TENSOR NETWORK RANKS

KE YE AND LEK-HENG LIM

Abstract

In problems involving approximation, completion, denoising, dimension reduction, estimation, interpolation, modeling, order reduction, regression, etc, we argue that the near-universal practice of assuming that a function, matrix, or tensor (which we will see are all the same object in this context) has low rank may be ill-justified. There are many natural instances where the object in question has high rank with respect to the classical notions of rank: matrix rank, tensor rank, multilinear rank - the latter two being the most straightforward generalizations of the former. To remedy this, we show that one may vastly expand these classical notions of ranks: Given any undirected graph G, there is a notion of G-rank associated with G, which provides us with as many different kinds of ranks as there are undirected graphs. In particular, the popular tensor network states in physics (e.g., MPS, TTNS, PEPS) may be regarded as functions of a specific G-rank for various choices of G. Among other things, we will see that a function, matrix, or tensor may have very high matrix, tensor, or multilinear rank and yet very low G-rank for some G. In fact the difference is in the orders of magnitudes and the gaps between G-ranks and these classical ranks are arbitrarily large for some important objects in computer science, mathematics, and physics. Furthermore, we show that there is a G such that almost every tensor has G-rank exponentially lower than its rank or the dimension of its ambient space.

1. Introduction

A universal problem in science and engineering is to find a function from some given data. The function may be a solution to a PDE with given boundary/initial data or a target function to be learned from a training set of data. In modern applications, one frequently encounters situations where the function lives in some state space or hypothesis space of prohibitively high dimension - a consequence of requiring very high accuracy solutions or having very large training sets. A common remedy with newfound popularity is to assume that the function has low rank, i.e., may be expressed as a sum of a small number of separable terms. But such a low-rank assumption often has weak or no justification; rank is chosen only because there is no other standard alternative. Taking a leaf from the enormously successful idea of tensor networks in physics [4, 7, 13, 23, 28, $30,31,33,34,35,36,37,38]$, we define a notion of G-rank for any undirected graph G. Like tensor rank and multilinear rank, which are extensions of matrix rank to higher order, G-ranks contain matrix rank as a special case.

Our definition of G-ranks shows that every tensor network - tensor trains, matrix product states, tree tensor network states, star tensor network states, complete graph tensor network states, projected entangled pair states, multiscale entanglement renormalization ansatz, etc - is nothing more than a set of functions/tensors of some G-rank for some undirected graph G. It becomes straightforward to explain the effectiveness of tensor networks: They serve as a set of 'low G-rank functions' that can be used for various purposes (as an ansatz, a regression function, etc). The flexibility of choosing G based on the underlying problem can provide a substantial computational advantage - a function with high rank or high H-rank for a graph H can have much lower G-rank for another suitably chosen graph G. We will elaborate on these in the rest of this introduction, starting with an informal discussion of tensor networks and G-ranks, followed by an outline of our main results.

[^0]The best known low-rank decomposition is the matrix rank decomposition

$$
\begin{equation*}
f(x, y)=\sum_{i=1}^{r} \varphi_{i}(x) \psi_{i}(y) \tag{1}
\end{equation*}
$$

that arises in common matrix decompositions such as LU, QR, EVD, SVD, Cholesky, Jordan, Schur, etc - each differing in the choice of additional structures on the factors φ_{i} and ψ_{i}. In higher order, say, order three for notational simplicity, (1) generalizes as tensor rank decomposition,

$$
\begin{equation*}
f(x, y, z)=\sum_{i=1}^{r} \varphi_{i}(x) \psi_{i}(y) \theta_{i}(z) \tag{2}
\end{equation*}
$$

or as multilinear rank decomposition

$$
\begin{equation*}
f(x, y, z)=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} \varphi_{i}(x) \psi_{j}(y) \theta_{k}(z) \tag{3}
\end{equation*}
$$

Like (1), (2) and (3) decompose a function f into a sum of products of factors $\varphi_{i}, \psi_{j}, \theta_{k}$, simpler functions that depend on fewer variables than f. This simple idea is ubiquitous, underlying the separation-of-variables technique in partial differential equations [3] and special functions [26], fast Fourier transforms [24], tensor product splines [5] in approximation theory, mean field approximations [14] in statistical physics, naïve Bayes model [22] and tensor product kernels [12] in machine learning, blind multilinear identification [21] in signal processing.

The decompositions (2) and (3) can be inadequate when modeling more complicated interactions, calling for tensor network decompositions. Some of the most popular ones include matrix product states (MPS) [44],

$$
f(x, y, z)=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} \varphi_{i j}(x) \psi_{j k}(y) \theta_{k i}(z)
$$

tree tensor network states (TTNS) [31],

$$
f(x, y, z, w)=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} \varphi_{i j k}(x) \psi_{i}(y) \theta_{j}(z) \pi_{k}(w)
$$

tensor train ${ }^{1}$ (TT) [45],

$$
f(x, y, z, u, v)=\sum_{i, j, k, l=1}^{r_{1}, r_{2}, r_{3}, r_{4}} \varphi_{i}(x) \psi_{i j}(y) \theta_{j k}(z) \pi_{k l}(u) \rho_{l}(v)
$$

and projected entangled pair states (PEPS) [33],

$$
f(x, y, z, u, v, w)=\sum_{i, j, k, l, m, n, o=1}^{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}} \varphi_{i j}(x) \psi_{j k l}(y) \theta_{l m}(z) \pi_{m n}(u) \rho_{n k o}(v) \sigma_{o i}(w)
$$

among many others. Note that all these decompositions, including those in (1), (2), (3), are of the same nature - they decompose a function into a sum of separable functions. Just as (2) and (3) differ in how the factors are indexed, tensor network decompositions differ from each other and from (2) and (3) in how the factors are indexed. Every tensor network decomposition is defined by an undirected graph G that determines the indexing of the factors. The graphs associated with MPS, TTNS, TT, and PEPS are shown in Figure 1a. The decompositions above represent the simplest non-trivial instance for each tensor network - they can become arbitrarily complicated with increasing order, i.e., the number of arguments of the function f or, equivalently, the number of vertices in the corresponding graphs. In Section 2, we will formally define tensor network states in a mathematically rigorous and, more importantly, coordinate-free manner - the importance of the latter stems from the avoidance of a complicated mess of indices, evident even in the simplest instance of PEPS above. For now, a tensor network state is an f that has a tensor network decomposition corresponding to a given graph G, and a tensor network corresponding to G is the set of all such functions.

[^1]

Figure 1. Every undirected graph G defines a G-rank. Solution that we seek may have high rank but low G-rank.

The minimum r in (1) gives us the matrix rank of f; the minimum r in (2) and the minimum $\left(r_{1}, r_{2}, r_{3}\right)$ in (3) give us the tensor rank and multilinear rank of f respectively. Informally, the tensor network rank or G-rank of f may be similarly defined by requiring some form of minimality for $\left(r_{1}, \ldots, r_{c}\right)$ in the other decompositions for MPS, TT, TTNS, PEPS (with an appropriate graph G in each case). Note that this is no longer so straightforward since (i) \mathbb{N}^{c} is not an ordered set when $c>1$; (ii) it is not clear that any function would have such a decomposition for an arbitrary G.

We will show in Section 4 that any d-variate function or d-tensor has a G-rank for any undirected connected graph G with d vertices. While this has been defined in special cases, particularly when G is a path graph (TT-rank [10]) or more generally when G is a tree (hierarchical rank [9, Chapter 11] or tree rank [2]), we show that the notion is well-defined for any undirected connected graph G : Given any d vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ of arbitrary dimensions, there is a class of tensor network states associated with G, as well as a G-rank for any $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$; or equivalently, for any function $f \in L^{2}\left(X_{1} \times \cdots \times X_{d}\right)$; or, for those accustomed to working in terms of coordinates, for any hypermatrix $A \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}$. See Section 2 for a discussion on the relations between these objects (d-tensors, d-variate functions, d-hypermatrices).

Formalizing the notions of tensor networks and G-ranks provides several advantages, the most important of which is that it allows one to develop a rich calculus for working with tensor networks: deleting vertices, removing edges, restricting to subgraphs, taking unions of graphs, restricting to subspaces, taking intersections of tensor network states, etc. We develop some of these basic techniques and properties in Sections 3 and 6, deferring to [39] the more involved properties that are not needed for the rest of this article. Among other advantages, the notion of G-rank also sheds light on existing methods in scientific computing: In hindsight, the algorithm in [41] is one that approximates a given tensor network state by those of low G-rank.

The results in Section 5 may be viewed as the main impetus for tensor networks (as we pointed out earlier, these are 'low G-rank tensors' for various choices of G):

- a tensor may have very high matrix, tensor, or multilinear rank and yet very low G-rank;
- a tensor may have very high H-rank and very low G-rank for $G \neq H$;

We will exhibit an explicit example where tensor rank, multilinear rank, matrix rank, and TT-rank are all $O\left(n^{2}\right)$ but whose MPS-rank is $O(n)$. In Section 6 , we will see that there is a choice of G such that in a space of dimension $O\left(n^{d}\right)$, almost every tensor has G-rank $O(n(d-1))$ and tensor rank $O\left(n^{d} /(n d-d+1)\right)$, i.e., for that particular G, almost every tensor has G-rank that is exponentially lower than its tensor rank or the dimension of its ambient space.

We will study in detail the simplest and most common G-ranks: TT-rank (G is a path graph) in Section 7, tTNS-rank (G is a tree) in Section 8, MPS-rank (G is a cyclic graph) in Section 9, paying particular attention to questions of uniqueness, existence of best low G-rank approximations, polynomial-time computability, dimensions, generic and maximal G-ranks, etc.

Some other insights that may be worth highlighting include:

- Any tensor network state is the contraction of a rank-one tensor (Section 2).
- G-rank is polynomial-time computable when G is acyclic (Section 8).
- A best low G-rank approximation always exists if G is acyclic (Section 8) but may not necessarily exist if G contains a cycle ${ }^{2}$ (Section 9).
- G-ranks are distinct from tensor rank and multilinear rank in that neither is a special case of the other (Section 11) but G-ranks may be regarded as an 'interpolant' between tensor rank and multilinear rank (Section 4).
In Section 10, we determine G-ranks of decomposable tensors, decomposable symmetric and skewsymmetric tensors, monomials, W state, GKZ state, and the structure tensor of matrix-matrix product for various choices of G.

2. Tensor network states

We have left the function spaces in the decompositions in Section 1 unspecified. In physics applications where tensor networks were first studied [28], they are often assumed to be Hilbert spaces. For concreteness we may assume that they are all L^{2}-spaces, e.g., in MPS we have $\varphi_{i j} \in$ $L^{2}(X), \psi_{j k} \in L^{2}(Y), \theta_{k i} \in L^{2}(Z)$ for all i, j, k and $f \in L^{2}(X \times Y \times Z)=L^{2}(X) \otimes L^{2}(Y) \otimes L^{2}(Z)$, although we may also allow for other function spaces that admit tensor product.

The reason we are not concern with the precise type of function space is that in this article we limit ourselves to finite-dimensional spaces, i.e., X, Y, Z, \ldots are finite sets and x, y, z, \ldots are discrete variables that take a finite number of values. In this case, it is customary ${ }^{3}$ to identify $L^{2}(X) \cong \mathbb{C}^{m}, L^{2}(Y) \cong \mathbb{C}^{n}, L^{2}(Z) \cong \mathbb{C}^{p}, L^{2}(X \times Y \times Z) \cong \mathbb{C}^{m \times n \times p}$, where $m=\# X, n=\# Y$, $p=\# Z$, and write an MPS decomposition as a decomposition

$$
\begin{equation*}
A_{\mathrm{MPS}}=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} a_{i j} \otimes b_{j k} \otimes c_{k i}, \tag{4}
\end{equation*}
$$

where $A \in \mathbb{C}^{m \times n \times p}, a_{i j} \in \mathbb{C}^{m}, b_{j k} \in \mathbb{C}^{n}, c_{k l} \in \mathbb{C}^{p}$ for all i, j, k. In order words, in finite dimension, the function f is represented by a hypermatrix A and the factor functions $\varphi_{i j}, \psi_{j k}, \theta_{k i}$ are represented by factor vectors $a_{i j}, b_{j k}, c_{k l}$ respectively. Henceforth we will use the word factor regardless of whether it is a function or a vector.

The same applies to other tensor networks when the spaces are finite-dimensional - they may all be regarded as decompositions of hypermatrices into sums of tensor products of vectors. For easy reference, we list the TTNS, TT, PEPS decompositions below:

$$
\begin{align*}
A_{\mathrm{TTNS}} & =\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} a_{i j k} \otimes b_{i} \otimes c_{j} \otimes d_{k}, \tag{5}\\
A_{\mathrm{TT}} & =\sum_{i, j, k, l=1}^{r_{1}, r_{2}, r_{3}, r_{4}} a_{i} \otimes b_{i j} \otimes c_{j k} \otimes d_{k l} \otimes e_{l}, \tag{6}\\
A_{\mathrm{PEPS}} & =\sum_{i, j, k, l, m, n, o=1}^{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}} a_{i j} \otimes b_{j k l} \otimes c_{l m} \otimes d_{m n} \otimes e_{n k o} \otimes f_{o i}, \tag{7}
\end{align*}
$$

[^2]Note that $A_{\text {TTNS }}, A_{\text {TT }}, A_{\text {PEPS }}$ are hypermatrices of orders 4, 5, 7 respectively. In particular we observe that the simplest nontrivial instance of PEPS already involve a tensor of order 7, which is a reason tensor network decompositions are more difficult than the well-studied decompositions associated with tensor rank and multilinear rank, where order-3 tensors already capture most of their essence.

From these examples, it is not difficult to infer the general definition of a tensor network decomposition in coordinates. Take any undirected graph $G=(V, E)$ and assign a positive integer weight to each edge. Then a tensor network decomposition associated with G may be constructed from the correspondence in Table 1.

Graph	Tensor (function/hypermatrix)	Notation
vertices	factors	$\varphi, \psi, \theta, \ldots / a, b, c, \ldots$
edges	contraction indices	i, j, k, \ldots
degree of vertex	number of indices in each factor	n_{1}, \ldots, n_{d}
weight of edge	upper limit of summation	r_{1}, \ldots, r_{c}
number of vertices	order of tensor	d
number of edges	number of indices contracted	c

Table 1. How a graph determines a tensor network decomposition.

As we can see from even the simplest instance of PEPS above, a coordinate-dependent approach quickly run up against an impenetrable wall of indices. Aside from having to keep track of a large number of indices and their summation limits, we also run out of characters for labeling them (e.g., the functional form of the simplest instance of PEPS on p. 2 already uses up 20 Roman and Greek alphabets), requiring even messier sub-indices. We may observe that the label of a factor, i.e., $\varphi, \psi, \theta, \ldots$ in the case of functions and a, b, c, \ldots in the case of vectors, plays no role in the decompositions - only its indices matter. This is the impetus behind physicists' Dirac notation, in which MPS, TTNS, TT, PEPS are expressed as

$$
\begin{aligned}
A_{\mathrm{MPS}} & =\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}}|i, j\rangle|j, k\rangle|k, i\rangle, \\
A_{\mathrm{TTNS}} & =\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}}|i, j, k\rangle|i\rangle|j\rangle|k\rangle, \\
A_{\mathrm{TT}} & =\sum_{i, j, k, l, l}^{r_{1}, r_{2}, r_{3}, r_{4}}|i\rangle|i, j\rangle|j, k\rangle|k, l\rangle|l\rangle, \\
A_{\mathrm{PEPS}} & =\sum_{i, j, k, l, m, n, o=1}^{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}}|i, j\rangle|j, k, l\rangle|l, m\rangle|m, n\rangle|n, k, o\rangle|o, i\rangle,
\end{aligned}
$$

respectively. While this notation is slightly more economical, it does not circumvent the problem of indices. With this in mind, we will adopt a modern coordinate-free definition of tensor networks similar to the one in [17] that by and large avoids the issue of indices.

Let $G=(V, E)$ be an undirected graph where the set of d vertices and the set of c edges are labeled respectively by

$$
\begin{equation*}
V=\{1, \ldots, d\} \quad \text { and } \quad E=\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{c}, j_{c}\right\}\right\} \subseteq\binom{V}{2} . \tag{8}
\end{equation*}
$$

We will assign arbitrary directions to the edges:

$$
\underline{E}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{c}, j_{c}\right)\right\} \subseteq V \times V
$$

but still denote the resulting directed graph G for the following reason: Tensor network states depend only on the undirected graph structure of G - two directed graphs with the same underlying undirected graph give isomorphic tensor network states [17]. For each $i \in V$, let

$$
\operatorname{IN}(i)=\{j \in\{1, \ldots, c\}:(j, i) \in \underline{E}\}, \quad \operatorname{OUT}(i)=\{j \in\{1, \ldots, c\}:(i, j) \in \underline{E}\},
$$

i.e., the sets of vertices pointing into and out of i respectively. As usual, for a directed edge (i, j), we will call i its head and j its tail.

The recipe for constructing tensor network states is easy to describe informally: Given any graph $G=(V, E)$, assign arbitrary directions to the edges to obtain \underline{E}; attach a vector space \mathbb{V}_{i} to each vertex i; attach a covector space \mathbb{E}_{j}^{*} to the head and a vector space \mathbb{E}_{k} to the tail of each directed edge (j, k); do this for all vertices in V and all directed edges in \underline{E}; contract along all edges to obtain a tensor in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. The set of all tensors obtained this way form the tensor network states associated with G. We make this recipe precise in the following.

We will work over \mathbb{C} for convenience although the discussions in this article will also apply to \mathbb{R}. We will also restrict ourselves mostly to finite-dimensional vector spaces as our study here is undertaken with a view towards computations and in computational applications of tensor networks, infinite-dimensional spaces are invariably approximated by finite-dimensional ones.

Let $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ be complex vector spaces with $\operatorname{dim} \mathbb{V}_{i}=n_{i}, i=1, \ldots, d$. Let $\mathbb{E}_{1}, \ldots, \mathbb{E}_{c}$ be complex vector spaces with $\operatorname{dim} \mathbb{E}_{j}=r_{j}, j=1, \ldots, c$. We denote the dual space of \mathbb{V}_{i} by \mathbb{V}_{i}^{*} (and that of \mathbb{E}_{j} by $\left.\mathbb{E}_{j}^{*}\right)$. For each $i \in V$, consider the tensor product space

$$
\begin{equation*}
\left(\bigotimes_{j \in \mathrm{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{j \in \mathrm{OUT}(i)} \mathbb{E}_{j}^{*}\right) \tag{9}
\end{equation*}
$$

and the contraction map

$$
\begin{equation*}
\kappa_{G}: \bigotimes_{i=1}^{d}\left[\left(\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{j \in \operatorname{OUT}(i)} \mathbb{E}_{j}^{*}\right)\right] \rightarrow \bigotimes_{i=1}^{d} \mathbb{V}_{i} \tag{10}
\end{equation*}
$$

defined by contracting factors in \mathbb{E}_{j} with factors in \mathbb{E}_{j}^{*}. Since any directed edge (i, j) must point out of a vertex i and into a vertex j, each copy of \mathbb{E}_{j}^{*} is paired with one and only one copy of \mathbb{E}_{j}, i.e., the contraction is well-defined.

Definition 2.1. A tensor in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ that can be written as $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)$ where

$$
T_{i} \in\left(\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{j \in \operatorname{OUT}(i)} \mathbb{E}_{j}^{*}\right), \quad i=1, \ldots, d
$$

and κ_{G} as in (10), is called a tensor network state associated to the undirected graph G and vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}, \mathbb{E}_{1}, \ldots, \mathbb{E}_{c}$. The set of all such tensor network states is called the tensor network and denoted

$$
\begin{aligned}
\operatorname{TNS}\left(G ; \mathbb{E}_{1}, \ldots, \mathbb{E}_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right):= & \left\{\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right) \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}:\right. \\
& \left.T_{i} \in\left(\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{j \in \operatorname{OUT}(i)} \mathbb{E}_{j}^{*}\right), i=1, \ldots, d\right\} .
\end{aligned}
$$

We will always require that $\mathbb{E}_{1}, \ldots, \mathbb{E}_{c}$ be finite-dimensional but $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ may be of any dimensions, finite or infinite. Since a vector space is determined up to isomorphism by its dimension, when the vector spaces $\mathbb{E}_{1}, \ldots, \mathbb{E}_{c}$ are unimportant (these play the role of contraction indices), we will simply denote the tensor network by $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$; or, if the vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ are also unimportant and finite-dimensional, we will denote it by $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)$. As before, $n_{i}=\operatorname{dim} \mathbb{V}_{i}$ and $r_{j}=\operatorname{dim} \mathbb{E}_{j}$.

While we have restricted Definition 2.1 to tensor products of vector spaces $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ for the purpose of this article, the definition works with any types of mathematical objects with a notion of tensor product: $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ may be modules or algebras, Hilbert or Banach spaces, von Neumann or C^{*}-algebras, Hilbert C^{*}-modules, etc. In fact we will need to use Definition 2.1 in the form where $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ are vector bundles in Section 3.

Since they will be appearing with some frequency, we will introduce abbreviated notations for the inspace and outspace appearing in (9): For each vertex $i=1, \ldots, d$, set

$$
\begin{equation*}
\mathbb{I}_{i}:=\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j} \quad \text { and } \quad \mathbb{O}_{i}:=\bigotimes_{j \in \operatorname{OUT}(i)} \mathbb{E}_{j}^{*} \tag{11}
\end{equation*}
$$

Note that the image of every contraction map $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)$ gives a decomposition like the ones we saw in (4)-(7). We call such a decomposition a tensor network decomposition associated with G. A tensor $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is said to be G-decomposable if it can be expressed as $T=\kappa_{G}\left(T_{1} \otimes \ldots T_{d}\right)$ for some $r_{1}, \ldots, r_{c} \in \mathbb{N}$; a fundamental result here (see Theorem 4.1) is that:

Given any G and any $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$, every tensor in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is G-decomposable when r_{1}, \ldots, r_{c} are sufficiently large.
The tensor network $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is simply the set of all G-decomposable tensors for a fixed choice of r_{1}, \ldots, r_{c}. A second fundamental result (see Definition 4.3 and discussions thereafter) is that:

Given any G and any $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, there is minimum choice of r_{1}, \ldots, r_{c} such that $T \in \operatorname{TNs}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$.
The undirected graph G can be extremely general. We impose no restriction on G - self-loops, multiple edges, disconnected graphs, etc - are all permitted. However, we highlight the following:

Self-loops: Suppose a vertex i has a self-loop, i.e., an edge e from i to itself. Let \mathbb{E}_{e} be the vector space attached to e. Then by definition \mathbb{E}_{e} and \mathbb{E}_{e}^{*} must both appear in the inspace and outspace of i and upon contraction they serve no role in the tensor network state; e.g., for C_{1}, the single vertex graph with one self-loop, $\kappa_{C_{1}}\left(\mathbb{E}_{e} \otimes \mathbb{V}_{i} \otimes \mathbb{E}_{e}^{*}\right)=\mathbb{V}_{i}$. Hence self-loops in G have no effect on the tensor network states defined by G.
Multiple edges: Multiple edges e_{1}, \ldots, e_{m} with vector spaces $\mathbb{E}_{1}, \ldots, \mathbb{E}_{m}$ attached have the same effect as a single edge e with the vector space $\mathbb{E}_{1} \otimes \cdots \otimes \mathbb{E}_{m}$ attached, or equivalently, multiple edges e_{1}, \ldots, e_{m} with edge weights r_{1}, \ldots, r_{m} have the same effect as a single edge with edge weight $r_{1} \cdots r_{m}$.
Degree-zero vertices: If G contains a vertex of degree zero, i.e., an isolated vertex not connected to the rest of the graph, then by Definition 2.1,

$$
\begin{equation*}
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)=\{0\} . \tag{12}
\end{equation*}
$$

Weight-one edges: If G contains an edge of weight one, i.e., a one-dimensional vector space is attached to that edge, then by Definition 2.1, that edge may be dropped. See Proposition 3.5 for details.
In particular, allowing for a multigraph adds nothing to the definition of tensor network states and we may assume that G is always a simple graph, i.e., no self-loops or multiple edges. However degree-zero vertices and weight-one edges will be permitted since they are convenient in proofs.

Definition 2.2. Tensor network states associated to specific types of graphs are given special names. The most common ones are as follows:
(i) if G is a path graph, then tensor network states associated to G are variously called tensor trains (TT) [29], linear tensor network [32], concatenated tensor network states [13], Heisenberg chains [37, 38], or matrix product states with open boundary conditions;
(ii) if G is a star graph, then they are called star tensor network states (STNS) [4];
(iii) if G is a tree graph, then they are called tree tensor network states (TTNS) [31] or hierarchical tensors [9, 10, 2];
(iv) if G is a cycle graph, then they are called matrix product states (MPS) $[7,30]$ or, more precisely, matrix product states with periodic boundary conditions;
(v) if G is a product of $d \geq 2$ path graphs, then they are called d-dimensional projected entangled pair states (PEPS) [33, 34];
(vi) if G is a complete graph, then they are called complete graph tensor network states (CTNS) [23].

We will use the term tensor trains as its acronym tT reminds us that they are a special case of tree tensor network states tTNS. This is a matter of nomenclature convenience. As we can see from the references in (i), the notion has been rediscovered many times. The original sources for what
we call tensor trains are [37, 38] where they are called Heisenberg chains. In fact, as we have seen, tensor trains are also special cases of matrix product states. In some sources [28], the tensor trains in (i) are called "matrix product states with open boundary conditions" and the matrix product states in (iv) are called "matrix product states with periodic conditions."

Figure 2. Path graphs $P_{2}, P_{3}, P_{4}, P_{5}$. Each gives a tt decomposition.

Figure 3. All five-vertex trees, including P_{5} and S_{5}. Each gives a ttns decomposition.

Figure 4. Cycle graphs $C_{3}, C_{4}, C_{5}, C_{6}$. Each gives an MPS decomposition.

Figure 5. Four products of path graphs. Each gives a Peps decomposition.
To illustrate Definition 2.1 for readers unfamiliar with multilinear algebraic manipulations, we will work out the MPS decomposition for the 3-vertex graph in Figure 1a and the PEPS decomposition from the 6 -vertex graph in Figure 1a in full details.
Example 2.3 (MPS). Let C_{3} be the 3 -vertex cycle graph for MPS in Figure 1a. We attach vector spaces $\mathbb{A}, \mathbb{B}, \mathbb{C}$ to the vertices labeled x, y, z respectively and vector spaces $\mathbb{D}, \mathbb{E}, \mathbb{F}$ to the edges labeled i, j, k respectively. $\operatorname{TNS}\left(C_{3} ; \mathbb{D}, \mathbb{E}, \mathbb{F} ; \mathbb{A}, \mathbb{B}, \mathbb{C}\right)$, the set of MPS tensor network states corresponding to C_{3}, is obtained as follows. First, assign arbitrary directions to the edges, say, $x \xrightarrow{j} y \xrightarrow{k} z \xrightarrow{i} x$. Next, consider tensors

$$
T_{1} \in \mathbb{D} \otimes \mathbb{A} \otimes \mathbb{E}^{*}, \quad T_{2} \in \mathbb{E} \otimes \mathbb{B} \otimes \mathbb{F}^{*}, \quad T_{3} \in \mathbb{F} \otimes \mathbb{C} \otimes \mathbb{D}^{*}
$$

An mPS tensor network state is obtained by contracting factors in $\mathbb{D}, \mathbb{E}, \mathbb{F}$ with those in $\mathbb{D}^{*}, \mathbb{E}^{*}, \mathbb{F}^{*}$ respectively, giving us $\kappa_{C_{3}}\left(T_{1} \otimes T_{2} \otimes T_{3}\right) \in \mathbb{A} \otimes \mathbb{B} \otimes \mathbb{C}$. Let

$$
\operatorname{dim} \mathbb{A}=n_{1}, \quad \operatorname{dim} \mathbb{B}=n_{2}, \quad \operatorname{dim} \mathbb{C}=n_{3}, \quad \operatorname{dim} \mathbb{D}=r_{1}, \quad \operatorname{dim} \mathbb{E}=r_{2}, \quad \operatorname{dim} \mathbb{F}=r_{3} .
$$

Let $\left\{d_{1}, \ldots, d_{r_{1}}\right\},\left\{e_{1}, \ldots, e_{r_{2}}\right\},\left\{f_{1}, \ldots, f_{r_{3}}\right\}$ be bases on $\mathbb{D}, \mathbb{E}, \mathbb{F}$; and $\left\{d_{1}^{*}, \ldots, d_{r_{1}}^{*}\right\},\left\{e_{1}^{*}, \ldots, e_{r_{2}}^{*}\right\}$, $\left\{f_{1}^{*}, \ldots, f_{r_{3}}^{*}\right\}$ be the corresponding dual bases on $\mathbb{D}^{*}, \mathbb{E}^{*}, \mathbb{F}^{*}$. Then

$$
T_{1}=\sum_{i, j=1}^{r_{1}, r_{2}} d_{i} \otimes a_{i j} \otimes e_{j}^{*}, \quad T_{2}=\sum_{j, k=1}^{r_{2}, r_{3}} e_{j} \otimes b_{j k} \otimes f_{k}^{*}, \quad T_{3}=\sum_{k, i=1}^{r_{3}, r_{1}} f_{k} \otimes c_{k i} \otimes d_{i}^{*} .
$$

Figure 6. Star graphs $S_{5}, S_{6}, S_{7}, S_{8}$. Each gives a Stns decomposition.

Figure 7. Complete graphs $K_{4}, K_{5}, K_{6}, K_{7}$. Each gives a Ctns decomposition.

We will derive the expression for T_{1} for illustration: Let $a_{1}, \ldots, a_{n_{1}}$ be a basis of \mathbb{A}. Then a tensor in $\mathbb{D} \otimes \mathbb{A} \otimes \mathbb{E}^{*}$ has the form

$$
T_{1}=\sum_{i, k, j=1}^{r_{1}, n_{1}, r_{2}} \alpha_{i k j} d_{i} \otimes a_{k} \otimes e_{j}^{*}
$$

for some coefficients $\alpha_{i k j} \in \mathbb{C}$. We may then express T_{1} as

$$
T_{1}=\sum_{i, j=1}^{r_{1}, r_{2}} d_{i} \otimes\left(\sum_{k=1}^{n_{1}} \alpha_{i k j} a_{k}\right) \otimes e_{j}^{*}=\sum_{i, j=1}^{r_{1}, r_{2}} d_{i} \otimes a_{i j} \otimes e_{j}^{*}
$$

where $a_{i j}:=\sum_{k=1}^{n_{1}} \alpha_{i k j} a_{k}$. Finally we obtain the MPS decomposition as

$$
\begin{aligned}
\kappa_{C_{3}}\left(T_{1} \otimes T_{2} \otimes T_{3}\right) & =\sum_{i, i^{\prime}, j, j, j^{\prime}, k, k^{\prime}=1}^{r_{1}, r_{1}, r_{2}, r_{3}} \kappa\left(\left(d_{i} \otimes a_{i j} \otimes e_{j}^{*}\right) \otimes\left(e_{j^{\prime}} \otimes b_{j^{\prime} k} \otimes f_{k}^{*}\right) \otimes\left(f_{k^{\prime}} \otimes c_{k^{\prime} i^{\prime}} \otimes d_{i^{\prime}}^{*}\right)\right) \\
& =\sum_{i, i^{\prime}, j, j_{2}^{\prime}, k, k_{2}, k^{\prime},=1}^{r_{1}, r_{3}} d_{i^{\prime}}^{*}\left(d_{i}\right) e_{j}^{*}\left(e_{j^{\prime}}\right) f_{k}^{*}\left(f_{k^{\prime}}\right) \cdot a_{i j} \otimes b_{j^{\prime} k} \otimes c_{k^{\prime} i^{\prime}} \\
& =\sum_{i, i^{\prime}, j, j^{\prime}, k, k^{\prime}=1}^{r_{1}, r_{1}, r_{3}}\left(\delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \delta_{k, k^{\prime}}\right) \cdot a_{i j} \otimes b_{j^{\prime} k} \otimes c_{k^{\prime} i^{\prime}}=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} a_{i j} \otimes b_{j k} \otimes c_{k i},
\end{aligned}
$$

where $\delta_{i, i^{\prime}}$ denotes the Kronecker delta.
Example 2.4 (PEPS). Let G be the 6 -vertex graph for PEPS in Figure 1a. We attach vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{6}$ to the vertices labeled x, y, z, u, v, w and vector spaces $\mathbb{E}_{1}, \ldots, \mathbb{E}_{7}$ to the edges labeled i, j, k, l, m, n, o respectively. $\operatorname{TNS}\left(G ; \mathbb{E}_{1}, \ldots, \mathbb{E}_{7} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{6}\right)$, the set of peps tensor network states, is obtained as follows. First, assign arbitrary directions to the edges, say, $x \xrightarrow{j} y \xrightarrow{l} z \xrightarrow{m} u \xrightarrow{n} v \xrightarrow{k} y$ and $v \xrightarrow{o} w \xrightarrow{i} x$. Next, consider tensors $T_{i} \in\left(\otimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\otimes_{j \in \operatorname{OUT}(i)} \mathbb{E}_{j}^{*}\right)$, i.e.,

$$
\begin{array}{lll}
T_{1} \in \mathbb{E}_{1} \otimes \mathbb{V}_{1} \otimes \mathbb{E}_{2}^{*}, & T_{2} \in\left(\mathbb{E}_{2} \otimes \mathbb{E}_{3}\right) \otimes \mathbb{V}_{2} \otimes \mathbb{E}_{4}^{*}, & T_{3} \in \mathbb{E}_{4} \otimes \mathbb{V}_{3} \otimes \mathbb{E}_{5}^{*}, \\
T_{4} \in \mathbb{E}_{5} \otimes \mathbb{V}_{4} \otimes \mathbb{E}_{6}^{*}, & T_{5} \in \mathbb{E}_{6} \otimes \mathbb{V}_{5} \otimes\left(\mathbb{E}_{3}^{*} \otimes \mathbb{E}_{7}^{*}\right), & T_{6} \in \mathbb{E}_{7} \otimes \mathbb{V}_{6} \otimes \mathbb{E}_{1}^{*} .
\end{array}
$$

Finally, we contract factors in \mathbb{E}_{j} with those in $\mathbb{E}_{j}^{*}, j=1, \ldots, 6$, giving us $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{6}\right) \in$ $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{6}$. If we choose bases on $\mathbb{E}_{1}, \ldots, \mathbb{E}_{7}$, then we obtain the expression for a PEPS tensor network state in coordinates,

$$
\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{6}\right)=\sum_{i, j, k, l, m, n, o=1}^{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}} a_{i j} \otimes b_{j k l} \otimes c_{l m} \otimes d_{m n} \otimes e_{n k o} \otimes f_{o i}
$$

as in Example 2.3; here $r_{j}=\operatorname{dim} \mathbb{E}_{j}$.
We end this section with a simple observation.
Proposition 2.5. For any undirected graph G with d vertices and c edges, $\operatorname{Tns}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is an irreducible constructible subset of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.

Proof. Let $\mathbb{U}_{i}=\mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}$ for $i=1, \ldots, d$. Let X be the irreducible variety of decomposable tensors in $\mathbb{U}_{1} \otimes \cdots \otimes \mathbb{U}_{d}$, i.e., $X=\left\{T_{1} \otimes \cdots \otimes T_{d} \in \mathbb{U}_{1} \otimes \cdots \otimes \mathbb{U}_{d}: T_{i} \in \mathbb{U}_{i}, i=1, \ldots, d\right\}$. Since X is irreducible and κ_{G} is a morphism between two varieties, the image $\kappa_{G}(X)=\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ must be irreducible and constructible.

The proof of this proposition also reveals the following illuminating insight, which in retrospect should have been obvious from (10) and Definition 2.1.

Corollary 2.6. Every tensor network state is a tensor contraction of a rank-one tensor.

3. Calculus of tensor networks

Let \mathbb{N} and \mathbb{N}_{0} denote the set of positive and nonnegative integers respectively. We will introduce some basic tools for manipulating tensor network states. We begin by introducing the notion of criticality, which will allow for various reductions of tensor network states.

Definition 3.1. Let $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)$ be a tensor network and the notations be as in Definition 2.1. Set

$$
m_{i}:=\prod_{j \in \operatorname{IN}(i) \cup \operatorname{UOT}(i)} r_{j}, \quad i=1, \ldots, d
$$

A vertex $i \in V$ is called subcritical if $n_{i}<m_{i}$, critical if $n_{i}=m_{i}$, and supercritical if $n_{i}>m_{i}$. We say that $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)$ is
(i) subcritical if $n_{i} \leq m_{i}$ for all $i=1, \ldots, d$, and at least one inequality is strict;
(ii) critical if $n_{i}=m_{i}$ for all $i=1, \ldots, d$;
(iii) supercritical if $n_{i} \geq m_{i}$ for all $i=1, \ldots, d$, and at least one inequality is strict.

Let \mathbb{V} be a n-dimensional vector space. For $k=1, \ldots, n$, we let $\operatorname{Gr}(k, \mathbb{V})$ denote the Grassmannian of k-dimensional subspaces of \mathbb{V}. For the special case, $\mathbb{V}=\mathbb{C}^{n}$, we write $\operatorname{Gr}(k, n)$ for the Grassmannian of k-planes in \mathbb{C}^{n}.

Let $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and other notations be as in Definition 2.1. The tautological vector bundle on $\operatorname{Gr}(k, \mathbb{V})$, denoted \mathcal{S}, is the vector bundle whose base space is $\operatorname{Gr}(k, \mathbb{V})$ and whose fiber over $[\mathbb{W}] \in \operatorname{Gr}(k, \mathbb{V})$ is simply the k-dimensional linear subspace $\mathbb{W} \subseteq \mathbb{V}$. For any $k_{1}, \ldots, k_{c} \in \mathbb{N}$, the tensor network bundle, denoted

$$
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathcal{S}_{1}, \ldots, \mathcal{S}_{d}\right),
$$

is the fiber bundle over the base space $\operatorname{Gr}\left(k_{1}, \mathbb{V}_{1}\right) \times \cdots \times \operatorname{Gr}\left(k_{d}, \mathbb{V}_{d}\right)$ whose fiber over a point $\left(\left[\mathbb{W}_{1}\right], \ldots,\left[\mathbb{W}_{d}\right]\right) \in \operatorname{Gr}\left(k_{1}, \mathbb{V}_{1}\right) \times \cdots \times \operatorname{Gr}\left(k_{d}, \mathbb{V}_{d}\right)$ is $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$.

We will need the following results from [17, Propositions 3 and 4], reproduced here for easy reference.

Proposition 3.2 (Reduction of degree-one subcritical vertices). Let $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and $G=$ (V, E) be a graph. Let $i \in V$ be a vertex of degree one adjacent to the vertex $j \in V$. If i is subcritical or critical, then we have the following reduction:

$$
\operatorname{TNS}\left(G ; r_{1}, r_{2}, \ldots, r_{c} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right),
$$

where $G^{\prime}=(V \backslash\{i\}, E \backslash\{i, j\})$, i.e., the graph obtained by removing the vertex i and edge $\{i, j\}$ from G, and $\left(r_{2}, \ldots, r_{c}\right) \in \mathbb{N}^{c-1}$. Alternatively, we may write

$$
\operatorname{TNS}\left(G ; r_{1}, r_{2}, \ldots, r_{c} ; n_{1}, n_{2}, n_{3}, \ldots, n_{d}\right)=\operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; n_{1} n_{2}, n_{3}, \ldots, n_{d}\right) .
$$

Proposition 3.3 (Reduction of supercritical vertices). Let $n_{i}=\operatorname{dim} \mathbb{V}_{i}, p_{i}=\min \left\{n_{i}, m_{i}\right\}$, and \mathcal{S}_{i} be the tautological vector bundle on $\operatorname{Gr}\left(p_{i}, \mathbb{V}_{i}\right)$ for $i=1, \ldots, d$. Then the map

$$
\pi: \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathcal{S}_{1}, \ldots, \mathcal{S}_{d}\right) \rightarrow \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right), \quad\left(\left[\mathbb{W}_{1}\right], \ldots,\left[\mathbb{W}_{d}\right], T\right) \mapsto T,
$$

is a surjective birational map.
Immediate consequences of Proposition 3.3 are a bound on the multilinear rank of tensor network states and a reduction formula for the dimension of a tensor network.

Corollary 3.4. Let the notations be as above. Then for any $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$, we have

$$
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subseteq \operatorname{Sub}_{p_{1}, \ldots, p_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

and

$$
\operatorname{dim} \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)=\operatorname{dim} \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; p_{1}, \ldots, p_{d}\right)+\sum_{i=1}^{d} p_{i}\left(n_{i}-p_{i}\right) .
$$

Note that by Proposition 3.3, all tensor network states can be reduced to one that is either critical or subcritical.

The next proposition is useful for describing when we are allowed to remove an edge from the graph while keeping the tensor network unchanged. The reader may notice a resemblance to Proposition 3.2, which is about collapsing two vertices into one and thus results in a reduction in the total number of vertices, but the goal of Proposition 3.5 is to remove an edge while leaving the total number of vertices unchanged.

Proposition 3.5 (Edge removal). Let $G=(V, E)$ be a graph with d vertices and c edges. Let $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$. Suppose that the edge $e \in E$ has weight $r_{1}=1$ and $G^{\prime}=(V, E \backslash\{e\})$ is the graph obtained by removing the edge e from G and suppose G^{\prime} has no isolated vertices. Then

$$
\operatorname{TNS}\left(G ; 1, r_{2}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \simeq \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

Proof. Assume without loss of generality that $e=\{1,2\}$. By definition,

$$
\begin{aligned}
\operatorname{TNS}\left(G ; 1, r_{2}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) & =\left\{\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right): T_{i} \in \mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}, i=1, \ldots, d\right\}, \\
\quad \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) & =\left\{\kappa_{G^{\prime}}\left(T_{1}^{\prime} \otimes \cdots \otimes T_{d}^{\prime}\right): T_{i}^{\prime} \in \mathbb{I}_{i}^{\prime} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}^{\prime}, i=1, \ldots, d\right\},
\end{aligned}
$$

where $\mathbb{I}_{i}, \mathbb{I}_{i}^{\prime}$ are inspaces, $\mathbb{O}_{i}, \mathbb{O}_{i}^{\prime}$ are outspaces, as defined in (11), and $\kappa_{G}, \kappa_{G^{\prime}}$ are contraction maps, as defined in (10), associated to G and G^{\prime} respectively. Since $r_{1}=1, \mathbb{E}_{1} \simeq \mathbb{C}$ and so contributes nothing ${ }^{4}$ to the factors $\mathbb{I}_{1} \otimes \mathbb{V}_{1} \otimes \mathbb{O}_{1}, \mathbb{I}_{2} \otimes \mathbb{V}_{2} \otimes \mathbb{O}_{2}$, and thus $\mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i} \simeq \mathbb{I}_{i}^{\prime} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}^{\prime}$ for $i=1$, 2 . On the other hand, $\mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}=\mathbb{I}_{i}^{\prime} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}^{\prime}$ for $i=3, \ldots, d$. Therefore the images of the contraction map must be isomorphic, as required.

The assumption that an isolated vertex does not arise in G^{\prime} upon removing the edge e is necessary because of (12). An immediate consequence of Proposition 3.5 is that tensor trains are a special case of matrix product states since

$$
\begin{equation*}
\operatorname{TNS}\left(C_{d} ; r_{1}, r_{2}, \ldots, r_{d-1}, 1 ; n_{1}, \ldots, n_{d}\right)=\operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; n_{1}, \ldots, n_{d}\right) \tag{13}
\end{equation*}
$$

where C_{d} is the cycle graph with d vertices, the edge with weight 1 is adjacent to the vertex 1 and d, and P_{d} is the path graph with d vertices.

We end the section with a result about restriction of tensor network states to subspaces of tensors, which will be crucial for an important property of tensor network rank established in Theorem 6.1.

Lemma 3.6 (Restriction lemma). Let G be a graph with d vertices and c edges. Let $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ be vector spaces and $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}$ be subspaces, $i=1, \ldots, d$. Then for any $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$,

$$
\begin{equation*}
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}=\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right) \tag{14}
\end{equation*}
$$

In particular, we always have

$$
\begin{equation*}
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right) \subseteq \operatorname{TNs}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \tag{15}
\end{equation*}
$$

[^3]Proof. It is obvious that ' \supseteq ' holds in (44) and it remains to show ' \subseteq '. Let \mathbb{E}_{j} be a vector space of dimension $r_{j}, j=1, \ldots, c$. Orient G arbitrarily and let the inspace \mathbb{I}_{i} and outspace \mathbb{O}_{i} be as defined in (11) for vertices $i=1, \ldots, d$. We obtain two commutative diagrams:

and

where Ψ^{\prime} sends $\left(x_{1}, \ldots, x_{d}\right), x_{i} \in \mathbb{I}_{i} \otimes \mathbb{W}_{i} \otimes \mathbb{O}_{i}, i=1, \ldots, d$, to $x_{1} \otimes \cdots \otimes x_{d}$ and Ψ is defined similarly; ψ^{\prime}, ψ are inclusions of tensor network states into their respective ambient spaces; Φ, ϕ are inclusions induced by $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}, i=1, \ldots, d ; \kappa^{\prime}$ is the restriction of $\kappa:=\kappa_{G} ; \kappa^{\prime \prime}$ the composition of κ^{\prime} and Ψ^{\prime}; and $\kappa^{\prime \prime \prime}$ the composition of κ and Ψ.

For each $i=1, \ldots, d$, write $\mathbb{V}_{i}^{+}=\mathbb{W}_{i}$ and decompose \mathbb{V}_{i} into a direct sum

$$
\mathbb{V}_{i}=\mathbb{V}_{i}^{-} \oplus \mathbb{V}_{i}^{+}
$$

for some linear subspace $\mathbb{V}_{i}^{-} \subseteq \mathbb{V}_{i}$. These give us the decomposition

$$
\prod_{i=1}^{d} \mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}=\prod_{i=1}^{d} \mathbb{I}_{i} \otimes\left(\mathbb{V}_{i}^{-} \oplus \mathbb{V}_{i}^{+}\right) \otimes \mathbb{O}_{i}=\prod_{i=1}^{d}\left(\mathbb{I}_{i} \otimes \mathbb{V}_{i}^{-} \otimes \mathbb{O}_{i}\right) \oplus\left(\mathbb{I}_{i} \otimes \mathbb{V}_{i}^{+} \otimes \mathbb{O}_{i}\right)
$$

Now we may write an element $T_{1} \otimes \cdots \otimes T_{d} \in \Psi\left(\prod_{i=1}^{d} \mathbb{I}_{i} \otimes \mathbb{V}_{i} \otimes \mathbb{O}_{i}\right)$ as

$$
T_{1} \otimes \cdots \otimes T_{d}=\left(T_{1}^{-}+T_{1}^{+}\right) \otimes \cdots \otimes\left(T_{d}^{-}+T_{d}^{+}\right)=\sum_{ \pm} T_{1}^{ \pm} \otimes \cdots \otimes T_{d}^{ \pm},
$$

where $T_{i}^{-} \in \mathbb{I}_{i} \otimes \mathbb{V}_{i}^{-} \otimes \mathbb{O}_{i}$ and $T_{i}^{+} \in \mathbb{I}_{i} \otimes \mathbb{V}_{i}^{+} \otimes \mathbb{O}_{i}$. Since $T_{1}^{ \pm} \otimes \cdots \otimes T_{d}^{ \pm} \in \Psi\left(\prod_{i=1}^{d} \mathbb{I}_{i} \otimes \mathbb{V}_{i}^{ \pm} \otimes \mathbb{O}_{i}\right)$,

$$
\kappa\left(T_{1} \otimes \cdots \otimes T_{d}\right) \in \sum_{ \pm} \kappa\left(\Psi\left(\prod_{i=1}^{d} \mathbb{I}_{i} \otimes \mathbb{V}_{i}^{ \pm} \otimes \mathbb{O}_{i}\right)\right)=\sum_{ \pm} \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}^{ \pm}, \ldots, \mathbb{V}_{d}^{ \pm}\right)
$$

Therefore $\kappa\left(T_{1} \otimes \cdots \otimes T_{d}\right) \in \mathbb{V}_{1}^{+} \otimes \cdots \otimes \mathbb{V}_{d}^{+}$implies that $T_{i} \in \mathbb{V}_{i}^{+}=\mathbb{W}_{i}$ for all $i=1, \ldots, d$ and hence $\kappa\left(T_{1} \otimes \cdots \otimes T_{d}\right) \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$.

4. G-ranks of tensors

The main goal of this article is to show that there is a natural notion of rank for tensor network with respect to any connected graph G. We start by reminding our readers of the classical notions of tensor rank and multilinear rank, with a small twist - instead of first defining tensor and multilinear ranks and then defining the respective sets they cut out, i.e., secant quasiprojective variety and subspace variety, we will reverse the order of these definitions. This approach will be consistent with how we define tensor network ranks later. The results in this and subsequent sections require that the vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ be finite-dimensional.

The Segre variety is the set of all decomposable tensors,

$$
\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right):=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: T=v_{1} \otimes \cdots \otimes v_{d}, v_{i} \in \mathbb{V}_{i}\right\} .
$$

The r-secant quasiprojective variety of the Segre variety is

$$
s_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right):=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: T=\sum_{i=1}^{r} T_{i}, T_{i} \in \operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right\}
$$

and its closure is the r-secant variety of the Segre variety,

$$
\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right):=\overline{s_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right)}
$$

The $\left(r_{1}, \ldots, r_{d}\right)$-subspace variety $[15]$ is the set

$$
\operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right):=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: T \in \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}, \mathbb{W}_{i} \subseteq \mathbb{V}_{i}, \operatorname{dim} \mathbb{W}_{i}=r_{i}\right\}
$$

The tensor rank or just rank [11] of a tensor $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is

$$
\operatorname{rank}(T):=\min \left\{r \in \mathbb{N}_{0}: T \in s_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right)\right\}
$$

its border rank [15] is

$$
\overline{\operatorname{rank}}(T):=\min \left\{r \in \mathbb{N}_{0}: T \in \sigma_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right)\right\}
$$

and its multilinear rank $[11,6,15]$ is

$$
\mu \operatorname{rank}(T):=\min \left\{\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}_{0}^{d}: T \in \operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right\}
$$

Note that $\operatorname{rank}(T)=0$ iff $\mu \operatorname{rank}(T)=(0, \ldots, 0)$ iff $T=0$ and that $\operatorname{rank}(T)=1$ iff $\mu \operatorname{rank}(T)=$ $(1, \ldots, 1)$. Thus

$$
\begin{aligned}
\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) & =\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}(T) \leq 1\right\}=\operatorname{Sub}_{1, \ldots, 1}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right), \\
s_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right) & =\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}(T) \leq r\right\}, \\
\operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) & =\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \mu \operatorname{rank}(T) \leq\left(r_{1}, \ldots, r_{d}\right)\right\} .
\end{aligned}
$$

When the vector spaces are unimportant or when we choose coordinates and represent tensors as hypermatrices, we write

$$
\begin{aligned}
\operatorname{Seg}\left(n_{1}, \ldots, n_{d}\right) & =\left\{T \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}: \operatorname{rank}(T) \leq 1\right\}, \\
\left.s_{r}\left(n_{1}, \ldots, n_{d}\right)\right) & =\left\{T \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}: \operatorname{rank}(T) \leq r\right\}, \\
\operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(n_{1}, \ldots, n_{d}\right) & =\left\{T \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}: \mu \operatorname{rank}(T) \leq\left(r_{1}, \ldots, r_{d}\right)\right\} .
\end{aligned}
$$

The dimension of a subspace variety is given by

$$
\begin{equation*}
\operatorname{dim} \operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(n_{1}, \ldots, n_{d}\right)=\sum_{i=1}^{d} r_{i}\left(n_{i}-r_{i}\right)+\prod_{j=1}^{d} r_{j} . \tag{16}
\end{equation*}
$$

Unlike tensor rank and multilinear rank, the existence of a tensor network rank is not obvious and will be established in the following. A tensor network $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is defined for any graph G although it is trivial when G contains an isolated vertex (see (12)). However, tensor network ranks or G-ranks will require the stronger condition that G be connected.

Theorem 4.1 (Every tensor is a tensor network state). Let $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ and let G be a connected graph with d vertices and c edges. Then there exists $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ such that

$$
T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

In fact, we may choose $r_{1}=\cdots=r_{c}=\operatorname{rank}(T)$, the tensor rank of T.
Proof. Let $r=\operatorname{rank}(T)$. Then there exist $v_{1}^{(i)}, \ldots, v_{r}^{(i)} \in \mathbb{V}_{i}, i=1, \ldots, d$, such that

$$
T=\sum_{p=1}^{r} v_{p}^{(1)} \otimes \cdots \otimes v_{p}^{(d)} .
$$

Let us take $r_{1}=\cdots=r_{c}=r$ and for each $i=1, \ldots, d$, let

$$
T_{i}=\sum_{p=1}^{r}\left(\bigotimes_{j \in \operatorname{IN}(i)} e_{p}^{(j)}\right) \otimes v_{p}^{(i)} \otimes\left(\bigotimes_{j \in \operatorname{OUT}(i)} e_{p}^{(j) *}\right)
$$

where $e_{1}^{(j)}, \ldots, e_{r}^{(j)} \in \mathbb{E}_{j}$ are a basis with dual basis $e_{1}^{(j) *}, \ldots, e_{r}^{(j) *} \in \mathbb{E}_{j}^{*}$, i.e., $e_{p}^{(j) *}\left(e_{q}^{(j)}\right)=\delta_{p q}$ for $p, q=1, \ldots, r$ and $j=1, \ldots, d$. In addition, we set $e_{p}^{(0)}=e_{p}^{(d+1)}=1 \in \mathbb{C}$ to be one-dimensional vectors (i.e., scalars), $p=1, \ldots, r$. We claim that upon contraction,

$$
\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)=T .
$$

To see this, observe that for each $i=1, \ldots, d$, there exists a unique h such that whenever $j \in$ $\operatorname{IN}(i) \cap \operatorname{OUT}(h), e_{p}^{(j)}$ and $e_{q}^{(j) *}$ contract to give $\delta_{p q}$; so the summand vanishes except when $p=q$.

This together with the assumption that G is connected implies that $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)$ reduces to a sum of terms of the form $v_{p}^{(1)} \otimes \cdots \otimes v_{p}^{(d)}$ for $p=1, \ldots, r$, which is of course is just T.

As an example to illustrate the above proof, let $d=3$ and $G=P_{3}$, the path graph with three vertices. Let e_{1}, \ldots, e_{r} be a basis of \mathbb{E}_{1} and let $e_{1}^{*}, \ldots, e_{r}^{*}$ be the dual basis. Let f_{1}, \ldots, f_{r} be a basis of \mathbb{E}_{2} and let $f_{1}^{*}, \ldots, f_{r}^{*}$ be the dual basis. Given a tensor

$$
T=\sum_{p=1}^{r} u_{p} \otimes v_{p} \otimes w_{p} \in \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

consider
$T_{1}=\sum_{p=1}^{r} u_{p} \otimes e_{p}^{*} \in \mathbb{V}_{1} \otimes \mathbb{E}_{1}^{*}, \quad T_{2}=\sum_{p=1}^{r} e_{p} \otimes v_{p} \otimes f_{p}^{*} \in \mathbb{E}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{E}_{2}^{*}, \quad T_{3}=\sum_{p=1}^{r} f_{p} \otimes w_{p} \in \mathbb{E}_{2} \otimes \mathbb{V}_{3}$.
Now observe that a nonzero term in $\kappa_{G}\left(T_{1} \otimes T_{2} \otimes T_{3}\right)$ must come from contracting e_{p}^{*} with e_{p} and f_{p}^{*} with f_{p}, showing that $T=\kappa_{G}\left(T_{1} \otimes T_{2} \otimes T_{2}\right) \in \operatorname{TNS}\left(G ; r, r ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$.

By Theorem 4.1 and Corollary 3.4, we obtain the following general inclusion relations (independent of G) between a tensor network and the sets of rank- r tensors and multilinear rank- $\left(r_{1}, \ldots, r_{d}\right)$ tensors.

Corollary 4.2. Let G be a connected graph with d vertices and c edges. Let $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ be vector spaces of dimensions n_{1}, \ldots, n_{d}. Then

$$
s_{r}:=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}(T) \leq r\right\} \subseteq \operatorname{TNS}(G ; \underbrace{r, \ldots, r}_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}) .
$$

Let $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and let $\left(p_{1}, \ldots, p_{d}\right) \in \mathbb{N}^{d}$ be given by

$$
p_{i}:=\min \left\{\prod_{j \in \operatorname{IN}(i) \cup \operatorname{OUT}(i)} r_{j}, n_{i}\right\}, \quad i=1, \ldots, d .
$$

Then

$$
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subseteq \operatorname{Sub}_{p_{1}, \ldots, p_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

In particular, if we let $\left(p_{1}, \ldots, p_{d}\right) \in \mathbb{N}^{d}$ where $p_{i}:=\min \left\{r^{b_{i}}, n_{i}\right\}$ and $b_{i}:=\# \operatorname{IN}(i) \cup \operatorname{OUT}(i)$, then

$$
s_{r} \subseteq \operatorname{TNS}\left(G ; r, \ldots, r ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subseteq \operatorname{Sub}_{p_{1}, \ldots, p_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

Since \mathbb{N}^{c} is a partially ordered set, in fact, a lattice [8], with respect to the usual partial order

$$
\left(r_{1}, \ldots, r_{c}\right) \leq\left(s_{1}, \ldots, s_{c}\right) \quad \text { iff } \quad r_{1} \leq s_{1}, \ldots, r_{c} \leq s_{c} .
$$

For a non-empty subset $S \subset L$, a partially ordered set, we denote the set of minimal elements of S by $\min (S)$. For example, if $S=\{(1,2),(2,1),(2,2)\} \subset \mathbb{N}^{2}$, then $\min (S)=\{(1,2),(2,1)\}$. By Theorem 4.1, for any graph G, any vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$, and any tensor $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$,

$$
\left\{\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}: T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right\} \neq \varnothing
$$

Hence we may define tensor network rank with respect to a given graph G, called G-rank for short, as the set-valued function

$$
\begin{aligned}
\operatorname{rank}_{G}: \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d} & \rightarrow 2^{\mathbb{N}^{c}}, \\
T & \mapsto \min \left\{\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}: T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)\right\},
\end{aligned}
$$

where $2^{\mathbb{N}^{c}}$ is the power set of all subsets of \mathbb{N}^{c}. Note that by Theorem 4.1, $\operatorname{rank}_{G}(T)$ will always be a finite subset of \mathbb{N}^{c}.

Nevertheless, following convention, we prefer to have $\operatorname{rank}_{G}(T)$ be an element as opposed to a subset of \mathbb{N}^{c}. So we will define G-rank to be any minimal element as opposed to the set of all minimal elements.

Definition 4.3 (Tensor network rank and maximal rank). Let G be a graph with d vertices and c edges. We say that $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ is a G-rank of $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, denoted by

$$
\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right),
$$

if $\left(r_{1}, \ldots, r_{c}\right)$ is minimal such that $T \in \operatorname{TNs}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, i.e.,

$$
T \in \operatorname{TNS}\left(G ; r_{1}^{\prime}, \ldots, r_{c}^{\prime} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \text { and } r_{1} \geq r_{1}^{\prime}, \ldots, r_{c} \geq r_{c}^{\prime} \quad \Longrightarrow \quad r_{1}^{\prime}=r_{1}, \ldots, r_{c}^{\prime}=r_{c} .
$$

A G-rank decomposition of T is its expression as element of $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ where $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$. We say that $\left(m_{1}, \ldots, m_{c}\right) \in \mathbb{N}^{c}$ is a maximal G-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ if $\left(m_{1}, \ldots, m_{c}\right)$ is minimal such that every $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ has rank not more than (m_{1}, \ldots, m_{c}).

Definition 4.3 says nothing about the uniqueness of a minimal $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$. We will see later that for an acyclic graph G, the minimal $\left(r_{1}, \ldots, r_{c}\right)$ is unique. We will see an extensive list of examples in Section 10 where we compute, for various G 's, the G-ranks of a number of special tensors: decomposable tensors, monomials (viewed as a symmetric tensor and thus a tensor), the noncommutative determinant and permanent, the W and GHS states, and the structure tensor of matrix-matrix product.

It follows from Definition 4.3 that

$$
\begin{equation*}
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}_{G}(T) \leq\left(r_{1}, \ldots, r_{c}\right)\right\} \tag{17}
\end{equation*}
$$

By Corollary 4.2, G-rank may be viewed as an 'interpolant' between tensor rank and multilinear rank; although in Section 11, we will see that they are strictly distinct notions - tensor and multilinear ranks are not special cases of G-ranks for specific choices of G. Since the set in (17) is in general not closed [17], we let

$$
\overline{\operatorname{TNS}}\left(G ; r ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right):=\overline{\operatorname{TNS}\left(G ; r ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)}
$$

denote its Zariski closure. With this, we obtain G-rank analogues of border rank and generic rank.
Definition 4.4 (Tensor network border rank and generic rank). Let G be a graph with d vertices and c edges. We say that $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ is a border G-rank of $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, denoted by

$$
\overline{\operatorname{rank}}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right),
$$

if $\left(r_{1}, \ldots, r_{c}\right)$ is minimal such that $T \in \overline{\operatorname{TNS}}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$. We say that $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ is a generic G-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ if $\left(g_{1}, \ldots, g_{c}\right)$ is minimal such that every $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ has border rank not more than $\left(g_{1}, \ldots, g_{c}\right)$.

Observe that by Definitions 4.3 and 4.4, we have

$$
\begin{aligned}
& \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}_{G}(T) \leq\left(r_{1}, \ldots, r_{c}\right)\right\}, \\
& \overline{\operatorname{TNS}}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \overline{\operatorname{rank}}_{G}(T) \leq\left(r_{1}, \ldots, r_{c}\right)\right\}, \\
& \overline{\operatorname{TNS}}\left(G ; g_{1}, \ldots, g_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}=\operatorname{TNS}\left(G ; m_{1}, \ldots, m_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right),
\end{aligned}
$$

for any $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and where $\left(m_{1}, \ldots, m_{c}\right)$ and $\left(g_{1}, \ldots, g_{c}\right)$ are respectively a maximal and a generic G-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Note also our use of the indefinite article $-a$ border/generic/maximal G-rank - since these are not in general unique if G is not acyclic. A more pedantic definition would be in terms of set-valued functions as in the discussion before Definition 4.3.

Following Definition 2.2, when G is a path graph, tree, cycle graph, product of path graphs, or a graph obtained from gluing trees and cycle graphs along edges, then we may also use the terms TT-rank, TTNS-rank, MPS-rank, PEPS-rank, or CTNS-rank to describe the respective G-ranks, and likewise for their respective generic G-rank and border G-rank. The terms hierarchical rank [9, Chapter 11] and tree rank [2] have also been used for Ttns-rank. Discussions of tT-rank, ttnsrank, MPS-rank will be deferred to Sections 7, 8, and 9 respectively. We will also compute many examples of G-ranks and border G-ranks for important tensors arising from algebraic computational complexity and quatum mechanics in Section 10.

5. TENSOR NETWORK RANKS CAN BE MUCH SMALLER THAN MATRIX, TENSOR, AND MULTILINEAR RANKS

Our first result regarding tensor network ranks may be viewed as the main impetus for tensor networks - we show that a tensor may have arbitrarily high tensor rank or multilinear rank and yet arbitrarily low G-rank for some graph G, in the sense that there is an arbitrarily large gap between the two ranks. The same applies to tensor network ranks corresponding to two different graphs. For all our comparisons in this section, a single example - the structure tensor for matrixmatrix product - suffices to demonstrate the gaps in various ranks. We will see more examples in Section 10. In Theorem 6.5, we will exhibit a graph G such that almost every tensor has exponentially small G-rank compared to its tensor rank or the dimension of its ambient space.
5.1. Comparison with tensor and multilinear ranks. In this and the next subsection, we will compare different ranks $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ and $\left(s_{1}, \ldots, s_{c^{\prime}}\right) \in \mathbb{N}^{c^{\prime}}$ by a simple comparison of their 1-norms $r_{1}+\cdots+r_{c}$ and $s_{1}+\cdots+s_{c^{\prime}}$. In Section 5.3, we will compare the actual dimensions of the sets of tensors with these ranks.

Theorem 5.1. For any $d \geq 3$, there exists a tensor $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ such that for some connected graph G with d vertices and c edges,
(i) the tensor rank $\operatorname{rank}(T)=r$ is much larger than the G-rank $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$ in the sense that

$$
r \gg r_{1}+\cdots+r_{c} ;
$$

(ii) the multilinear rank $\mu \operatorname{rank}(T)=\left(s_{1}, \ldots, s_{d}\right)$ is much larger than the G-rank $\operatorname{rank}_{G}(T)=$ $\left(r_{1}, \ldots, r_{c}\right)$ in the sense that

$$
s_{1}+\cdots+s_{d} \gg r_{1}+\cdots+r_{c} ;
$$

(iii) for some graph H with d vertices and c^{\prime} edges, the $H-\operatorname{rank} \operatorname{rank}_{H}(T)=\left(s_{1}, \ldots, s_{c^{\prime}}\right)$ is much larger than the G-rank $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$ in the sense that

$$
s_{1}+\cdots+s_{c^{\prime}} \gg r_{1}+\cdots+r_{c} .
$$

Here " " indicates a difference in the order of magnitude. In particular, the gap between the ranks can be arbitrarily large.

Proof. We first let $d=3$ and later extend our construction to arbitrary $d>3$. Set $\mathbb{V}_{3}=\mathbb{C}^{n \times n}$, the n^{2}-dimensional vector space of complex $n \times n$ matrices and $\mathbb{V}_{1}=\mathbb{V}_{2}=\mathbb{V}_{3}^{*}$, its dual space. Let $T=\mu_{n} \in\left(\mathbb{C}^{n \times n}\right)^{*} \otimes\left(\mathbb{C}^{n \times n}\right)^{*} \otimes \mathbb{C}^{n \times n} \cong \mathbb{C}^{n^{2} \times n^{2} \times n^{2}}$ be the structure tensor of matrix-matrix product [40], i.e.,

$$
\begin{equation*}
\mu_{n}=\sum_{i, j, k=1}^{n} E_{i k}^{*} \otimes E_{k j}^{*} \otimes E_{i j} \tag{18}
\end{equation*}
$$

where $E_{i j}=e_{i} e_{j}^{\top} \in \mathbb{C}^{n \times n}, i, j=1, \ldots, n$, is the standard basis with dual basis $E_{i j}^{*}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}$, $A \mapsto a_{i j}, i, j=1, \ldots, n$. It is well-known that $\operatorname{rank}\left(\mu_{n}\right) \geq n^{2}$ as it is not possible to multiply two $n \times n$ matrices with fewer than n^{2} multiplications. It is trivial to see that

$$
\begin{equation*}
\mu \operatorname{rank}\left(\mu_{n}\right)=\left(n^{2}, n^{2}, n^{2}\right) . \tag{19}
\end{equation*}
$$

Let P_{3} and C_{3} be the path graph and cycle graph on three vertices in Figures 2 and 4 respectively. Attach vector spaces $\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}$ to the vertices of both graphs. Then $\mu_{n} \in \operatorname{TNS}\left(C_{3} ; n, n, n ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$ and it is clear that $\mu_{n} \notin \operatorname{TNS}\left(C_{3} ; r_{1}, r_{2}, r_{3} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$ if at least one of $r_{1} \leq n, r_{2} \leq n, r_{3} \leq n$ holds strictly. Hence

$$
\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)=(n, n, n) .
$$

On the other hand, we also have

$$
\operatorname{rank}_{P_{3}}\left(\mu_{n}\right)=\left(n^{2}, n^{2}\right) .
$$

See Theorems 10.10 and 10.9 for more details on computing $\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)$ and $\operatorname{rank}_{P_{3}}\left(\mu_{n}\right)$. The required conclusions follow from

$$
\begin{aligned}
\left\|\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)\right\|_{1} & =3 n \ll n^{2} \leq \operatorname{rank}\left(\mu_{n}\right), \\
\left\|\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)\right\|_{1} & =3 n \ll 3 n^{2}=\left\|\mu \operatorname{rank}\left(\mu_{n}\right)\right\|_{1}, \\
\left\|\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)\right\|_{1} & =3 n \ll 2 n^{2}=\left\|\operatorname{rank}_{P_{3}}\left(\mu_{n}\right)\right\|_{1} .
\end{aligned}
$$

To extend the above to $d>3$, let $0 \neq v_{i} \in \mathbb{V}_{i}, i=4, \ldots, d$, and set

$$
T_{d}=\mu_{n} \otimes v_{4} \otimes \cdots \otimes v_{d} \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}
$$

Clearly, its tensor rank and multilinear rank are

$$
\begin{aligned}
& \text { or rank and multilinear rank are } \\
& \operatorname{rank}\left(T_{d}\right)=\operatorname{rank}\left(\mu_{n}\right) \geq n^{2}, \quad \mu \operatorname{rank}\left(T_{d}\right)=(n^{2}, n^{2}, n^{2}, \overbrace{1, \ldots, 1}^{d-3}) .
\end{aligned}
$$

Next we compute $\operatorname{rank}_{P_{d}}\left(T_{d}\right)$ and $\operatorname{rank}_{C_{d}}\left(T_{d}\right)$. Relabeling $v_{i j 1}=E_{i j}$ and $v_{11}^{(k)}=v_{k}$, we get
$T_{d}=\left(\sum_{i, j, k=1}^{n} E_{i k}^{*} \otimes E_{k j}^{*} \otimes E_{i j}\right) \otimes v_{4} \otimes \cdots \otimes v_{d}=\left(\sum_{i, j, k=1}^{n} E_{i k}^{*} \otimes E_{k j}^{*} \otimes v_{i j 1}\right) \otimes v_{11}^{(4)} \otimes \cdots \otimes v_{11}^{(d)}$, where it follows immediately that

$$
\begin{aligned}
& \mathrm{y} \text { that } \\
& T_{d} \in \operatorname{TNS}(P_{d} ; n^{2}, n^{2}, \overbrace{1, \ldots, 1}^{d-2} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}) .
\end{aligned}
$$

Since $\operatorname{rank}_{P_{3}}\left(\mu_{n}\right)=\left(n^{2}, n^{2}\right)$, by Theorem 10.9,

Now rewrite T_{d} as

$$
\operatorname{rank}_{P_{d}}\left(T_{d}\right)=(n^{2}, n^{2}, \underbrace{1, \ldots, 1}_{d-2})
$$

$$
\begin{aligned}
T_{d} & =\left(\sum_{i, j, k=1}^{n} E_{i k}^{*} \otimes E_{k j}^{*} \otimes E_{i j}\right) \otimes v_{4} \otimes \cdots \otimes v_{d} \\
& =\left(\sum_{i, j, k, l=1}^{n} E_{i k}^{*} \otimes E_{k j}^{*} \otimes v_{l j}\right) \otimes v_{l 1}^{(4)} \otimes v_{11}^{(5)} \otimes \cdots \otimes v_{11}^{(d-1)} \otimes v_{1 i}^{(d)}
\end{aligned}
$$

where

$$
v_{l j}=\left\{\begin{array}{ll}
E_{i j} & l=i, \\
0 & l \neq i,
\end{array} \quad v_{l 1}^{(4)}=\left\{\begin{array}{ll}
v_{4} & l=i, \\
0 & l \neq i,
\end{array} \quad v_{11}^{(5)}=v_{5}, \ldots, v_{11}^{(d-1)}=v_{d-1} ; \quad v_{1 i}^{(d)}=v_{d}, i=1, \ldots, n .\right.\right.
$$

It follows that $T_{d} \in \operatorname{TNS}(C_{d} ; n, n, n, n, \underbrace{1, \ldots, 1}_{d-4} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d})$ and so $\operatorname{rank}_{C_{d}}\left(T_{d}\right) \leq(n, n, n, n, \underbrace{1, \ldots, 1}_{d-4})$.
Hence we obtain

$$
\begin{aligned}
& \left\|\operatorname{rank}_{C_{d}}\left(T_{d}\right)\right\|_{1} \leq 4 n+d-4 \ll n^{2} \leq \operatorname{rank}\left(T_{d}\right), \\
& \left\|\operatorname{rank}_{C_{d}}\left(T_{d}\right)\right\|_{1} \leq 4 n+d-4 \ll 3 n^{2}+d-3=\left\|\mu \operatorname{rank}\left(T_{d}\right)\right\|_{1}, \\
& \left\|\operatorname{rank}_{C_{d}}\left(T_{d}\right)\right\|_{1} \leq 4 n+d-4 \ll 2 n^{2}+d-2=\left\|\operatorname{rank}_{P_{d}}\left(T_{d}\right)\right\|_{1} .
\end{aligned}
$$

5.2. Comparison with matrix rank. The matrix rank of a matrix can also be arbitrarily higher than its G-rank when regarded as a 3 -tensor. We will make this precise below.

Every d-tensor may be regarded as a d^{\prime}-tensor for any $d^{\prime} \leq d$ via flattening [15, 20]. The most common case is when $d^{\prime}=2$ and in which case the flattening map

$$
b_{k}: \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d} \rightarrow\left(\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{k}\right) \otimes\left(\mathbb{V}_{k+1} \otimes \cdots \otimes \mathbb{V}_{d}\right), \quad k=2, \ldots, d-1
$$

takes a d-tensor and sends it to a 2-tensor by 'forgetting' the tensor product structures in $\mathbb{V}_{1} \otimes \cdots \otimes$ \mathbb{V}_{k} and $\mathbb{V}_{k+1} \otimes \cdots \otimes \mathbb{V}_{d}$. The converse of this operation also holds in the following sense. Suppose the dimensions of the vector spaces \mathbb{V} and \mathbb{W} factor as

$$
\operatorname{dim}(\mathbb{V})=n_{1} \cdots n_{k}, \quad \operatorname{dim}(\mathbb{W})=n_{k+1} \cdots n_{d}
$$

for integers $n_{1}, \ldots, n_{d} \in \mathbb{N}$. Then we may impose tensor product structures on \mathbb{V} and \mathbb{W} so that

$$
\begin{equation*}
\mathbb{V} \cong \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{k}, \quad \mathbb{W} \cong \mathbb{V}_{k+1} \otimes \cdots \otimes \mathbb{V}_{d} \tag{20}
\end{equation*}
$$

where $\operatorname{dim} \mathbb{V}_{i}=n_{i}, i=1, \ldots, d$, and where \cong denotes vector space isomorphism. In which case the sharpening map

$$
\sharp_{k}: \mathbb{V} \otimes \mathbb{W} \rightarrow \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{k} \otimes \mathbb{V}_{k+1} \otimes \cdots \otimes \mathbb{V}_{d}, \quad k=2, \ldots, d-1,
$$

takes a 2 -tensor and sends it to a d-tensor by imposing the tensor product structures chosen in (20). Note that both b_{k} and \sharp_{k} are vector space isomorphisms. Applying this to matrices,

$$
\mathbb{C}^{n_{1} \cdots n_{k-1} \times n_{k} \cdots n_{d}} \cong \mathbb{C}^{n_{1} \cdots n_{k-1}} \otimes \mathbb{C}^{n_{k} \cdots n_{d}} \xrightarrow{\sharp k} \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}} \cong \mathbb{C}^{n_{1} \times \cdots \times n_{d}}
$$

and we see that any $n_{1} \cdots n_{k-1} \times n_{k} \cdots n_{d}$ matrix may be regarded as an $n_{1} \times \cdots \times n_{d}$ hypermatrix. Theorem 5.1 applies to matrices (i.e., $d=2$) in the sense of the following corollary.

Corollary 5.2. There exists a matrix in $\mathbb{C}^{m n \times p}$ whose matrix rank is arbitrarily larger than its C_{3}-rank when regarded as a hypermatrix in $\mathbb{C}^{m \times n \times p}$.
Proof. Let $\mu_{n} \in \mathbb{C}^{n^{2} \times n^{2} \times n^{2}}$ be a hypermatrix representing the structure tensor in Theorem 5.1. Consider any flattening [20] of μ_{n}, say, $\beta_{1}\left(\mu_{n}\right) \in \mathbb{C}^{n^{4} \times n^{2}}$. Then by (19), its matrix rank is

$$
\operatorname{rank}\left(\beta_{1}\left(\mu_{n}\right)\right)=n^{2} \gg 3 n=\left\|\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)\right\|_{1} .
$$

5.3. Comparing number of parameters. One might argue that the comparisons in Theorem 5.1 and Corollary 5.2 are not completely fair as, for instance, a rank- r decomposition of T may still require as many parameters as a G-rank- $\left(r_{1}, \ldots, r_{c}\right)$ decomposition of T, even if $r \gg r_{1}+\cdots+r_{c}$. We will show that this is not the case: if we measure the complexities of these decompositions by a strict count of parameters, the conclusion that G-rank can be much smaller than matrix, tensor, or multilinear ranks remain unchanged.

Let μ_{n} be the structure tensor for matrix-matrix product as in the proof of Theorem 5.1, which also shows that

$$
\operatorname{rank}_{C_{3}}\left(\mu_{n}\right)=(n, n, n), \quad \operatorname{rank}_{P_{3}}\left(\mu_{n}\right)=\left(n^{2}, n^{2}\right), \quad \mu \operatorname{rank}\left(\mu_{n}\right)=\left(n^{2}, n^{2}, n^{2}\right)
$$

Let $r:=\operatorname{rank}\left(\mu_{n}\right)$, the exact value of which is open but its current best known lower bound [25] is

$$
\begin{equation*}
r \geq 3 n^{2}-2 \sqrt{2} n^{3 / 2}-3 n \tag{21}
\end{equation*}
$$

which will suffice for our purpose.
Geometrically, the number of parameters is the dimension. So the number of parameters required to decompose μ_{n} as a point in $\operatorname{TNS}\left(C_{3} ; n, n, n ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right), \operatorname{TNS}\left(P_{3} ; n^{2}, n^{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$, $\operatorname{Sub}_{n^{2}, n^{2}, n^{2}}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$, and $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)\right)$ are given by their respective dimensions:

$$
\begin{align*}
\operatorname{dim} \operatorname{TNS}\left(C_{3} ; n, n, n ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) & =3 n^{4}-3 n^{2}, \tag{22}\\
\operatorname{dim} \operatorname{TNS}\left(P_{3} ; n^{2}, n^{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) & =n^{6}, \tag{23}\\
\operatorname{dim} \operatorname{Sub}_{n^{2}, n^{2}, n^{2}}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) & =n^{6}, \tag{24}\\
\operatorname{dim} \sigma_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)\right) & \geq 9 n^{4}-6 \sqrt{2} n^{7 / 2}-9 n^{3}-6 n^{2}+4 \sqrt{2} n^{3 / 2}+6 n-1 . \tag{25}
\end{align*}
$$

The dimensions in (22) and (23) follow from [39, Theorem 5.3] and that in (24) follows from (16). The lower bound on the tensor rank in (21) gives us the lower bound on the dimension in (25) by [1, Theorem 5.2].

In conclusion, a C_{3}-rank decomposition of μ_{n} requires fewer parameters than its P_{3}-rank decomposition, its multilinear rank decomposition, and its tensor rank decomposition.

6. Properties of tensor network rank

We will establish some fundamental properties of G-rank in this section. We begin by showing that like tensor rank and multilinear rank, G-ranks are independent of the choice of the ambient space, i.e., for a fixed G and any vector spaces $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}, i=1, \ldots, d$, a tensor in $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$ has the same G-rank whether it is regarded as an element of $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$ or of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. The
proof is less obvious and more involved than for tensor rank or multilinear rank, a consequence of Lemma 3.6.

Theorem 6.1 (Inheritance property). Let G be a connected graph with d vertices and cedges. Let $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}$ be a linear subspace, $i=1, \ldots, d$, such that $T \in \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$. Then $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ is a G-rank of T as an element in $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$ if and only if it is a G-rank of T as an element in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.

Proof. Let $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$ as an element in $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$ and $\operatorname{rank}_{G}(T)=\left(s_{1}, \ldots, s_{c}\right)$ as an element in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Then $\left(s_{1}, \ldots, s_{c}\right) \leq\left(r_{1}, \ldots, r_{c}\right)$. Suppose they are not equal, then $s_{i}<r_{i}$ for at least one $i \in\{1, \ldots, c\}$. Since $T \in \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ and $T \in \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$, we must have $T \in \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$ by Lemma 3.6, contradicting our assumption that $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$ as an element in $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$.

It is well-known that Theorem 6.1 holds true for tensor rank and multilinear rank [6, Proposition 3.1]; so this is yet another way G-ranks resemble the usual notions of ranks. This inheritance property has often been exploited in the calculation of tensor rank and similarly Theorem 6.1 provides a useful simplification in the calculation of G-ranks: Given $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, we may find linear subspaces $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}, i=1, \ldots, d$, such that $T \in \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$ and determine the G-rank of T as a tensor in the smaller space $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$. With this in mind, we introduce the following terminology.

Definition 6.2. $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is degenerate if there exist subspaces $\mathbb{W}_{i} \subseteq \mathbb{V}_{i}, i=1, \ldots, d$, with at least one strict inclusion, such that $T \in \mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{d}$. Otherwise T is nondegenerate.

Theorem 6.1 tells us the behavior of G-ranks with respect to subspaces. The next result tells us about the behavior of G-ranks with respect to subgraphs.

Proposition 6.3 (Subgraph). Let G be a connected graph with d vertices and c edges. Let H be a connected subgraph of G with d vertices and c^{\prime} edges.
(i) Let $\left(s_{1}, \ldots, s_{c^{\prime}}\right) \in \mathbb{N}^{c^{\prime}}$ be a generic H-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Then there exists $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ with $r_{i} \leq s_{i}, i=1, \ldots, c^{\prime}$, such that $\left(r_{1}, \ldots, r_{c}\right)$ is a generic G-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.
(ii) Let $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ and $\operatorname{rank}_{H}(T)=\left(s_{1}, \ldots, s_{c^{\prime}}\right)$. Then there exists $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$ with $r_{i} \leq s_{i}, i=1, \ldots, c^{\prime}$, such that $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$.

Proof. By Proposition 3.5, we have

$$
\begin{align*}
& \text { oposition 3.5, we have } \tag{26}\\
& \operatorname{TNS}\left(H ; s_{1}, \ldots, s_{c^{\prime}} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}(G ; s_{1}, \ldots, s_{c^{\prime}}, \overbrace{1, \ldots, 1}^{c-c^{\prime}} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}) .
\end{align*}
$$

Since $\left(s_{1}, \ldots, s_{C^{\prime}}\right)$ is a generic H-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$,

$$
\overline{\mathrm{TNS}}\left(G ; s_{1}, \ldots, s_{c^{\prime}}, 1, \ldots, 1 ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\overline{\mathrm{TNS}}\left(H ; s_{1}, \ldots, s_{c^{\prime}} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}
$$

implying that $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ has a generic G-rank with $r_{i} \leq s_{i}, i=1, \ldots, c^{\prime}$. The same argument and (26) show that $\operatorname{rank}_{G}(T)=\left(s_{1}, \ldots, s_{c^{\prime}}, 1, \ldots, 1\right) \in \mathbb{N}^{c}$.

Corollary 6.4. Let $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Then among all graphs G with d vertices T has the smallest G-rank when $G=K_{d}$, the complete graph on d vertices.

Theorem 5.1 tells us that some tensors have much lower G-ranks relative to their tensor rank, multilinear rank, or H-rank for some other graph H. We now prove a striking result that essentially says that for some G, almost all tensors have much lower G-ranks relative to the dimension of the tensor space. In fact, the gap is exponential in this case: For a tensor space of dimension $O\left(n^{d}\right)$, the G-rank of almost every tensor in it would only be $O(n(d-1))$; to see the significance, note that almost all tensors in such a space would have tensor rank $O\left(n^{d} /(n d-d+1)\right)$.

Theorem 6.5 (Almost all tensors have exponentially low G-rank). There exists a connected graph G such that $\left\|\operatorname{rank}_{G}(T)\right\|_{1} \ll \operatorname{dim}\left(\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}\right)$ for all T in a Zariski dense subset of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.

Proof. Let $G=S_{d}$, the star graph on d vertices in Figure 6. Let $\operatorname{dim} \mathbb{V}_{i}=n_{i}, i=1, \ldots, d$. Without loss of generality, we let the center vertex of S_{d} be vertex 1 and associate \mathbb{V}_{1} to it. Clearly, any $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ has $\operatorname{rank}_{S_{d}}(T)=\left(r_{1}, \ldots, r_{d-1}\right)$ where $r_{i} \leq n_{i+1}, i=1, \ldots, d-1$. Moreover,

$$
\left\{T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}: \operatorname{rank}_{S_{d}}(T)=\left(n_{2}, \ldots, n_{d}\right)\right\}
$$

is a Zariski open dense subset of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Now observe that

$$
\left\|\operatorname{rank}_{S_{d}}(T)\right\|_{1}=r_{1}+\cdots+r_{d-1} \leq n_{2}+\cdots+n_{d} \ll n_{1} \cdots n_{d}=\operatorname{dim}\left(\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}\right) .
$$

In particular, if $n_{i}=n, i=1, \ldots, d$, then the exponential gap becomes evident:

$$
\left\|\operatorname{rank}_{S_{d}}(T)\right\|_{1} \leq n(d-1) \ll n^{d}=\operatorname{dim}\left(\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}\right)
$$

Proposition 6.6 (Bound for G-ranks). Let G be a connected graph with d vertices and c edges. If $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is nondegenerate and $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$, then we must have

$$
\prod_{j \in \operatorname{IN}(i) \cup \operatorname{OUT}(i)} r_{j} \geq \operatorname{dim} \mathbb{V}_{i}, \quad i=1, \ldots, d .
$$

Proof. Suppose there exists some $i \in\{1, \ldots, d\}$ such that

$$
\prod_{j \in \mathrm{IN}(i) \cup \operatorname{UUT}(i)} r_{j}<\operatorname{dim} \mathbb{V}_{i} .
$$

By Proposition 3.3, \mathbb{V}_{i} may be replaced by a subspace of dimension $\prod_{j \in \operatorname{IN}(i) \cup \text { Uut }(i)} r_{j}$, showing that T is degenerate, a contradiction.

While we have formulated our discussions in a coordinate-free manner, the notion of G-rank applies to hypermatrices by making a choice of bases so that $\mathbb{V}_{i}=\mathbb{C}^{n_{i}}, i=1, \ldots, d$. In which case $\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}} \cong \mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ is the space of $n_{1} \times \cdots \times n_{d}$ hypermatrices.

Corollary 6.7. Let $A \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ and G be a d-vertex graph.
(i) Let $\left(M_{1}, \ldots, M_{d}\right) \in \mathrm{GL}_{n_{1}}(\mathbb{C}) \times \cdots \times \mathrm{GL}_{n_{d}}(\mathbb{C})$. Then

$$
\begin{equation*}
\operatorname{rank}_{G}\left(\left(M_{1}, \ldots, M_{d}\right) \cdot A\right)=\operatorname{rank}_{G}(A) \tag{27}
\end{equation*}
$$

(ii) Let $n_{1}^{\prime} \geq n_{1}, \ldots, n_{d}^{\prime} \geq n_{d}$. Then $\operatorname{rank}_{G}(A)$ is the same whether we regard A as an element of $\mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ or as an element of $\mathbb{C}^{n_{1}^{\prime} \times \cdots \times n_{d}^{\prime}}$.

Proof. The operation • denotes multilinear matrix multiplication [20], which is exactly the change-of-basis transformation for d-hypermatrices. (i) follows from the fact that the definition of G-rank is basis-free and (ii) follows from Theorem 6.1.

7. Tensor trains

Tensor trains and TT-rank (i.e., P_{d}-rank) are the simplest instances of tensor networks and tensor network ranks. They are a special case of both tTvs in Section 8 (since P_{d} is a tree) and mPS in Section 9 (see (13)). However, we single them out as TT-rank generalizes matrix rank and may be related to multilinear rank and tensor rank in certain cases; furthermore, we may determine the dimension of the set of tensor trains and, in some cases, the generic and maximal tT-ranks. We begin with two examples.

Example 7.1 (Matrix rank). Let $G=P_{2}$, the path graph on two vertices 1 and 2 (see Figure 2). This yields the simplest tensor network states: $\operatorname{TNS}\left(P_{2} ; r ; m, n\right)$ is simply the set rank- r matrices, or more precisely,

$$
\begin{equation*}
\operatorname{TNS}\left(P_{2} ; r ; m, n\right)=\left\{T \in \mathbb{C}^{m \times n}: \operatorname{rank}(T) \leq r\right\} \tag{28}
\end{equation*}
$$

and so matrix rank is just P_{2}-rank. Moreover, observe that

$$
\operatorname{TNS}\left(P_{2} ; r ; m, n\right) \cap \operatorname{TNS}\left(P_{2} ; s ; m, n\right)=\operatorname{TNS}\left(P_{2} ; \min \{r, s\} ; m, n\right),
$$

a property that we will generalize in Lemma 8.1 to arbitrary G-ranks for acyclic G 's.

Example 7.2 (Multilinear rank). Let $G=P_{3}$ with vertices $1,2,3$, which is the next simplest case. Orient P_{3} by $1 \rightarrow 2 \rightarrow 3$. Let $\left(r_{1}, r_{2}\right) \in \mathbb{N}^{2}$ satisfy $r_{1} \leq m, r_{1} r_{2} \leq n, r_{2} \leq p$. In this case

$$
\begin{equation*}
\operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; m, n, p\right)=\left\{T \in \mathbb{C}^{m \times n \times p}: \mu \operatorname{rank}(T) \leq\left(r_{1}, r_{1} r_{2}, r_{2}\right)\right\} \tag{29}
\end{equation*}
$$

and so

$$
\operatorname{rank}_{P_{3}}(T)=\left(r_{1}, r_{2}\right) \quad \text { iff } \quad \mu \operatorname{rank}(T)=\left(r_{1}, r_{1} r_{2}, r_{3}\right) .
$$

The P_{3}-rank of any $T \in \mathbb{C}^{m \times n \times p}$ is unique, a consequence of Theorem 8.3. But this may be deduced directly: Suppose T has two P_{3}-ranks $\left(r_{1}, r_{2}\right)$ and $\left(s_{1}, s_{2}\right)$. Then $T \in \operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; m, n, p\right) \cap$ $\operatorname{TNS}\left(P_{3} ; s_{1}, s_{2} ; m, n, p\right)$. We claim that there exists $\left(t_{1}, t_{2}\right) \in \mathbb{N}^{2}$ such that

$$
T \in \operatorname{TNS}\left(P_{3} ; t_{1}, t_{2} ; m, n, p\right) \subseteq \operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; m, n, p\right) \cap \operatorname{TNS}\left(P_{3} ; s_{1}, s_{2} ; m, n, p\right)
$$

Without loss of generality, we may assume ${ }^{5}$ that $r_{1} \leq s_{1}, r_{2} \geq s_{2}$, and that $r_{1} r_{2} \leq s_{1} s_{2}$. By (29) and the observation that

$$
\operatorname{Sub}_{r_{1}, r_{1} r_{2}, r_{2}}(m, n, p) \cap \operatorname{Sub}_{s_{1}, s_{1} s_{2}, s_{2}}(m, n, p)=\operatorname{Sub}_{r_{1}, r_{1} r_{2}, s_{2}}(m, n, p) \text {, }
$$

the assumption that $r_{2} \geq s_{2}$ allows us to conclude that

$$
\operatorname{Sub}_{r_{1}, r_{1} r_{2}, s_{2}}(m, n, p)=\operatorname{Sub}_{r_{1}, r_{1} s_{2}, s_{2}}(m, n, p)=\operatorname{TNS}\left(P_{3} ; r_{1}, s_{2} ; m, n, p\right)
$$

and therefore we may take $\left(t_{1}, t_{2}\right)=\left(r_{1}, s_{2}\right)$. So $\left(r_{1}, r_{2}\right)=\operatorname{rank}_{P_{3}}(T) \leq\left(r_{1}, s_{2}\right)$ and we must have $r_{2}=s_{2} ; \operatorname{similarly}\left(s_{1}, s_{2}\right)=\operatorname{rank}_{P_{3}}(T) \leq\left(r_{1}, s_{2}\right)$ and we must have $r_{1}=s_{1}$.

Example 7.3 (Rank-one tensors). The set of decomposable tensors of order d, i.e., rank- 1 or multilinear rank- $(1, \ldots, 1)$ tensors (or the zero tensor), are exactly tensor trains of P_{d}-rank $(1, \ldots, 1)$.

$$
\begin{equation*}
\operatorname{TNS}\left(P_{d} ; 1, \ldots, 1 ; n_{1}, \ldots, n_{d}\right)=\left\{T \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}: \operatorname{rank}(T) \leq 1\right\} . \tag{30}
\end{equation*}
$$

The equalities (28), (29), (30) are obvious from definition and may also be deduced from the respective dimensions given in [39, Theorem 4.8].

Theorem 7.4 (Dimension of tensor trains). Let P_{d} be the path graph with $d \geq 2$ vertices and $d-1$ edges. Let $\left(r_{1}, \ldots, r_{d-1}\right) \in \mathbb{N}^{d-1}$ be such that $\operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; n_{1}, \ldots, n_{d}\right)$ is supercritical or critical. Then

$$
\begin{align*}
\operatorname{dim} \operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; n_{1}, \ldots, n_{d}\right)=r_{d / 2}^{2}+ & \sum_{i=1}^{d} r_{i-1} r_{i}\left(n_{i}-r_{i-1} r_{i}\right) \\
& +\sum_{j=1}^{\lfloor d / 2\rfloor-1} r_{j+1}^{2}\left(r_{j}^{2}-1\right)+r_{d-j-1}^{2}\left(r_{d-j}^{2}-1\right) \tag{31}
\end{align*}
$$

where $r_{0}=r_{d}:=1$ and

$$
r_{d / 2}:= \begin{cases}r_{d / 2} & \text { for d even }, \\ r_{(d-1) / 2} r_{(d+1) / 2} & \text { for d odd. }\end{cases}
$$

If we set $k_{i}=m_{i}=r_{i-1} r_{i}, i=1, \ldots, d$, in (16), then

$$
\operatorname{dim} \operatorname{Sub}_{k_{1}, \ldots, k_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\sum_{i=1}^{d} r_{i-1} r_{i}\left(n_{i}-r_{i-1} r_{i}\right)+\prod_{j=1}^{d-1} r_{j}^{2}
$$

and with this, we have the following corollary of (31).
Corollary 7.5. Let P_{d} be the path graph of $d \geq 2$ vertices and $d-1$ edges. Let $\left(r_{1}, \ldots, r_{d-1}\right) \in$ \mathbb{N}^{d-1} be such that $\operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is supercritical or critical and $m_{i}=r_{i-1} r_{i}$, $i=1, \ldots, d$. Then

$$
\operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subseteq \operatorname{Sub}_{m_{1}, \ldots, m_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

[^4]is a subvariety of codimension
$$
\prod_{j=1}^{d-1} r_{j}^{2}-\left(\sum_{j=1}^{\lfloor d / 2\rfloor-1} r_{j+1}^{2}\left(r_{j}^{2}-1\right)+r_{d-j-1}^{2}\left(r_{d-j}^{2}-1\right)+m_{d / 2}^{2}\right)
$$

In particular, we have

$$
\begin{aligned}
\operatorname{TNS}\left(P_{2} ; r ; \mathbb{V}_{1}, \mathbb{V}_{2}\right) & =\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \mathbb{V}_{2}\right)\right), \\
\operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) & =\operatorname{Sub} \operatorname{Sur}_{r_{1}, r_{1} r_{2}, r_{2}}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right), \\
\operatorname{TNS}(P_{d} ; \underbrace{1, \ldots, 1}_{d-1} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}) & =\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right),
\end{aligned}
$$

where $r, r_{1}, r_{2} \in \mathbb{N}$. For all other d and r, we have a strict inclusion

$$
\operatorname{TNS}\left(P_{d} ; r_{1}, \ldots, r_{d-1} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subsetneq \operatorname{Sub}_{m_{1}, \ldots, m_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

We now provide a few examples of generic and maximal TT-ranks, in which G is the path graph P_{2}, P_{3}, or P_{4} in Figure 2. Again, these represent the simplest instances of more general results for tree tensor networks in Section 8 and are intended to be instructive. In the following let \mathbb{V}_{i} be a vector space of dimension $n_{i}, i=1,2,3,4$.

Example 7.6 (Generic/maximal TT-rank of $\mathbb{C}^{n_{1} \times n_{2}}$). In this case maximal and generic G-ranks are equivalent since G-rank and border G-rank are equal for acyclic graphs (see Corollary 8.6). By (28), the generic P_{2}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \cong \mathbb{C}^{n_{1} \times n_{2}}$ is $\min \left\{n_{1}, n_{2}\right\}$, i.e., the generic matrix rank.

Example 7.7 (Generic/maximal TT-rank of $\mathbb{C}^{n_{1} \times n_{2} \times n_{3}}$). Assume for simplicity that $n_{1} n_{2} \geq n_{3}$, we will show that the generic P_{3}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} \cong \mathbb{C}^{n_{1} \times n_{2} \times n_{3}}$ is $\left(n_{1}, n_{3}\right)$. Let $\left(g_{1}, g_{2}\right) \in \mathbb{N}^{2}$. By Corollary 3.4, if $\operatorname{TNS}\left(P_{3} ; g_{1}, g_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$ is supercritical at vertices 1 and 3 , then

$$
\operatorname{TNS}\left(P_{3} ; g_{1}, g_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) \subsetneq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

So we may assume that g_{1} and g_{2} are large enough so that $\operatorname{TNS}\left(P_{3} ; g_{1}, g_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$ is critical or subcritical at vertex 1 or vertex 3 . Thus we must have $g_{1} \geq n_{1}$ or $g_{2} \geq n_{3}$. By Proposition 3.2,

$$
\operatorname{TNS}\left(P_{3} ; n_{1}, n_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

and hence the generic P_{3}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$ is $\left(n_{1}, n_{3}\right)$.
Example 7.8 (Generic/maximal TT-rank of $\mathbb{C}^{2 \times 2 \times 2 \times 2}$). Let $n_{1}=n_{2}=n_{3}=n_{4}=2$. Let $\left(g_{1}, g_{2}, g_{3}\right) \in \mathbb{N}^{3}$ be the generic P_{4}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes \mathbb{V}_{4} \cong \mathbb{C}^{2 \times 2 \times 2 \times 2}$. By the definition of P_{4}-rank we must have

$$
\left(g_{1}, g_{2}, g_{3}\right) \leq(2,4,2)
$$

Suppose that either $g_{1}=1$ or $g_{3}=1$ - by symmetry, suppose $g_{1}=1$. In this case a 4 -tensor in $\operatorname{TNS}\left(P_{4} ; 1, g_{2}, g_{3} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right)$ has rank at most one when regarded as a matrix in $\mathbb{V}_{1} \otimes\left(\mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes\right.$ \mathbb{V}_{4}). However, a generic element in $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes \mathbb{V}_{4}$ has rank two when regarded as a matrix in $\mathbb{V}_{1} \otimes\left(\mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes \mathbb{V}_{4}\right)$, a contradiction. Thus $g_{1}=g_{3}=2$. Now by Proposition 3.2 , if $g_{2} \leq 3$, then

$$
\operatorname{TNS}\left(P_{4} ; 2, g_{2}, 2 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right)=\operatorname{TNS}\left(P_{2} ; g_{2} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \mathbb{V}_{3} \otimes \mathbb{V}_{4}\right) \subsetneq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes \mathbb{V}_{4}
$$

since $\operatorname{TNS}\left(P_{2} ; g_{2} ; 4,4\right)$ is the set of all 4×4 matrices of rank at most three. Hence the generic P_{4}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} \otimes \mathbb{V}_{4}$ must be $(2,4,2)$.

8. Tree tensor networks

We will now discuss TTNS-ranks, i.e., G-ranks where G is a tree (see Figure 3). Since G is assumed to be connected and every connected acyclic graph is a tree, this includes all acyclic G with tensor trains $\left(G=P_{d}\right)$ and star tensor network states $\left(G=S_{d}\right)$ as special cases. A particularly important result in this case is that TTNS-rank is always unique and is easily computable as matrix ranks of various flattenings of tensors.

We first establish the intersection property that we saw in Examples 7.1 and 7.2 more generally.

Lemma 8.1. Let G be a tree with d vertices and c edges. Let $\left(r_{1}, \ldots, r_{c}\right)$ and $\left(s_{1}, \ldots, s_{c}\right) \in \mathbb{N}^{c}$ be such that $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ and $\operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ are subcritical. Then
$\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}\left(G ; t_{1}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, where $\left(t_{1}, \ldots, t_{c}\right) \in \mathbb{N}^{c}$ is given by $t_{j}=\min \left\{r_{j}, s_{j}\right\}, j=1, \ldots, c$.

Proof. Without loss of generality, let the vertex 1 be a degree-one vertex (which must exist in a tree) and let the edge e_{1} be adjacent to the vertex 1 . It is straightforward to see that

$$
\operatorname{TNS}\left(G ; t_{1}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subseteq \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

To prove the opposite inclusion, we proceed by induction on d. The required inclusion holds for $d \leq 3$ by our calculations in Examples 7.1 and 7.2. Assume that it holds for $d-1$. Now observe that by Proposition 3.2,

$$
\operatorname{TNS}\left(G ; r_{1}, r_{2}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right)
$$

where G^{\prime} is the graph obtained by removing vertex 1 and its only edge e_{1}. Similarly,

$$
\operatorname{TNS}\left(G ; s_{1}, s_{2}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}\left(G^{\prime} ; s_{2}, \ldots, s_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right)
$$

Therefore,

$$
\begin{aligned}
& \operatorname{TNS}\left(G ; r_{1}, r_{2}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G ; s_{1}, s_{2}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)= \\
& \quad \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G^{\prime} ; s_{2}, \ldots, s_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \ldots, \mathbb{V}_{d}\right) .
\end{aligned}
$$

Given $T \in \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G^{\prime} ; s_{2}, \ldots, s_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \ldots, \mathbb{V}_{d}\right)$, there must be some subspace $\mathbb{W} \subseteq \mathbb{V}_{1} \otimes \mathbb{V}_{2}$ such that $\operatorname{dim} \mathbb{W} \leq \min \left\{r_{2}, s_{2}\right\}$ and thus

$$
T \in \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G^{\prime} ; s_{2}, \ldots, s_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right)
$$

By the induction hypothesis, we have

$$
\begin{aligned}
& \operatorname{TNS}\left(G^{\prime} ; r_{2}, \ldots, r_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G^{\prime} ; s_{2}, \ldots, s_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right) \\
&=\operatorname{TNS}\left(G^{\prime} ; t_{2}, \ldots, t_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right) .
\end{aligned}
$$

Since both $\operatorname{TNS}\left(G ; r_{1}, r_{2}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ and $\operatorname{TNS}\left(G ; s_{1}, s_{2}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ are subcritical, $\operatorname{TNS}\left(G ; t_{1}, t_{2}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is also subcritical. By (15) and Proposition 3.2,

$$
\begin{aligned}
T \in \operatorname{TNS}\left(G^{\prime} ; t_{2}, \ldots, t_{c} ; \mathbb{W}, \mathbb{V}_{3}, \ldots, \mathbb{V}_{d}\right) & \subseteq \operatorname{TNS}\left(G^{\prime} ; t_{2}, \ldots, t_{c} ; \mathbb{V}_{1} \otimes \mathbb{V}_{2}, \ldots, \mathbb{V}_{d}\right) \\
& =\operatorname{TNS}\left(G ; t_{1}, t_{2}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right),
\end{aligned}
$$

showing that the inclusion also holds for d, completing our induction proof.
We are now ready to prove a more general version of Lemma 8.1, removing the subcriticality requirement. Note that Lemma 8.1 is inevitable since our next proof relies on it.

Theorem 8.2 (Intersection of TTNS). Let G be a tree with d vertices and cedges. Let $\left(r_{1}, \ldots, r_{c}\right)$ and $\left(s_{1}, \ldots, s_{c}\right) \in \mathbb{N}^{c}$. Then

$$
\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{TNS}\left(G ; t_{1}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right),
$$

where $\left(t_{1}, \ldots, t_{c}\right) \in \mathbb{N}^{c}$ is given by $t_{j}=\min \left\{r_{j}, s_{j}\right\}, j=1, \ldots, c$.
Proof. We just need to establish ' \subseteq ' as ' \supseteq ' is obvious. Let $T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap$ $\operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$. Then there exist subspaces $\mathbb{W}_{1} \subseteq \mathbb{V}_{1}, \ldots, \mathbb{W}_{c} \subseteq \mathbb{V}_{c}$ such that both $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$ and $\operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$ are subcritical and

$$
\begin{aligned}
& T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right) \cap \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right) \\
&=\operatorname{TNS}\left(G ; t_{1}, \ldots, t_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right) \subseteq \operatorname{TNS}\left(G ; t_{1}, \ldots, t_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right),
\end{aligned}
$$

where the equality follows from Lemma 8.1 and the inclusion from (15).

Note that subspace varieties also satisfy the intersection property in Theorem 8.2, i.e.,

$$
\operatorname{Sub}_{r_{1}, \ldots, r_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{Sub}_{s_{1}, \ldots, s_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)=\operatorname{Sub}_{t_{1}, \ldots, t_{d}}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)
$$

However neither Lemma 8.1 nor Theorem 8.2 holds for graphs containing cycles, as we will see in Example 9.7 and Proposition 9.8.

We now establish the uniqueness of G-rank for any acyclic G, i.e., for a given d-tensor T, the G-rank of T is a unique d-tuple in \mathbb{N}^{d}, as opposed to a subset of a few d-tuples in \mathbb{N}^{d}. In particular, the TT-rank and STNS-rank of a tensor are both unique.
Theorem 8.3 (Uniqueness of Ttns-rank). The G-rank of a tensor $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ is unique if G is a d-vertex tree.

Proof. We may assume that T is nondegenerate; if not, we may replace $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ by appropriate subspaces without affecting the G-rank of T, by Theorem 6.1. Let $\left(r_{1}, \ldots, r_{d}\right)$ and $\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{N}^{d}$ be two G-ranks of T. By Proposition 6.6, T lies in the intersection of $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ and $\operatorname{TNs}\left(G ; s_{1}, \ldots, s_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, and both of them are subcritical since T is nondegnerate. By Lemma 8.1, T lies in $\operatorname{TNs}\left(G ; t_{1}, \ldots, t_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ where $t_{i} \leq r_{i}$ and $t_{i} \leq s_{i}, i=1, \ldots, d$. By the minimality in the definition of G-rank, we must have $r_{i}=s_{i}=t_{i}, i=1, \ldots, d$, as required.

Corollary 8.4 (Uniqueness of generic Ttns-rank). Let G be a tree with d vertices. For any vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$, there is a unique generic G-rank for $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.

As we saw in Examples 7.7 and 7.8 , the unique generic P_{3}-rank of $\mathbb{C}^{m \times m n \times n}$ is (m, n) while the unique generic P_{4}-rank of $\mathbb{C}^{2 \times 2 \times 2 \times 2}$ is $(2,4,2)$. There will be many examples in Sections 9 and 10 showing that neither Theorem 8.3 nor Corollary 8.4 holds for graphs containing cycles.

The next result is an important one. It guarantees that whenever G is acyclic, G-rank is upper semicontinuous and thus the kind of illposedness issues in [6] where a tensor may lack a best low-rank approximation do not happen.

Theorem 8.5 (TTNS are closed). Let G be a tree with d vertices. For any vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ and any $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$, the set $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{d} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is Zariski closed in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.
Proof. We proceed by induction on d. The statement holds trivially when $d=1$ by (12). Suppose it holds for all trees with at most $d-1$ vertices. Let G be a d-vertex tree. Applying Proposition 3.3 to $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, there is a subbundle \mathcal{E} of the bundle $\mathcal{S}_{1} \times \cdots \times \mathcal{S}_{d}$ on $\operatorname{Gr}\left(k_{1}, n_{1}\right) \times$ $\cdots \times \operatorname{Gr}\left(k_{d}, n_{d}\right)$ whose fiber over a point $\left(\left[\mathbb{W}_{1}\right], \ldots,\left[\mathbb{W}_{d}\right]\right)$ is

$$
F:=\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right),
$$

with the surjective birational map $\pi: \mathcal{E} \rightarrow \operatorname{TNS}\left(G ; r ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ induced by the projection map

$$
\operatorname{pr}_{2}:\left[\operatorname{Gr}\left(k_{1}, n_{1}\right) \times \cdots \times \operatorname{Gr}\left(k_{d}, n_{d}\right)\right] \times\left[\mathbb{V}_{1} \times \cdots \times \mathbb{V}_{d}\right] \rightarrow \mathbb{V}_{1} \times \cdots \times \mathbb{V}_{d}
$$

pr_{2} is a closed map since Grassmannian varieties are projective. Thus π is also a closed map. To show that $\operatorname{Tns}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$ is Zariski closed, it suffices to show that \mathcal{E} is Zariski closed in $\left[\operatorname{Gr}\left(k_{1}, n_{1}\right) \times \cdots \times \operatorname{Gr}\left(k_{d}, n_{d}\right)\right] \times\left[\mathbb{V}_{1} \times \cdots \times \mathbb{V}_{d}\right]$. As \mathcal{E} is a fiber bundle on $\operatorname{Gr}\left(k_{1}, n_{1}\right) \times \cdots \times \operatorname{Gr}\left(k_{d}, n_{d}\right)$ with fiber F, it in turn suffices to show that F is Zariski closed in $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$. Since $F=$ $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{W}_{1}, \ldots, \mathbb{W}_{d}\right)$ is critical, we may apply Proposition 3.2 to F and regard F as the tensor network of a tree with $d-1$ vertices. Therefore F is Zariski closed by the induction hypothesis.

Theorems 8.3 and 8.5 together yield the following corollary, which is in general false when G is not acyclic (see Theorem 9.12).
Corollary 8.6 (Border TTNS-rank). For any tree G, border G-rank equals G-rank and is unique.
It is well-known that tensor rank is NP-hard but multilinear rank is polynomial-time computable. We will next see that like multilinear rank, G-rank is polynomial-time computable whenever G is acyclic. We begin with some additional notations. Let $G=(V, E)$ be a connected tree with
d vertices and c edges. Since G is a connected tree, removing any edge $\{i, j\} \in E$ results in a disconnected graph with two components. ${ }^{6}$ Let $V(i)$ denote the set of vertices in the component connected to the vertex i. Then we have a disjoint union $V=V(i) \sqcup V(j)$. Now for any vector spaces $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$, we may define a flattening map associated with each edge $\{i, j\} \in E$,

$$
\begin{equation*}
b_{i j}: \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d} \rightarrow\left(\bigotimes_{h \in V(i)} \mathbb{V}_{h}\right) \otimes\left(\bigotimes_{h \in V(j)} \mathbb{V}_{h}\right) \tag{32}
\end{equation*}
$$

Note that $\operatorname{rank}\left(b_{i j}(T)\right)$ is polynomial-time computable as matrix rank for any $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$.
Lemma 8.7. Let $\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{E}$ be vector spaces and let $\kappa:\left(\mathbb{V}_{1} \otimes \mathbb{E}\right) \times\left(\mathbb{E}^{*} \otimes \mathbb{V}_{2}\right) \rightarrow \mathbb{V}_{1} \otimes \mathbb{V}_{2}$ defined by contracting factors in \mathbb{E} with factors in \mathbb{E}^{*}. For any $T_{1} \in \mathbb{V}_{1} \otimes \mathbb{E}$ and $T_{2} \in \mathbb{E}^{*} \otimes \mathbb{V}_{2}$, the rank of $\kappa\left(\left(T_{1}, T_{2}\right)\right)$ is at most $\operatorname{dim} \mathbb{E}$.
Proof. We denote by r the dimension of \mathbb{E} and we take a basis e_{1}, \ldots, e_{r} of \mathbb{E} with dual basis $e_{1}^{*}, \ldots, e_{r}^{*}$. By definition, we may write

$$
T_{1}=\sum_{i=1}^{r} e_{i} \otimes x_{i}, \quad T_{2}=\sum_{i=1}^{r} e_{i}^{*} \otimes y_{i}
$$

for some $x_{i} \in \mathbb{V}_{1}, y_{i} \in \mathbb{V}_{2}, i=1, \ldots, r$. Hence we have

$$
\kappa\left(\left(T_{1}, T_{2}\right)\right)=\sum_{i=1}^{r} x_{i} \otimes y_{i},
$$

and this shows that the rank of $\kappa\left(\left(T_{1}, T_{2}\right)\right)$ is at most r.
Theorem 8.8 (TTNS-rank is polynomial-time computable). Let G be a tree with d vertices and c edges labeled as in (8), i.e., $V=\{1, \ldots, d\}$ and $E=\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{c}, j_{c}\right\}\right\}$. Then for any $T \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, the G-rank of T is given by

$$
\begin{equation*}
\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right), \quad r_{p}=\operatorname{rank}\left(b_{i_{p} j_{p}}(T)\right), \quad p=1, \ldots, c . \tag{33}
\end{equation*}
$$

Proof. We will show that for $\left(r_{1}, \ldots, r_{c}\right)$ as defined in (33), (i) $T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, i.e., $\operatorname{rank}_{G}(T) \leq\left(r_{1}, \ldots, r_{c}\right)$; and (ii) it is minimal in \mathbb{N}_{0}^{c} such that (i) holds. Together, (i) and (ii) imply that $\operatorname{rank}_{G}(T)=\left(r_{1}, \ldots, r_{c}\right)$.

Let p be an integer such that $1 \leq p \leq c$. Since $r_{p}=\operatorname{rank}\left(b_{i_{p} j_{p}}(T)\right)$, we may write

$$
T=\sum_{i=1}^{r_{p}} R_{i} \otimes S_{i}, \quad R_{i} \in \bigotimes_{h \in V\left(i_{p}\right)} \mathbb{V}_{h}, \quad S_{i} \in \bigotimes_{h \in V\left(j_{p}\right)} \mathbb{V}_{h}, \quad i=1, \ldots, r_{p}
$$

Let \mathbb{E}_{p} be a vector space of dimension r_{p} attached to the edge $\left\{i_{p}, j_{p}\right\}$. Let $e_{1}, \ldots, e_{r_{p}}$ be a basis of \mathbb{E}_{p} and $e_{1}^{*}, \ldots, e_{r_{p}}^{*}$ be the corresponding dual basis of \mathbb{E}_{p}^{*}. Then

$$
T=\kappa_{G}\left(\left[\sum_{i=1}^{r_{p}} R_{i} \otimes e_{i}\right] \otimes\left[\sum_{j=1}^{r_{p}} e_{j}^{*} \otimes S_{j}\right]\right)
$$

We let R_{i} (resp. S_{j}) take the role of T and repeat the argument. Let $\left\{i_{q}, j_{q}\right\} \in E$ be such that i_{q}, j_{q} are both in $V\left(i_{p}\right)$. Then $V\left(i_{p}\right)$ is the disjoint union $V\left(i_{p}, i_{q}\right) \sqcup V\left(i_{p}, j_{q}\right)$ where $V\left(i_{p}, *\right)$ denotes the subset of $V\left(i_{p}\right)$ comprising all vertices in the component of vertex $*$ upon removal of $\left\{i_{q}, j_{q}\right\}$ (see Footnote 6). Since $R_{i} \in \bigotimes_{h \in V\left(i_{p}\right)} \mathbb{V}_{h}$, we may write

$$
\begin{equation*}
R_{i}=\sum_{k=1}^{r} P_{i k} \otimes Q_{k i}, \quad P_{i k} \in \bigotimes_{h \in V\left(i_{p}, i_{q}\right)} \mathbb{V}_{h}, \quad Q_{k j} \in \bigotimes_{h \in V\left(i_{p}, j_{q}\right)} \mathbb{V}_{h}, \quad k=1, \ldots, r \tag{34}
\end{equation*}
$$

for some $r \in \mathbb{N}$. We claim that we may choose $r \leq r_{q}$. Since $r_{q}=\operatorname{rank}\left(b_{i_{q} j_{q}}(T)\right)$,

$$
\operatorname{dim} \operatorname{span}\left\{P_{i k}: i=1, \ldots, r_{p}, k=1, \ldots, r\right\}=r_{q},
$$

and so we may find $P_{1}, \ldots, P_{r_{q}}$ such that each $P_{i k}$ is a linear combination of $P_{1}, \ldots, P_{r_{q}}$. Thus for each $i=1, \ldots, r_{p}, R_{i}$ can be written as

$$
R_{i}=\sum_{k=1}^{r_{q}} P_{k} \otimes Q_{k i}^{\prime}, \quad P_{k} \in \bigotimes_{h \in V\left(i_{p}, i_{q}\right)} \mathbb{V}_{h}, \quad Q_{k i}^{\prime} \in \bigotimes_{h \in V\left(i_{p}, j_{q}\right)} \mathbb{V}_{h}, \quad k=1, \ldots, r_{q},
$$

[^5]where each $Q_{k i}^{\prime}$ is a linear combination of the $Q_{k i}$'s in (34). Then we may write T as
\[

$$
\begin{aligned}
T & =\kappa_{G}\left(\left[\sum_{i=1}^{r_{p}}\left(\sum_{k=1}^{r_{q}} P_{k} \otimes f_{k}\right) \otimes\left(\sum_{l=1}^{r_{q}} f_{l}^{*} \otimes Q_{l i}^{\prime}\right) \otimes e_{i}\right] \otimes\left[\sum_{j=1}^{r_{p}} e_{j}^{*} \otimes S_{j}\right]\right) \\
& =\kappa_{G}\left(\left[\sum_{k=1}^{r_{q}} P_{k} \otimes f_{k}\right] \otimes\left[\sum_{i, l=1}^{r_{p}, r_{q}} f_{l}^{*} \otimes Q_{l i}^{\prime} \otimes e_{i}\right] \otimes\left[\sum_{j=1}^{r_{p}} e_{j}^{*} \otimes S_{j}\right]\right),
\end{aligned}
$$
\]

where $f_{1}, \ldots, f_{r_{q}}$ is a basis of \mathbb{E}_{q} and $f_{1}^{*}, \ldots, f_{r_{q}}^{*}$ is the corresponding dual basis of \mathbb{E}_{q}^{*}.
Repeating the process in the previous paragraph until we exhaust all edges, we obtain $T=$ $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)$ for some

$$
T_{i} \in\left(\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{E}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{k \in \operatorname{OUT}(i)} \mathbb{E}_{k}^{*}\right), \quad \operatorname{dim} \mathbb{E}_{j}=r_{j}, \quad i=1, \ldots, d, j=1, \ldots, c .
$$

and thus $T \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, establishing (i).
Suppose $\left(s_{1}, \ldots, s_{c}\right) \leq\left(r_{1}, \ldots, r_{c}\right)$ is such that $T \in \operatorname{TNS}\left(G ; s_{1}, \ldots, s_{c} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right)$, i.e., $T=$ $\kappa_{G}\left(T_{1} \otimes \cdots \otimes T_{d}\right)$ for some

$$
T_{i} \in\left(\bigotimes_{j \in \operatorname{IN}(i)} \mathbb{F}_{j}\right) \otimes \mathbb{V}_{i} \otimes\left(\bigotimes_{k \in \operatorname{OUT}(i)} \mathbb{F}_{k}^{*}\right), \quad \operatorname{dim} \mathbb{F}_{j}=s_{j}, \quad i=1, \ldots, d, j=1, \ldots, c
$$

However, for each $p=1, \ldots, c$, we can also write

$$
T=\kappa_{G}\left(\left[\bigotimes_{h \in V\left(i_{p}\right)} T_{h}\right] \otimes\left[\bigotimes_{h \in V\left(j_{p}\right)} T_{h}\right]\right)
$$

where

$$
\begin{aligned}
& {\left[\bigotimes_{h \in V\left(i_{p}\right)} T_{h}\right] \in\left(\bigotimes_{h \in V\left(i_{p}\right)}\left(\bigotimes_{j \in \operatorname{IN}(h)} \mathbb{F}_{j} \otimes \mathbb{V}_{h} \otimes \bigotimes_{j \in \operatorname{OUT}(h), j \neq p} \mathbb{F}_{j}^{*}\right)\right) \otimes \mathbb{F}_{p}^{*},} \\
& {\left[\bigotimes_{h \in V\left(j_{p}\right)} T_{h}\right] \in \mathbb{F}_{p} \otimes\left(\bigotimes_{k \in V\left(j_{p}\right)}\left(\bigotimes_{j \in \operatorname{IN}(k), j \neq p} \mathbb{F}_{j} \otimes \mathbb{V}_{k} \otimes \bigotimes_{j \in \operatorname{OUT}(k)} \mathbb{F}_{j}^{*}\right)\right) .}
\end{aligned}
$$

This together with Lemma 8.7 imply that $r_{p}=\operatorname{rank}\left(b_{i_{p} j_{p}}(T)\right) \leq s_{p}$ and therefore $r_{p}=s_{p}$, establishing (ii).

A weaker form of Theorem 8.8 that establishes the upper bound $\operatorname{rank}_{G}(T) \leq\left(r_{1}, \ldots, r_{c}\right)$ in (33) under the assumption that $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ are Hilbert spaces appeared in [2, Theorem 3.3]. An immediate consequence of Theorem 8.8 is the following.

Corollary 8.9 (TTNS as an algebraic variety). Let $G=(V, E)$ be a tree with d vertices and c edges. For any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ and $\left(r_{1}, \ldots, r_{c}\right) \in \mathbb{N}^{c}$, $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n 1, \ldots, n_{d}\right)$ is an irreducible algebraic variety in $\mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ with vanishing ideal generated by all $\left(r_{p}+1\right) \times\left(r_{p}+1\right)$ minors of the flattening map (32) for $\left\{i_{p}, j_{p}\right\} \in E$, taken over all $p=1, \ldots, c$.

We will see in the next section that when G contains a cycle, G-rank cannot be computed as matrix ranks of flattening maps and $\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)$ is not Zariski closed in general.

9. Matrix product states

We will restrict our attention in this section to the case where $G=C_{d}$, the cyclic graph on d vertices in Figure 4. This gives us the matrix product states - one of the most widely used class of tensor network states. We start by stating the dimensions of MPS in the supercritical and subcritical cases. Theorem 9.1 and Corollary 9.2 appear as [39, Theorem 4.10 and Corollary 4.11].

Theorem 9.1 (Dimension of MPS). Let C_{d} be the cycle graph with $d \geq 3$ vertices and d edges. Let $\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ be such that $\operatorname{TNS}\left(C_{d} ; r_{1}, \ldots, r_{d} ; n_{1}, \ldots, n_{d}\right)$ is supercritical or critical. Then

$$
\operatorname{dim} \operatorname{TNS}\left(C_{d} ; r_{1}, \ldots, r_{d} ; n_{1}, \ldots, n_{d}\right)=\sum_{i=1}^{d} r_{i} r_{i+1} n_{i}-\sum_{i=1}^{d} r_{i}^{2}+1
$$

where $r_{d+1}:=r_{1}$.
It follows from the above dimension count that every element in $\mathbb{C}^{m \times n \times m n}$ is an MPS state.

Corollary 9.2. Let C_{3} be the three-vertex cycle graph and

$$
\operatorname{dim} \mathbb{V}_{1}=n_{1}, \quad \operatorname{dim} \mathbb{V}_{2}=n_{2}, \quad \operatorname{dim} \mathbb{V}_{3}=n_{1} n_{2}
$$

Then

$$
\overline{\operatorname{TNS}}\left(C_{3} ; n_{1}, n_{2}, 1 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

Theorem 9.3 (Generic C_{3}-ranks of MPS). Let C_{3} be the cycle graph on three vertices. If $\operatorname{dim} \mathbb{V}_{i}=$ $n_{i}, i=1,2,3$ and $n_{2} n_{3} \geq n_{1}, n_{1} n_{3} \geq n_{2}$, then $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$ has generic C_{3}-rank $\left(n_{1}, n_{2}, 1\right)$.
Proof. First we have

$$
\operatorname{TNS}\left(C_{3} ; n_{1}, n_{2}, 1 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\operatorname{TNS}\left(P_{3} ; n_{1}, n_{2} ; \mathbb{V}_{1}, \mathbb{V}_{3}, \mathbb{V}_{2}\right)=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

where the first equality follows from Proposition 3.5 and the second follows from Proposition 3.2. Next, we claim that there does not exist $\left(r_{1}, r_{2}, 1\right) \in \mathbb{N}^{3}$ such that

$$
\overline{\operatorname{TNS}}\left(C_{3} ; r_{1}, r_{2}, 1 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
$$

and that $r_{1} \leq n_{1}, r_{2} \leq n_{2}$ with at least one strict inequality. Take $r_{1}<n_{1}$ for example (the other case may be similarly argued). Again by Proposition 3.5,

$$
\operatorname{dim} \operatorname{TNS}\left(C_{3} ; r_{1}, r_{2}, 1 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\operatorname{dim} \operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; \mathbb{V}_{1}, \mathbb{V}_{3}, \mathbb{V}_{2}\right)
$$

By Proposition 3.3,

$$
\begin{aligned}
\operatorname{dim} \operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; \mathbb{V}_{1}, \mathbb{V}_{3}, \mathbb{V}_{2}\right) & =\operatorname{dim} \operatorname{Gr}\left(r_{1}, n_{1}\right)+\operatorname{dim} \operatorname{TNS}\left(P_{2} ; r_{2} ; r_{1} n_{3}, n_{2}\right) \\
& \leq r_{1}\left(n_{1}-r_{1}\right)+r_{1} n_{2} n_{3}<n_{1} n_{2} n_{3}
\end{aligned}
$$

as $n_{2} n_{3} \geq n_{1}>r_{1}$. Thus

$$
\operatorname{TNS}\left(C_{3} ; r_{1}, r_{2}, 1 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) \subsetneq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3} .
$$

Hence $\left(n_{1}, n_{2}, 1\right)$ is a generic C_{3}-rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$.
Corollary 9.4. If $\operatorname{dim} \mathbb{V}_{1}=\operatorname{dim} \mathbb{V}_{2}=\operatorname{dim} \mathbb{V}_{3}=n$, then $(n, n, 1),(1, n, n)$, and $(n, 1, n)$ are all the generic C_{3}-ranks of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$.
Proof. Apply Theorem 9.3 to the case $n_{1}=n_{2}=n_{3}=n$ to see that ($n, n, 1$) is a generic rank of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$. Now we may permute $\mathbb{V}_{1}, \mathbb{V}_{2}$ and \mathbb{V}_{3} to obtain the other two generic C_{3}-ranks.

In case the reader is led to the false belief that the sums of entries of generic C_{3}-ranks are always equal, we give an example to show that this is not the case.

Example 9.5. Let $\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}$ be of dimensions n_{1}, n_{2}, n_{3} where

$$
n_{2} \neq n_{3} \quad \text { and } \quad n_{i} n_{j} \geq n_{k} \text { whenever }\{i, j, k\}=\{1,2,3\} .
$$

By Theorem 9.3, we see that $\left(1, n_{2}, n_{1}\right)$ and $\left(n_{1}, 1, n_{3}\right)$ are both generic C_{3}-ranks of $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$ but $1+n_{2}+n_{1} \neq n_{1}+1+n_{3}$.

The following provides a necessary condition for generic C_{d}-rank of supercritical MPS.
Theorem 9.6 (Test for generic C_{d}-rank). Let $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ and $\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ be such that $\operatorname{TNS}\left(C_{d} ; r_{1}, \ldots, r_{d} ; n_{1}, \ldots, n_{d}\right)$ is supercritical, i.e., $n_{i} \geq r_{i} r_{i+1}, i=1, \ldots, d$, where $r_{d+1}:=r_{1}$. If $\left(r_{1}, \ldots, r_{d}\right)$ is a generic C_{d}-rank of $\mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$, then there exists $j \in\{1, \ldots, d\}$ such that

$$
\begin{equation*}
\prod_{i \neq j} n_{i}<d n_{j} . \tag{35}
\end{equation*}
$$

Proof. Fix $\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ and consider the function

$$
f\left(n_{1}, \ldots, n_{d}\right):=\prod_{i=1}^{d} n_{i}-\sum_{i=1}^{d} r_{i} r_{i+1} n_{i}+\sum_{i=1}^{d} r_{i}^{2}-1 .
$$

We have

$$
f\left(n_{1}, \ldots, n_{d}\right) \geq \prod_{i=1}^{d} n_{i}-\sum_{i=1}^{d} n_{i}^{2}+\sum_{i=1}^{d} r_{i}^{2}-1=\sum_{i=1}^{d} \frac{1}{d} \prod_{i=1}^{d}\left(n_{i}-n_{i}^{2}\right)+\sum_{i=1}^{d} r_{i}^{2}-1 .
$$

If $\left(r_{1}, \ldots, r_{d}\right)$ is a generic C_{3}-rank, then $f\left(n_{1}, \ldots, n_{d}\right)=0$ by Theorem 9.1. This implies that for some $j=1, \ldots, d$, we must have (35).

The next example shows that intersection of MPS are more intricate than that of tTNS. In particular, Lemma 8.1 does not hold for MPS.

Example 9.7 (Intersection of MPS). Let \mathbb{U}, \mathbb{V}, \mathbb{W} be two-dimensional vector spaces associated respectively to vertices $1,2,3$ of C_{3}. Let $r_{i} \in \mathbb{N}$ be the weight of the edge not adjacent to the vertex $i \in V=\{1,2,3\}$.

By Corollary 9.4, we see that

$$
\operatorname{TNs}\left(C_{3} ; 2,1,2 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)=\operatorname{TNs}\left(C_{3} ; 2,2,1 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)=\mathbb{U} \otimes \mathbb{V} \otimes \mathbb{W}
$$

Observe that an element in $\operatorname{TNS}\left(C_{3} ; 2,1,2 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)$ takes the form

$$
u_{1} \otimes v_{1} \otimes w_{1}+u_{1} \otimes v_{2} \otimes w_{2}+u_{2} \otimes v_{3} \otimes w_{1}+u_{2} \otimes v_{4} \otimes w_{2}
$$

where $u_{1}, u_{2} \in \mathbb{U}, v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{V}, w_{1}, w_{2} \in \mathbb{W}$. By symmetry, an element in $\operatorname{Tns}\left(C_{3} ; 2,2,1 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)$ takes the form

$$
u_{1} \otimes v_{1} \otimes w_{1}+u_{1} \otimes v_{2} \otimes w_{2}+u_{2} \otimes v_{1} \otimes w_{3}+u_{2} \otimes v_{2} \otimes w_{4}
$$

where $u_{1}, u_{2} \in \mathbb{U}, v_{1}, v_{2} \in \mathbb{V}, w_{1}, w_{2}, w_{3}, w_{4} \in \mathbb{W}$. However, $\operatorname{TNs}\left(C_{3} ; 1,1,2 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)$ is a proper subset of $\mathbb{U} \otimes \mathbb{V} \otimes \mathbb{W}$ since an element in $\operatorname{Tns}\left(C_{3} ; 1,1,2 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)$ takes the form

$$
u_{1} \otimes v_{1} \otimes w+u_{2} \otimes v_{2} \otimes w
$$

where $u_{1}, u_{2} \in \mathbb{U}, v_{1}, v_{2} \in \mathbb{V}, w \in \mathbb{W}$. Hence

$$
\operatorname{TNs}\left(C_{3} ; 2,1,2 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right) \cap \operatorname{TNs}\left(C_{3} ; 2,2,1 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right) \supsetneq \operatorname{TNs}\left(C_{3} ; 2,1,1 ; \mathbb{U}, \mathbb{V}, \mathbb{W}\right)
$$

and thus Lemma 8.1 does not hold for C_{3}.
The main difference between tensor network states associated to trees and those associated to cycle graphs is that one may apply Proposition 3.2 to trees but not to graphs containing cycles. In particular, the induction argument used to prove Lemma 8.1 fails for non-acyclic graphs.

Example 9.7 generalizes to the following proposition, i.e., Theorem 8.2 is always false for MPS.
Proposition 9.8 (Intersection of MPS). Let $d \geq 3$ and C_{d} be the cycle graph with d vertices. Then there exists $\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}$ and $\underline{r}=\left(r_{1}, \ldots, r_{d}\right), \underline{s}=\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{N}^{d}$ such that

$$
\begin{equation*}
\operatorname{TNS}\left(C_{d} ; \underline{t} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \subsetneq \operatorname{TNS}\left(C_{d} ; \underline{r} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \cap \operatorname{TNS}\left(C_{d} ; \underline{;} ; \mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \tag{36}
\end{equation*}
$$

where $\underline{t}=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{N}^{d}$ is given by $t_{i}=\min \left(r_{i}, s_{i}\right), i=1, \ldots, d$.
Proof. Let all \mathbb{V}_{i} 's be two-dimensional. If d is odd, set

$$
\underline{r}=(2,1,2,1, \ldots, 2,1,2), \quad \underline{s}=(2,2,1,2, \ldots, 1,2,1), \quad \underline{t}=(2,1,1,1, \ldots, 1,1,1) \text {, }
$$

and it is easy to check that (36) holds with strict inclusion. If $d \equiv 0(\bmod 4)$, write $d=4 m$, set

$$
\underline{r}=(\overbrace{1,2, \ldots, 1,2}^{2 m}, \overbrace{2,1, \ldots, 2,1}^{2 m}), \quad \underline{s}=(\overbrace{2,1, \ldots, 2,1}^{2 m}, \overbrace{1,2, \ldots, 1,2}^{2 m}) ;
$$

if $d \equiv 2(\bmod 4)$, write $d=4 m+2$, set

$$
\underline{r}=(\overbrace{1,2, \ldots, 1,2}^{2 m}, 1,1, \overbrace{2,1, \ldots, 2,1}^{2 m}), \quad \underline{s}=(\overbrace{2,1, \ldots, 2,1}^{2 m}, 2,2, \overbrace{1,2, \ldots, 1,2}^{2 m}) .
$$

In both cases, we have $\underline{t}=(1, \ldots, 1)$ and it is easy to verify (36).

We saw that generic C_{d}-rank is not unique. The next example shows, nonconstructively, that there are tensors with nonunique C_{d}-ranks. We give explicitly constructed examples in Section 10.

Example 9.9 (MPS-rank not unique up to permutation). Let $\operatorname{dim} \mathbb{V}_{1}=\operatorname{dim} \mathbb{V}_{2}=2$ and $\operatorname{dim} \mathbb{V}_{3}=3$. Consider the MPS's of C_{3}-ranks $\underline{r}=(2,1,2), \underline{s}=(1,2,3)$, and $\underline{t}=(1,1,2)$ respectively:

It is straightforward to see that

$$
\begin{gathered}
\operatorname{TNS}\left(C_{3} ; 1,1,2 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) \subsetneq \operatorname{TNS}\left(C_{3} ; 2,1,2 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) \cap \operatorname{TNS}\left(C_{3} ; 1,2,3 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right) \\
\quad \overline{\operatorname{TNS}}\left(C_{3} ; 2,1,2 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\overline{\operatorname{TNS}}\left(C_{3} ; 1,2,3 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}
\end{gathered}
$$

Thus a generic $T \in \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$ such that $T \notin \operatorname{TNS}\left(C_{3} ; 1,1,2 ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)$ has at least two C_{3}-ranks $(2,1,2)$ and $(1,2,3)$.

As we saw in Theorem 8.5 and Corollary 8.6, for an acyclic G, G-rank is closed, i.e., border G-rank and G-rank are equivalent. We will see here that this is always false when G is not acyclic. In the following, we show that MPS-rank is never closed by constructing a d-tensor whose border C_{d}-rank is strictly less than C_{d}-rank for each $d \geq 3$, extending [17, Theorem 2].

Let $\mathbb{V}=\mathbb{C}^{n \times n}$ and let $\left\{E_{i j} \in \mathbb{C}^{n \times n}: i, j=1, \ldots, n\right\}$ be the standard basis as in the proof of Theorem 5.1. For each $d \geq 3$, define

$$
\begin{equation*}
T:=\sum_{i, j, k=1}^{n}\left(E_{i j} \otimes E_{j j}+E_{i i} \otimes E_{i j}\right) \otimes E_{j k} \otimes R_{k i} \in \mathbb{V}^{\otimes d} \tag{37}
\end{equation*}
$$

where for each $k, i=1, \ldots, n$,

$$
R_{k i}:=\sum_{j_{1}, \ldots, j_{d-4}=1}^{n} E_{k j_{1}} \otimes E_{j_{1} j_{2}} \otimes \cdots \otimes E_{j_{d-5} j_{d-4}} \otimes E_{j_{d-4} i} \in \mathbb{V}^{\otimes(d-3)}
$$

We adopt the convention that $E_{j k} \otimes R_{k i}=E_{j i}$ in (37) when $d=3$ and $R_{k i}=E_{k i}$ if $d=4$. The following is a straightforward generalization of [17, Theorem 2], with a similar proof.

Theorem 9.10. Let $d \geq 3$ and T be defined as above. Then (i) $T \in \overline{\operatorname{TNS}}\left(C_{d} ; n, \ldots, n ; \mathbb{V}, \ldots, \mathbb{V}\right)$; (ii) $T \notin \operatorname{TNS}\left(C_{d} ; n, \ldots, n ; \mathbb{V}, \ldots, \mathbb{V}\right) ;\left(\right.$ iii) $T \notin \operatorname{Sub}_{m_{1}, \ldots, m_{d}}(\mathbb{V}, \ldots, \mathbb{V})$ whenever $m_{i} \leq n^{2}, i=1, \ldots, d$, with at least one strict inequality.

Corollary 9.11. $\overline{\operatorname{rank}}_{C_{d}}(T)=(n, \ldots, n)$ but $\operatorname{rank}_{C_{d}}(T) \neq(n, \ldots, n)$.
Proof. By Theorem 9.10, we have $\operatorname{rank}_{C_{d}}(T) \neq(n, \ldots, n)$ and $\overline{\operatorname{rank}}_{C_{d}}(T) \leq(n, \ldots, n)$. It remains to establish equality in the latter. Suppose not, then $\overline{\operatorname{rank}}_{C_{d}}(T)=\left(r_{1}, \ldots, r_{d}\right)$ where $r_{i} \leq n$, $i=1, \ldots, d$, with at least one strict inequality. Assume without loss of generality that $r_{1}<n$. Then $r_{1} r_{2}<n^{2}$ and thus

$$
T \in \operatorname{Sub}_{n^{2}, r_{1} r_{2}, n^{2}, \ldots, n^{2}}(\mathbb{V}, \ldots, \mathbb{V})
$$

contradicting Theorem 9.10(iii).
Theorem 9.12 (Nonacyclic G-rank is not closed). Let $G=(V, E)$ be a connected graph with d vertices and c edges that contains a cycle subgraph C_{b} for some $b \leq d$, i.e., there exist b vertices $i_{1}, \ldots, i_{b} \in V$ such that the b edges $\left(i_{1}, i_{2}\right), \ldots,\left(i_{b-1}, i_{b}\right),\left(i_{b}, i_{1}\right) \in E$. Then there exists $S \in \mathbb{V} \otimes d$ such that

$$
\overline{\operatorname{rank}}_{G}(S)=\left(s_{1}, \ldots, s_{c}\right) \leq\left(r_{1}, \ldots, r_{c}\right)=\operatorname{rank}_{G}(S)
$$

with $s_{i}<r_{i}$ for at least one $i \in\{1, \ldots, c\}$.

Proof. Relabeling the vertices if necessary, we may assume that $i_{1}=1, \ldots, i_{b}=b$, i.e., the first b vertices of G form the cycle subgraph C_{b}. Relabeling the edges if necessary, we may also assume that r_{1}, \ldots, r_{b} are the weights associated to $(1,2), \ldots,(b, 1)$, i.e., the edges of C_{b}. Let $r_{1}=\cdots=r_{b}=n$ and $r_{b+1}=\cdots=r_{c}=1$. Let $T \in \mathbb{V}^{\otimes b}$ be as defined in (37) (with b in place of d) and let $S=T \otimes v^{\otimes(d-b)} \in \mathbb{V}^{d}$ where $v \in \mathbb{V}$ is a nonzero vector. Then

$$
S \in \overline{\operatorname{TNS}}(G ; \underbrace{n, \ldots, n}_{b}, \underbrace{1, \ldots, 1}_{c-b} ; n^{2}, \ldots, n^{2})
$$

So $\overline{\operatorname{rank}}_{G}(S) \leq(n, \ldots, n, 1, \ldots, 1) \in \mathbb{N}^{b} \times \mathbb{N}^{c-b}=\mathbb{N}^{c}$. On the other hand, if $\left(r_{1}, \ldots, r_{b}, 1, \ldots, 1\right) \in \mathbb{N}^{c}$ is a border G-rank of S such that $r_{i} \leq n, i=1, \ldots, b$, with at least one strict inequality, then $S \in \operatorname{Sub}_{m_{1}, \ldots, m_{d}}(\mathbb{V}, \ldots, \mathbb{V})$ where $m_{i} \leq n^{2}, i=1, \ldots, b$, with at least one strict inequality. But this contradicts Theorem 9.10 (iii). Hence $\overline{\operatorname{rank}}_{G}(S)=(n, \ldots, n, 1, \ldots, 1) \in \mathbb{N}^{b} \times \mathbb{N}^{c-b}=\mathbb{N}^{c}$. Lastly, by the way S is constructed, if $\left(r_{1}, \ldots, r_{b}\right) \in \mathbb{N}^{b}$ is a C_{b}-rank of T, then $\left(r_{1}, \ldots, r_{b}, 1, \ldots, 1\right) \in \mathbb{N}^{c}$ is a G-rank of S. Since by Corollary $9.11, \operatorname{rank}_{C_{b}}(T)=\left(r_{1}, \ldots, r_{b}\right) \in \mathbb{N}^{b}$ where $n \leq r_{i}, i=1, \ldots, b$, with at least one strict inequality, this completes the proof.

10. Tensor network ranks of common tensors

We will compute some G-ranks of some well-known tensors from different fields:
Algebra: G-rank of decomposable tensors and monomials, S_{n}-ranks of decomposable symmetric and skew-symmetric tensors (Section 10.1);
Physics: P_{d}-rank and C_{d}-rank of the d-qubit W and GHZ states (Section 10.2);
Computing: P_{3}-rank and C_{3}-rank of the structure tensor for matrix-matrix product (Section 10.3).
10.1. Tensors in algebra. The following shows that the term 'rank-one' is unambiguous - all rank-one tensors have G-rank one regardless of G, generalizing Example 7.3.

Proposition 10.1. Let G be a connected graph with d vertices and c edges. Let $0 \neq v_{1} \otimes \cdots \otimes$ $v_{d} \in \mathbb{V}_{1} \otimes \cdots \otimes \mathbb{V}_{d}$ be a rank-one tensor. Then the G-rank of $v_{1} \otimes \cdots \otimes v_{d}$ is unique and equals $(1, \ldots, 1) \in \mathbb{N}^{c}$.

Proof. As usual, let $\operatorname{dim} \mathbb{V}_{i}=n_{i}, i=1, \ldots, n_{d}$. It follows easily from Definition 2.1 that

$$
\begin{equation*}
\operatorname{TNs}\left(G ; 1, \ldots, 1 ; n_{1}, \ldots, n_{d}\right)=\operatorname{Seg}\left(\mathbb{V}_{1}, \ldots, \mathbb{V}_{d}\right) \tag{38}
\end{equation*}
$$

and so $(1, \ldots, 1)$ is a G-rank of $v_{1} \otimes \cdots \otimes v_{d}$. Conversely, if $\left(r_{1}, \ldots, r_{c}\right)$ is a G-rank of $v_{1} \otimes \cdots \otimes v_{d}$, then $\left(r_{1}, \ldots, r_{c}\right)$ is minimal in \mathbb{N}^{c} such that $v_{1} \otimes \cdots \otimes v_{d} \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n_{1}, \ldots, n_{d}\right)$. However, by (38), $v_{1} \otimes \cdots \otimes v_{d} \in \operatorname{TNS}\left(G ; 1, \ldots, 1 ; n_{1}, \ldots, n_{d}\right)$, and obviously $1 \leq r_{i}, i=1, \ldots, c$, implying that $r_{i}=1, i=1, \ldots, c$.

We next discuss decomposable symmetric tensors and decomposable skew-symmetric tensors. For those unfamiliar with these notions, they are defined respectively as

$$
\begin{aligned}
& v_{1} \circ \cdots \circ v_{d}:=\frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_{d}} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} \in \mathrm{S}^{d}(\mathbb{V}) \subseteq \mathbb{V}^{d}, \\
& v_{1} \wedge \cdots \wedge v_{d}:=\frac{1}{d!} \sum_{\sigma \in \mathfrak{G}_{d}} \varepsilon(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} \in \wedge^{d}(\mathbb{V}) \subseteq \mathbb{V}^{d},
\end{aligned}
$$

where $v_{1}, \ldots, v_{d} \in \mathbb{V}$, an n-dimensional vector space, and where $\varepsilon(\sigma)$ denotes the sign of the permutation $\sigma \in \mathfrak{S}_{d}$.

Theorem 10.2 (stns-rank of decomposable (skew-)symmetric tensors). Let S_{n} be the star graph with vertices $1, \ldots, n$ and with 1 as the root vertex. If $d=n$ and $v_{1}, \ldots, v_{n} \in \mathbb{V}$ are linearly independent, then $v_{1} \circ \cdots \circ v_{n}$ and $v_{1} \wedge \cdots \wedge v_{n}$ both have $S_{n}-r a n k(n, \ldots, n) \in \mathbb{N}^{n}$.

Proof. Since $\operatorname{TNS}\left(S_{n} ; n, \ldots, n ; n, \ldots, n\right)=\mathbb{V}^{\otimes n}$,

$$
\begin{equation*}
v_{1} \circ \cdots \circ v_{n}, v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{TNS}\left(S_{n} ; n, \ldots, n ; n, \ldots, n\right) . \tag{39}
\end{equation*}
$$

It remains to show that there does not exist $\left(r_{1}, \ldots, r_{n}\right)$ such that $r_{i} \leq n, i=1, \ldots, n$, with at least one strict inequality, such that $v_{1} \circ \cdots \circ v_{n}$ and $v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{TNS}\left(S_{n} ; r_{1}, \ldots, r_{n} ; n, \ldots, n\right)$. But this is clear as $v_{1} \circ \cdots \circ v_{n}$ and $v_{1} \wedge \cdots \wedge v_{n}$ are nondegenerate tensors in $\mathbb{V}^{\otimes n}$.

It is easy to construct explicit S_{n}-decompositions of $v_{1} \circ \cdots \circ v_{n}$ and $v_{1} \wedge \cdots \wedge v_{n}$ in Theorem 10.2. Let \mathbb{E} be n-dimensional with basis e_{1}, \ldots, e_{n} and dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$. Consider

$$
\begin{aligned}
& \Sigma=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} v_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{V} \otimes \mathbb{E}^{\otimes(n-1)}, \\
& \Lambda=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) v_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{V} \otimes \mathbb{E}^{\otimes(n-1)},
\end{aligned}
$$

and $M=\sum_{i=1}^{n} e_{j}^{*} \otimes v_{j} \in \mathbb{E}^{*} \otimes \mathbb{V}$. Then

$$
\kappa_{S_{n}}\left(\Sigma \otimes M^{\otimes(n-1)}\right)=v_{1} \circ \cdots \circ v_{n} \quad \text { and } \quad \kappa_{S_{n}}\left(\Lambda \otimes M^{\otimes(n-1)}\right)=v_{1} \wedge \cdots \wedge v_{n}
$$

A monomial of degree d in n variables x_{1}, \ldots, x_{n} may be regarded [15] as a decomposable symmetric d-tensor over an n-dimensional vector space \mathbb{V} :

$$
x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}=v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}} \in \mathrm{~S}^{d}(\mathbb{V}),
$$

where p_{1}, \ldots, p_{n} are nonnegative integers such that $p_{1}+\cdots+p_{n}=d$. If $d=n$ and $p_{1}=\cdots=p_{d}=1$, then $v_{1} \circ \cdots \circ v_{d}=x_{1} \cdots x_{d}$, i.e., a decomposable symmetric tensor is a special case.

Proposition 10.3 (G-rank of monomials). Let G be a connected graph with d vertices and c edges. Let $n \leq d$ and $p_{1}+\cdots+p_{n}=d$. Let \mathbb{U} be a d-dimensional vector space with basis u_{1}, \ldots, u_{d} and \mathbb{V} an n-dimensional vector space with basis v_{1}, \ldots, v_{n}. If $u_{1} \circ \cdots \circ u_{d} \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; d, \ldots, d\right)$, then $v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}} \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n, \ldots, n\right)$, i.e.,

$$
\begin{equation*}
\operatorname{rank}_{G}\left(v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}}\right) \leq \operatorname{rank}_{G}\left(u_{1} \circ \cdots \circ u_{d}\right) . \tag{40}
\end{equation*}
$$

Proof. Let $\varphi: \mathbb{U} \rightarrow \mathbb{V}$ be the linear map that sends $u_{p_{i}+1}, \ldots, u_{p_{i+1}}$ to $v_{i+1}, i=0, \ldots, n-1$, where $p_{0}:=0$. Let $\varphi^{\otimes d}: \mathbb{U}^{\otimes d} \rightarrow \mathbb{V}^{\otimes d}$ be the linear map induced by φ. Observe that $\varphi^{\otimes d}\left(u_{1} \circ \cdots \circ\right.$ $\left.u_{d}\right)=v_{1}^{\otimes p_{1}} \circ \ldots \circ v_{n}^{\otimes p_{n}}$. Also, $\varphi^{\otimes d}\left(\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; d, \ldots, d\right)\right) \subseteq \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; d, \ldots, d\right)$. Hence $v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}} \in \operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; d, \ldots, d\right) \cap\left(\mathbb{V}^{\otimes p_{1}} \otimes \cdots \otimes \mathbb{V}^{\otimes p_{n}}\right)=\operatorname{TNS}\left(G ; r_{1}, \ldots, r_{c} ; n, \ldots, n\right)$.

The case where number of variables is larger than degree, i.e., $n>d$, reduces to Proposition 10.3. In this case, a monomial $x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}$ of degree d will not involve all variables x_{1}, \ldots, x_{n} and, as a tensor, $v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}} \in \mathbb{S}^{d}(\mathbb{W})$ where $\mathbb{W} \subseteq \mathbb{V}$ is an appropriate subspace of dimension $\leq d$.

For comparison, the Waring rank ${ }^{7}$ or symmetric tensor rank of a monomial $v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}}$ where $p_{1} \geq p_{2} \geq \cdots \geq p_{n}>0$, is $\prod_{i=1}^{n-1}\left(p_{i}+1\right)$, whereas its Waring border rank is $\prod_{i=2}^{n}\left(p_{i}+1\right)$ $[18,27]$; its multilinear rank is easily seen ${ }^{8}$ to be (n, \ldots, n). The monomials include $v_{1} \circ \cdots \circ v_{n}$ as a special case. As for $v_{1} \wedge \cdots \wedge v_{n}$, tensor rank and border rank are still open but its multilinear rank is also easily seen to be (n, \ldots, n).

[^6]10.2. Tensors in physics. Let \mathbb{V} be two-dimensional and v_{1}, v_{2} be a basis. For any $d \geq 3$, the d-tensors in \mathbb{V}^{d} defined by
$$
\mathrm{W}_{d}:=\sum_{i=1}^{d} v_{1}^{\otimes(i-1)} \otimes v_{2} \otimes v_{1}^{\otimes(d-i)} \quad \text { and } \quad \mathrm{GHZ}_{d}:=v_{1}^{\otimes d}+v_{2}^{\otimes d}
$$
are called the d-qubit W state and GHZ state (for Werner and Greenberger-Horne-Zeilinger) respectively.

Observe that $\mathrm{W}_{d}=v_{1}^{d-1} \circ v_{2}$ is a decomposable symmetric tensor corresponding to the monomial $x_{1}^{d-1} x_{2}$. By (39) and Proposition 10.3, we obtain $\mathrm{W}_{d} \in \operatorname{TNS}\left(S_{d} ; d, \ldots, d ; 2, \ldots, 2\right)$ but this also trivially follows from $\operatorname{TNS}\left(S_{d} ; d, \ldots, d ; 2, \ldots, 2\right)=\operatorname{TNS}\left(S_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)=\mathbb{V}^{d}$, which shows that the inequality can be strict in (40).

We start with the P_{d}-rank of W_{d}. Let the vertices of P_{d} be $1, \ldots, d$ and edges be oriented $(1,2),(2,3), \ldots,(d-1, d)$. Let $\mathbb{E}_{i} \simeq \mathbb{E}$ be a two-dimensional vector space associated to $(i, i+1)$, $i=1, \ldots, d-1$, with basis e_{1}, e_{2} and dual basis e_{1}^{*}, e_{2}^{*}. Note that $\mathrm{W}_{d}=\kappa_{P_{d}}\left(A \otimes B^{\otimes(d-2)} \otimes C\right) \in$ $\operatorname{TNS}\left(P_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$ with $A=v_{1} \otimes e_{1}^{*}+v_{2} \otimes e_{2}^{*} \in \mathbb{V} \otimes \mathbb{E}^{*}, B=e_{1} \otimes\left(v_{1} \otimes e_{1}^{*}+v_{2} \otimes e_{2}^{*}\right)+e_{2} \otimes v_{1} \otimes e_{2}^{*} \in$ $\mathbb{V} \otimes \mathbb{E}^{*} \otimes \mathbb{E}, C=v_{1} \otimes e_{2}+v_{2} \otimes e_{1} \in \mathbb{V} \otimes \mathbb{E}$. So if $\operatorname{rank}_{P_{d}}\left(\mathrm{~W}_{d}\right)=\left(r_{1}, \ldots, r_{d-1}\right)$, then we must have $r_{i}=1$ or 2 for $i=1, \ldots, d-1$. Let $r_{0}=r_{d}=1$. Suppose $r_{i-1} r_{i}=1$ for some $i \in\{1, \ldots, d\}$. Then $\mathrm{W}_{d} \in \mathbb{V}^{\otimes(i-1)} \otimes \mathbb{W} \otimes \mathbb{V}^{\otimes(d-i)}$ where $\mathbb{W} \subseteq \mathbb{V}$ is a one-dimensional subspace, which is impossible by the definition of W_{d}. Thus we obtain the following.
Lemma 10.4. If $\operatorname{rank}_{P_{d}}\left(\mathrm{~W}_{d}\right)=\left(r_{1}, \ldots, r_{d-1}\right)$, then $r_{i} \in\{1,2\}$ and $r_{i-1} r_{i} \geq 2, i=1, \ldots, d$, where $r_{0}=r_{d}=1$.
Theorem 10.5 (TT-rank of W state). Let $d \geq 3$. Then $\operatorname{rank}_{P_{d}}\left(\mathrm{~W}_{d}\right)=(2, \ldots, 2) \in \mathbb{N}^{d-1}$.
Proof. Suppose not. By Lemma 10.4, there exists $i \in\{2, \ldots, d-2\}$ such that $r_{i}=1, r_{j}=2$ for all $j \neq i$, and

$$
\mathrm{W}_{d} \in \operatorname{TNS}(P_{d} ; \overbrace{2, \ldots, 2}^{i-1}, 1, \overbrace{2, \ldots, 2}^{d-i-1} ; 2, \ldots, 2) .
$$

This implies that $\mathrm{W}_{d}=X \otimes Y$ for some $X \in \mathbb{V}^{\otimes i}$ and $Y \in \mathbb{V}^{\otimes(d-i)}$, i.e., W_{d} is a rank-one 2-tensor in $\mathbb{V}^{\otimes i} \otimes \mathbb{V}^{\otimes(d-i)}$, which is impossible by the definition of W_{d}.

We next deduce the C_{d}-ranks of W_{d}. Let the vertices of C_{d} be $1, \ldots, d$ and edges be oriented $(1,2),(2,3), \ldots,(d, d+1)$, with $d+1:=1$. Let $\mathbb{E}_{i} \simeq \mathbb{E}$ be a two-dimensional vector space associated to $(i, i+1), i=1, \ldots, d$, with basis e_{1}, e_{2} and dual basis e_{1}^{*}, e_{2}^{*}. Note that $\mathrm{W}_{d}=\kappa_{C_{d}}\left(A \otimes B^{\otimes(d-2)} \otimes\right.$ $C) \in \operatorname{TNS}\left(C_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$ with $A=e_{1} \otimes v_{1} \otimes e_{1}^{*}+e_{2} \otimes v_{2} \otimes e_{2}^{*}, B=e_{1} \otimes\left(v_{1} \otimes e_{1}^{*}+v_{2} \otimes e_{2}^{*}\right)+$ $e_{2} \otimes v_{1} \otimes e_{2}^{*}, C=e_{2} \otimes v_{1} \otimes\left(e_{1}^{*}+e_{2}^{*}\right)+e_{1} \otimes v_{2} \otimes e_{1}^{*}$, all in $\mathbb{E} \otimes \mathbb{V} \otimes \mathbb{E}^{*}$.

Theorem 10.6 (mPS-rank of W state). Let $d \geq 3$. Then $\operatorname{rank}_{C_{d}}\left(\mathrm{~W}_{d}\right)=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ if and only if $r_{i}=1$ for some $i \in\{1, \ldots, d\}$ and all other $r_{j}=2, j \neq i$.

Proof. The "if" part follows from Theorem 10.5. Since $\mathrm{W}_{d} \in \operatorname{TNS}\left(C_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$, if $\left(r_{1}, \ldots, r_{d}\right)$ is a C_{d}-rank of W_{d} with $r_{i} \geq 2$ for all $i=1, \ldots, d$, then $r_{i}=2$ for all $i=1, \ldots, d$. However, we also have $\operatorname{TNS}\left(C_{d} ; r_{1}, \ldots, r_{d} ; 2, \ldots, 2\right) \subseteq \operatorname{TNS}\left(C_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$ for $1 \leq r_{1}, \ldots, r_{d} \leq 2$. This implies that $(2, \ldots, 2)$ cannot be a C_{d}-rank of W_{d}, showing the "only if" part.

We now proceed to the GHZ state. $\mathrm{GHZ}_{2}=v_{1}^{\otimes 2}+v_{2}^{\otimes 2} \in \mathbb{V} \otimes \mathbb{V}$ is known as the Bell state, a rank-two 2×2 matrix. For the only connected graph with two vertices, P_{2}, and it is clear that $\operatorname{rank}_{P_{2}}\left(\mathrm{GHZ}_{2}\right)=2$. For $d \geq 3$, the arguments for deducing the P_{d}-rank and C_{d}-rank of GHZ_{d} are very similar to those used for W_{d} and we will be brief. First observe that $\mathrm{GHZ}_{d}=\kappa_{P_{d}}(A \otimes$ $\left.B^{\otimes(d-2)} \otimes C\right) \in \operatorname{TNS}\left(P_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$ with $A=v_{1} \otimes e_{1}^{*}+v_{2} \otimes e_{2}^{*}, B=e_{1} \otimes v_{1} \otimes e_{1}^{*}+e_{2} \otimes v_{2} \otimes e_{2}^{*}$, $C=e_{1} \otimes v_{1}+e_{2} \otimes v_{2}$, and we may obtain the following analogue of Theorem 10.5.

Theorem 10.7 (TT-rank of GHZ state). Let $d \geq 3$. Then $\operatorname{rank}_{P_{d}}\left(\mathrm{GHZ}_{d}\right)=(2, \ldots, 2) \in \mathbb{N}^{d-1}$.
Likewise, $\mathrm{GHZ}_{d}=\kappa_{C_{d}}\left(D^{\otimes d}\right) \in \operatorname{TNS}\left(C_{d} ; 2, \ldots, 2 ; 2, \ldots, 2\right)$ with $D=e_{1} \otimes v_{1} \otimes e_{1}^{*}+e_{2} \otimes v_{2} \otimes e_{2}^{*}$, and we obtain the following analogue of Theorem 10.6

Theorem 10.8 (MPS-rank of GHZ state). Let $d \geq 3$. Then $\operatorname{rank}_{C_{d}}\left(\mathrm{GHZ}_{d}\right)=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ if and only if $r_{i}=1$ for some $i \in\{1, \ldots, d\}$ and all other $r_{j}=2, j \neq i$.

For comparison, note that W_{d} and GHZ_{d} are respectively the monomial $x^{d-1} y$ and the binary form $x^{d}+y^{d}$ regarded as symmetric tensors. By our discussion at the end of Section 10.1, the Waring rank of W_{d} is d while that of GHZ_{d} is at most $2(d+1)$; the border rank and multilinear rank of both states are 2 and $(2, \ldots, 2)$ respectively.
10.3. Tensors in computing. Let $\mathbb{U}=\mathbb{C}^{m \times n}, \mathbb{V}=\mathbb{C}^{n \times p}$, and $\mathbb{W}=\mathbb{C}^{m \times p}$. Let $\mu_{m, n, p} \in \mathbb{U}^{*} \otimes$ $\mathbb{V}^{*} \otimes \mathbb{W} \cong \mathbb{C}^{m n \times n p \times m p}$ be the structure tensor for the product of $m \times n$ and $n \times p$ rectangular matrices [40], i.e.,

$$
\begin{equation*}
\mu_{m, n, p}=\sum_{i, j, k=1}^{n} u_{i k}^{*} \otimes v_{k j}^{*} \otimes w_{i j} \tag{41}
\end{equation*}
$$

where $\left\{u_{i j} \in \mathbb{U}: i=1, \ldots, m, j=1, \ldots, n\right\},\left\{v_{j k} \in \mathbb{V}: j=1, \ldots, n, k=1, \ldots, p\right\},\left\{w_{k i} \in \mathbb{W}\right.$: $k=1, \ldots, p, i=1, \ldots, p\}$ are the standard bases of the respective spaces (e.g., $u_{i j}$ is the $m \times n$ matrix with one in the (i, j) entry and zeroes everywhere else). The reader might remember that we have encountered a special case of this tensor in (18) - that is the structure tensor for product of square matrices, i.e., $m=n=p$ and we wrote $\mu_{n}=\mu_{n, n, n}$.

The structure tensor for matrix-matrix product is widely regarded as the most important tensor in algebraic computational complexity theory; its tensor rank quantifies the optimum complexity for matrix-matrix product and has a current best-known bound of $O\left(n^{2.3728639}\right)$ [19]. We will establish the P_{3}-rank and C_{3}-rank of $\mu_{m, n, p}$ in the following. For comparison, note that its multilinear rank is ($m n, n p, m p$).
Theorem 10.9 (TT-rank of Strassen tensor). Let $m, n, p \geq 2$. Then $\operatorname{rank}_{P_{3}}\left(\mu_{m, n, p}\right)=(m n, m p)$.
Proof. Clearly $\mu_{m, n, p} \in \operatorname{TNS}\left(P_{3} ; m n, m p ; m n, n p, m p\right)=\mathbb{U}^{*} \otimes \mathbb{V}^{*} \otimes \mathbb{W}$. As $\mu_{m, n, p}$ is nondegenerate, $\mu_{m, n, p} \notin \operatorname{TNS}\left(P_{3} ; r_{1}, r_{2} ; m n, n p, m p\right)$ if $r_{1}<m n, r_{2}=m p$ or if $r_{1}=m n, r_{2}<m p$.
Theorem $\mathbf{1 0 . 1 0}$ (MPS-rank of Strassen tensor). Let $m, n, p \geq 2$. Then (m, n, p), ($m n, m p, 1$), $(m n, 1, n p),(1, m p, n p)$ are all C_{3}-ranks of $\mu_{m, n, p}$.
Proof. By Proposition 3.5 and Theorem 10.9, we see that ($m n, m p, 1$), $(m n, 1, n p),(1, m p, n p)$ are C_{3}-ranks of $\mu_{m, n, p}$. It remains to show that (m, n, p) is also a C_{3}-rank of $\mu_{m, n, p}$. Let $\left\{e_{1}, \ldots, e_{m}\right\}$, $\left\{f_{1}, \ldots, f_{n}\right\},\left\{g_{1}, \ldots, g_{p}\right\}$ be any bases of vector spaces $\mathbb{E}, \mathbb{F}, \mathbb{G}$ respectively. Then $\mu_{m, n, p}=\kappa_{C_{3}}(A \otimes$ $B \otimes C) \in \operatorname{TNS}\left(C_{3} ; m, n, p ; m n, n p, m p\right)$ with

$$
\begin{gathered}
A=\sum_{i, j=1}^{m, n} e_{i} \otimes u_{i j} \otimes f_{j}^{*} \in \mathbb{E} \otimes \mathbb{U} \otimes \mathbb{F}^{*}, \quad B=\sum_{j, k=1}^{n, p} f_{j} \otimes v_{j k} \otimes g_{k}^{*} \in \mathbb{F} \otimes \mathbb{V} \otimes \mathbb{G}^{*}, \\
C=\sum_{k, i=1}^{p, m} g_{k} \otimes w_{k i} \otimes e_{i}^{*} \in \mathbb{G} \otimes \mathbb{W} \otimes \mathbb{E}^{*} .
\end{gathered}
$$

Now let $\left(r_{1}, r_{2}, r_{3}\right) \leq(m, n, p)$ such that $\mu_{m, n, p} \in \operatorname{TNS}\left(C_{3} ; r_{1}, r_{2}, r_{3} ; m n, n p, m p\right)$. If, for example, $r_{1}<m$, then $r_{1} r_{2}<m n$ and thus $\mu_{m, n, p} \in \operatorname{TNS}\left(C_{3} ; r_{1}, r_{2}, r_{3} ; r_{1} r_{2}, n p, m p\right) \subseteq \mathbb{C}^{r_{1} r_{2}} \otimes \mathbb{C}^{n p} \otimes \mathbb{C}^{m p}$, which is impossible by the definition of $\mu_{m, n, p}$. Similarly, we may exclude other cases, concluding that $\left(r_{1}, r_{2}, r_{3}\right)=(m, n, p)$.

In general, we do not know if there might be other C_{3}-ranks of $\mu_{m, n, p}$ aside from the four in Theorem 10.10 although for the case $m=n=p=2$, we do have

$$
\operatorname{rank}_{C_{3}}\left(\mu_{2,2,2}\right)=\{(2,2,2),(1,4,4),(4,1,4),(4,4,1)\} .
$$

To see this, note that if $\left(r_{1}, r_{2}, r_{3}\right)$ is a C_{3}-rank of $\mu_{2,2,2}$ with $r_{i} \geq 2, i=1,2,3$, then $r_{1}=$ $r_{2}=r_{3}=2$ by minimality of C_{3}-ranks; whereas if $r_{i}=1$ for some i, say $r_{1}=1$, then $\mu_{2,2,2} \in$ $\operatorname{TNS}\left(C_{3} ; 1, r_{2}, r_{3} ; 2,2,2\right)=\operatorname{TNS}\left(P_{3} ; r_{2}, r_{3} ; 2,2,2\right)$, and as $\operatorname{rank}_{P_{3}}\left(\mu_{2,2,2}\right)=(4,4)$, we get $r_{2}=r_{3}=4$.

One may wonder if proofs of Theorems 10.9 and 10.10 could perhaps give a new algorithm for matrix-matrix product along the lines of Strassen's famous algorithm. The answer is no: the proofs in fact only rely on the decomposition of $\mu_{m, n, p}$ given by the standard algorithm for matrix-matrix product.

11. TENSOR NETWORK RANKS VERSUS TENSOR RANK AND MULTILINEAR RANK

In Section 4, we saw that G-ranks may be regarded as 'interpolants' between tensor rank and multilinear rank. We will conclude this article by showing that they are nevertheless distinct notions, i.e., tensor and multilinear ranks cannot be obtained as G-ranks. This is already evident in 3 -tensors and we may limit our discussions to this case. Since $d=3$ and there are only two connected graphs with three vertices, we have only two choices for G - either C_{3} or P_{3}.

Proposition 11.1. Let $\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}$ be of dimensions ≥ 4 and let the following sets be in $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \mathbb{V}_{3}$. There exists $r \in \mathbb{N}$ such that

$$
\begin{equation*}
\overline{\{T: \operatorname{rank}(T) \leq r\}} \tag{42}
\end{equation*}
$$

is not equal to

$$
\begin{equation*}
\overline{\left\{T: \operatorname{rank}_{P_{3}} \leq\left(r_{1}, r_{2}\right)\right\}} \quad \text { or } \quad \overline{\left\{T: \operatorname{rank}_{C_{3}}(T) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\}} \tag{43}
\end{equation*}
$$

for any $r_{1}, r_{2}, r_{3} \in \mathbb{N}$.
Proof. Note that the set on the left of (43) is $\overline{\operatorname{TNS}}\left(P_{3} ; r_{1}, r_{2} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=: X_{r_{1}, r_{2}}$, the one on the right is $\overline{\operatorname{TNS}}\left(C_{3} ; r_{1}, r_{2}, r_{3} ; \mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)=: Y_{r_{1}, r_{2}, r_{3}}$, and the set in (42) is $\sigma\left(\operatorname{Seg}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)\right)=: \Sigma_{r}$.

It suffices to take $r=2$. Suppose $\Sigma_{2}=X_{r_{1}, r_{2}}$ for some positive integers r_{1}, r_{2}. Then a generic element in $X_{r_{1}, r_{2}}$ must have rank 2, which implies that $r_{1}, r_{2} \leq 2$. By Example 7.2 , we see that

$$
X_{r_{1}, r_{2}}=\operatorname{Sub}_{2,4,2}\left(\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right)
$$

which implies that a generic $T \in X_{r_{1}, r_{2}}$ has $\mu \operatorname{rank}(T)=(2,4,2)$; but this gives a contradiction as any $T \in \Sigma_{2}$ must have $\mu \operatorname{rank}(T) \leq(2,2,2)$.

Next we show that $\Sigma_{2} \neq Y_{r_{1}, r_{2}, r_{3}}$. We may assume that $r_{1}, r_{2}, r_{3} \geq 2$ or otherwise $Y_{r_{1}, r_{2}, r_{3}}$ becomes $X_{r_{1}, r_{2}}, X_{r_{1}, r_{3}}$, or $X_{r_{2}, r_{3}}$ by (13). So we have

$$
Y_{2,2,2} \subseteq Y_{r_{1}, r_{2}, r_{3}}
$$

which implies that the structure tensor μ_{2} for 2×2 matrix-matrix product (cf. (18) and (41)) is contained in $Y_{r_{1}, r_{2}, r_{3}}$. It is well-known [16] that $\operatorname{rank}(T)=7$ and thus $T \notin \Sigma_{2}$ (since that would mean $\overline{\operatorname{rank}}(T) \leq 2)$. Hence $\Sigma_{2} \neq Y_{r_{1}, r_{2}, r_{3}}$.

Proposition 11.2. Let \mathbb{V} be of dimension $n \geq 4$ and let the following sets be in $\mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V}$. There exist $s_{1}, s_{2}, s_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\{T: \mu \operatorname{rank}(T) \leq\left(s_{1}, s_{2}, s_{3}\right)\right\} \tag{44}
\end{equation*}
$$

is not equal to

$$
\overline{\left\{T: \operatorname{rank}_{P_{3}} \leq\left(r_{1}, r_{2}\right)\right\}} \quad \text { or } \quad \overline{\left\{T: \operatorname{rank}_{C_{3}}(T) \leq\left(r_{1}, r_{2}, r_{3}\right)\right\}}
$$

for any $r_{1}, r_{2}, r_{3} \in \mathbb{N}$.
Proof. We adopt the shorthands in the proof of Proposition 11.1. In addition, note that the set in (44) is $\operatorname{Sub}_{s_{1}, s_{2}, s_{3}}(\mathbb{V}, \mathbb{V}, \mathbb{V})=: Z_{s_{1}, s_{2}, s_{3}}$. It suffices to take $\left(s_{1}, s_{2}, s_{3}\right)=(2,2,2)$. It is obvious that for any $r_{1}, r_{2} \in \mathbb{N}$,

$$
Z_{2,2,2} \neq Z_{r_{1}, r_{1} r_{2}, r_{2}}=X_{r_{1}, r_{2}}
$$

where the second equality follows from Example 7.2. Next, suppose

$$
Z_{2,2,2}=Y_{r_{1}, r_{2}, r_{3}}
$$

then a generic T in $Y_{r_{1}, r_{2}, r_{3}}$ has $\mu \operatorname{rank}(T)=(2,2,2)$. However since $T \in Y_{r_{1}, r_{2}, r_{3}}$ has the form

$$
T=\sum_{i, j, k=1}^{r_{1}, r_{2}, r_{3}} u_{i j} \otimes v_{j k} \otimes w_{k i}
$$

we have $\mu \operatorname{rank}(T)=\left(\min \left\{r_{1} r_{2}, n\right\}, \min \left\{r_{2} r_{3}, n\right\}, \min \left\{r_{1} r_{3}, n\right\}\right)$ and therefore

$$
r_{1} r_{2}=r_{2} r_{3}=r_{3} r_{1}=2
$$

which cannot hold for any positive integers r_{1}, r_{2}, r_{3}. Hence $Z_{2,2,2} \neq Y_{r_{1}, r_{2}, r_{3}}$.

12. Conclusion

We hope this article provides a convincing explanation as to why G-rank can be a better alternative to rank under many circumstances, and how it underlies the efficacy of tensor networks in computational physics and other applications. We also hope that the formalism introduced in this article would help establish a mathematical foundation for tensor networks, the study of which has thus far relied more on physical intuition, computational heuristics, and numerical experiments; but suffers from a lack of mathematically precise results built upon unambiguous definitions and rigorous proofs.

A word about MERA. A notable omission from this article is the multiscale entanglement renormalization ansatz or MERA, often also regarded as a tensor network state in physics literature. From a mathematical perspective, MERA differs in important ways from other known tensor networks like TT, MPS, PEPS, and every other example discussed in our article - these can all be defined purely using tensor contractions but MERA will require additional operations known as 'isometries' and 'disentanglers' in physics [35, 36, 42, 43]. From a physics perspective, the discussion in [43, Section III] also highlights a critical difference: while other tensor network states are derived from the physical geometry, MERA is derived from the holographic geometry of the quantum system.

Although our definition of a tensor network state can be readily adapted to allow for more operations and thereby also include MERA, in this article we restricted ourselves to tensor network states that can be constructed out of the three standard operations on tensors - sums, outer products, contractions - in multilinear algebra and leave MERA to furture work.

Acknowledgments. The authors would like to thank David Gross and Anna Seigal for helpful pointers. We owe special thanks to Miles Stoudenmire for his careful reading and enlightening feedback.

The work in this article is generously supported by AFOSR FA9550-13-1-0133, DARPA D15AP00109, NSF IIS 1546413, DMS 1209136, and DMS 1057064. In addition, LHL's work is supported by a DARPA Director's Fellowship and KY's work is supported by the Hundred Talents Program of the Chinese Academy of Science and the Recruitment Program of Global Experts of China.

References

[1] H. Abo, G. Ottaviani, and C. Peterson. "Induction for secant varieties of Segre varieties," Trans. Amer. Math. Soc., 361 (2009), no. 2, pp. 767-792.
[2] M. Bachmayr, R. Schneider, and A. Uschmajew, "Tensor networks and hierarchical tensors for the solution of high dimensional partial differential equations," Found. Comput. Math., 16 (2016), no. 6, pp. 1423-1472.
[3] G. Cain and G. H. Meyer, Separation of Variables for Partial Differential Equations, CRC Press, Boca Raton, FL, 2006.
[4] P. Calabrese, M. Mintchev and E. Vicari, "The entanglement entropy of one dimensional systems in continuous and homogeneous space," J. Stat. Mech. Theor. Exp., 2011, no. 9, 09028, 30 pp.
[5] C. K. Chui, Multivariate Splines, CBMS-NSF Regional Conference Series in Applied Mathematics, 54, SIAM, Philadelphia, PA, 1988.
[6] V. De Silva and L.-H. Lim, "Tensor rank and the ill-posedness of the best low-rank approximation problem," SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084-1127.
[7] M. Fannes, B. Nachtergaele, and R. F. Werner, "Finitely correlated states on quantum spin chains," Comm. Math. Phys., 144, (1992), no. 3, pp. 443-490.
[8] G. Grätzer, General Lattice Theory, 2nd Ed, Birkhäuser, Basel, 1998.
[9] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, 42, Springer, Heidelberg, 2012.
[10] W. Hackbusch and S. Kühn, "A new scheme for the tensor representation," J. Fourier Anal. Appl., 15 (2009), no. 5, pp. 706-722.
[11] F. L. Hitchcock, "The expression of a tensor or a polyadic as a sum of products," J. Math. Phys., 6 (1927), no. 1, pp. 164-189.
[12] T. Hofmann, B. Schölkopf, and A. J. Smola, "Kernel methods in machine learning," Ann. Stat., 36 (2008), no. 3, pp. 1171-1220.
[13] R. Hübener, V. Nebendahl, and W. Dür, "Concatenated tensor network states," New J. Phys., 12 (2010), 025004, 28 pp .
[14] C. Itzykson and J. M. Drouffe, Statistical Field Theory, I \& II, Cambridge University Press, Cambridge, England, 1989.
[15] J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS, Providence, RI, 2012.
[16] J. M. Lansberg, "The border rank of the multiplication of 2×2 matrices is seven," J. Amer. Math. Soc., 19 (2006), no. 2, pp. 447-459.
[17] J. M. Landsberg, Y. Qi, and K. Ye, "On the geometry of tensor network states," Quantum Inf. Comput., 12 (2012), no. $3 \& 4$, pp. 346-354.
[18] J. M. Landsberg and Z. Teitler, "On the ranks and border ranks of symmetric tensors," Found. Comput. Math., 10 (2010), no. 2, pp. 339-366.
[19] F. Le Gall, "Powers of tensors and fast matrix multiplication," Proc. Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296-303.
[20] L.-H. Lim, "Tensors and hypermatrices," Art. 15, 30 pp., in L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013.
[21] L.-H. Lim and P. Comon, "Blind multilinear identification," IEEE Trans. Inform. Theory, 60 (2014), no. 2, pp. 1260-1280.
[22] L.-H. Lim and P. Comon, "Nonnegative approximations of nonnegative tensors," J. Chemometrics, 23 (2009), no. 7-8, pp. 432-441.
[23] K. H. Marti, B. Bauer, M. Reiher, M. Troyer and F. Verstraete, "Complete-graph tensor network states: a new fermionic wave function ansatz for molecules," New J. Phys., 12 (2010), 103008, 16 pp.
[24] D. K. Maslen and D. N. Rockmore, "Separation of variables and the computation of Fourier transforms on finite groups," J. Amer. Math. Soc., 10 (1997), no. 1, pp. 169-214.
[25] A. Massarenti and E. Raviolo, "The rank of $n \times n$ matrix multiplication is at least $3 n^{2}-2 \sqrt{2} n^{3 / 2}-3 n$," Linear Algebra Appl., 438 (2013), no. 11, pp. 4500-4509.
[26] W. Miller, Symmetry and Separation of Variables, Encyclopedia of Mathematics and its Applications, 4, AddisonWesley, Reading, MA, 1977.
[27] L. Oeding, "Border ranks of monomials," preprint, (2016), arXiv:1608.02530.
[28] R. Orús, "A practical introduction to tensor networks: Matrix product states and projected entangled pair states," Ann. Physics, 349 (2014), pp. 117-158.
[29] I. V. Oseledets, "Tensor-train decomposition," SIAM J. Sci. Comput., 33 (2011), no. 5, pp. 2295-2317.
[30] S. Östlund and S. Rommer, "Thermodynamic limit of density matrix renormalization," Phys. Rev. Lett., 75 (1995), no. 19, 3537, 4 pp.
[31] Y. Y. Shi, L. M. Duan, G. Vidal, "Classical simulation of quantum many-body systems with a tree tensor network," Phys. Rev. A, 74 (2006), no. 2, 022320, 4 pp.
[32] C. F. Van Loan, "Tensor network computations in quantum chemistry," Technical report, (2008), www.cs. cornell.edu/cv/OtherPdf/ZeuthenCVL.pdf.
[33] F. Verstraete and J. I. Cirac, "Renormalization algorithms for quantum-many body systems in two and higher dimensions," preprint, (2004), arXiv:cond-mat/0407066.
[34] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, "Criticality, the area law, and the computational power of projected entangled pair states," Phys. Rev. Lett., 96 (2006), no. 22, 220601, 4 pp.
[35] G. Vidal, "Class of quantum many-body states that can be efficiently simulated," Phys. Rev. Lett., 101 (2008), no. 11, 110501, 4 pp .
[36] G. Vidal, "Entanglement renormalization," Phys. Rev. Lett., 99 (2007), no. 22, 220405, 4 pp.
[37] S. R. White and D. A. Huse, "Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic $S=1$ Heisenberg chain," Phys. Rev. B, 48 (1993), no. 6, pp. 3844-3853.
[38] S. R. White, "Density matrix formulation for quantum renormalization groups," Phy. Rev. Lett., 69 (1992), no. 19, pp. 2863-2866.
[39] K. Ye and L.-H. Lim, "Tensor network calculus," preprint, (2016).
[40] K. Ye and L.-H. Lim, "Fast structured matrix computations: tensor rank and Cohn-Umans method," Found. Comput. Math., (2016), to appear.
[41] L. Ying, "Tensor network skeletonization," Multiscale Model. Simul., 15 (2017), no. 4, pp. 1423-1447.
[42] Cincio, Lukasz, Jacek Dziarmaga, and Marek M. Rams. "Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising model." Phys. Rev. Lett., 100 (2008) no. 24: 240603.
[43] Evenbly, Glen, and Guifré Vidal. "Tensor network states and geometry." Journal of Statistical Physics 145.4 (2011): 891-918.
[44] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, "Rigorous results on valence-bond ground states in antiferromagnets", Phys. Rev. Lett., 59 (1987), Vol. 59, Iss. 7, pp. 799-802.
[45] Anderson, P. W., "New Approach to the Theory of Superexchange Interactions", Phys. Rev., 115 (1959), Iss. 1, pp. 2-13.

Computational and Applied Mathematics Initiative, Department of Statistics, University of Chicago, Chicago, IL 60637-1514.

Email address: kye@galton.uchicago.edu
Computational and Applied Mathematics Initiative, Department of Statistics, University of Chicago, Chicago, IL 60637-1514.

Email address: lekheng@galton.uchicago.edu

[^0]: 2010 Mathematics Subject Classification. 15A69, 41A30, 41A46, 41A65, 45L05, 65C60, 81P50, 81Q05.
 Key words and phrases. Tensor networks, tensor ranks, nonlinear approximations, best k-term approximations, dimension reduction.

[^1]: ${ }^{1}$ We are aware that tensor trains [29] have long been known in physics [45, 38, 37] and are often called matrix product states with open boundary conditions [28]. What we called matrix product states are known more precisely as matrix product states with periodic boundary conditions [28]. We thank our colleagues in physics for pointing this out to us on many occasions. In our article, we use the terms TT and MPS merely for the convenience of easy distinction between the two types of MPS. We will say more about our nomenclature after Definition 2.2 .

[^2]: ${ }^{2}$ This was established in [17] for $G=C_{3}$, a 3-cycle; we show that it holds for any G that contains a d-cycle, $d \geq 3$.
 ${ }^{3}$ A vector $a \in \mathbb{C}^{n}$ is a function $f:\{1, \ldots, n\} \rightarrow \mathbb{C}$ with $f(i)=a_{i}$; and a matrix/hypermatrix $A \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ is a function $f:\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{d}\right\} \rightarrow \mathbb{C}$ with $f\left(i_{1}, \ldots, i_{d}\right)=a_{i_{1} \cdots i_{d}}$ [20].

[^3]: ${ }^{4}$ A one-dimensional vector space is isomorphic to the field of scalars \mathbb{C} and $\mathbb{C} \otimes \mathbb{E}=\mathbb{E}$ for any complex vector space \mathbb{E}.

[^4]: ${ }^{5}$ We cannot have $\left(r_{1}, r_{2}\right) \leq\left(s_{1}, s_{2}\right)$ or $\left(s_{1}, s_{2}\right) \leq\left(r_{1}, r_{2}\right)$ since both are assumed to be P_{3}-ranks of T. So that leaves either (i) $r_{1} \leq s_{1}, r_{2} \geq s_{2}$ or (ii) $r_{1} \geq s_{1}, r_{2} \leq s_{2}$ - we pick (i) if $r_{1} r_{2} \leq s_{1} s_{2}$ and (ii) if $s_{1} s_{2} \leq r_{1} r_{2}$. By symmetry the subsequent arguments are identical.

[^5]: ${ }^{6}$ These components are also connected trees and so the subsequent argument may be repeated on each of them.

[^6]: ${ }^{7}$ The Waring rank of a polynomial f of degree d is the smallest r such that $f=\sum_{i=1}^{r} l_{i}^{d}$ for linear forms l_{1}, \ldots, l_{r}. Its Waring border rank is the smallest r such that f is a limit of a sequence of polynomials of Waring rank r.
 ${ }^{8}$ The first flattening $b_{1}\left(v_{1}^{\otimes p_{1}} \circ \cdots \circ v_{n}^{\otimes p_{n}}\right)$, as a linear map, sends v_{i} to $v_{1}^{p_{1}} \circ \cdots \circ v_{i}^{p_{i}-1} \circ \cdots v_{n}^{p_{n}}, i=1, \ldots, n$. It has full rank n since $v_{1}^{p_{1}} \circ \cdots \circ v_{i}^{p_{i}-1} \circ \cdots v_{n}^{p_{n}}, i=1, \ldots, n$, are linearly independent. Ditto for other flattenings.

