matrices often stated in the form

Bmin = argmin
B∈R(2,r)

‖B −A‖ = argmin
rank(B)=r

‖B −A‖,

rather than

Bmin = argmin
B∈S(2,r)

‖B −A‖ = argmin
rank(B)≤r

‖B −A‖.

Latter form not uncommon either [Golub-Hoffman-Stewart 1987].

The two forms are really equivalent in practice (when rank(A) >

r) — consequence of the fact that R(2, r) = S(2, r) and

inf
B∈R

‖B −A‖ = inf
B∈R

‖B −A‖.

Better to use the latter form — since R(2, r) is not closed, one

runs into difficulties when rank(A) < r.

13



Topological properties of tensor rank

We have shown the following [L., 2004].

Proposition. Let k ≥ 3 and V1, . . . , Vk be vector spaces with
dim(Vi) ≥ 2. Then the Eckart-Young problem in V1⊗· · ·⊗Vk has
no solution in general (in any norm).

The result may be further refined [L., 2004].

Theorem. Let k ≥ 3 and 2 ≤ r ≤ rankmax(V1 ⊗ · · · ⊗ Vk) − 1.
The set S(k, r) := {s ∈ V1 ⊗ · · · ⊗ Vk | rank(s) ≤ r} is not closed
in V1 ⊗ · · · ⊗ Vk in any norm-induced topology.

When r ≥ rankmax(V1 ⊗ · · · ⊗ Vk), S(k, r) = V1 ⊗ · · · ⊗ Vk and so
this trivial case has to be excluded in the theorem.

Message. Eckart-Young problem has no solution in general for
k > 2 and r > 1.
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How about imposing orthogonality?

Assume that V1⊗ · · · ⊗ Vk has an inner product (not always pos-

sible) and require tensor decompositions to have some form of

orthogonality.

We have shown the following [L., 2004].

Result. There can be no globally convergent algorithm for de-

termining rank, orthogonal rank or singular values of a tensor or

for determining the best rank r approximation, with or without

orthogonality.

Rough idea: Algorithms for finding rank or singular values con-

strain one to move on iso-rank or iso-singular-values surfaces

(proper nomenclature: orbit under some group action).
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For matrices, there is only one iso-rank surface for each value of

rank, one iso-singular-values surface for each tuple of singular-

values (arranged in non-increasing order). Cleverly designed al-

gorithms will move on such surfaces and, after a finite or infinite

number of steps, reach a point (e.g. rank revealing, diagonal ma-

trix of singular values) where such information is easy to deduce.

For higher order tensors, there may be several or even infinitely

many such iso-rank or iso-singular-values surfaces, all discon-

nected from each other. Any algorithm will be constrained to

move on just one and may never reach the required solution lying

on another surface.

Possible way around this problem: Sampling-based random-

ized algorithms [Drineas-Kannan-Mahoney, 2004]



What’s possible

Order 2 tensors — best rank r approximation always exists

Order k tensors — best rank 1 approximation always exists

Efficient algorithms to find these (for data of moderate size)

What’s not possible

Order k tensors — best rank r approximations may not exist,

k ≥ 3, r ≥ 2

Globally convergent algorithms for determining rank, orthogonal

rank, singular values, best low orthogonal rank approximations,

k ≥ 3, r ≥ 2
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