Hyperdeterminant and Tensor Rank

Lek-Heng Lim

Workshop on Tensor Decompositions and Applications CIRM, Luminy, France August 29–September 2, 2005

Thanks: NSF DMS 01-01364

Collaborators

Pierre Comon

Laboratoire I3S Université de Nice Sophia Antipolis

Vin de Silva Department of Mathematics Stanford University

Matrix Multiplication

Let $f : U \to V$ and $g : V \to W$ be linear maps; U, V, W vector spaces over \mathbb{R} of dimensions n, m, l.

With choice of bases on U, V, W, g, f have matrix representations $A = [a_{ij}] \in \mathbb{R}^{l \times m}, B = [b_{jk}] \in \mathbb{R}^{m \times n}.$

The matrix representation of $h = g \circ f$ (i.e $h(\mathbf{x}) := g(f(\mathbf{x}))$) is then $C = [c_{ik}] \in \mathbb{R}^{l \times n}$ where

$$c_{ik} := \sum_{j=1}^{n} a_{ij} b_{jk}.$$

Similarly for bilinear $g: V_1 \times V_2 \to \mathbb{R}$ and linear $f_1: U_1 \to V_1, f_2: U_2 \to V_2$ with matrix representations $A \in \mathbb{R}^{d_1 \times d_2}$, $B_1 \in \mathbb{R}^{d_1 \times s_1}$, $B_2 \in \mathbb{R}^{d_2 \times s_2}$.

The composite map h, where $h(\mathbf{x}, \mathbf{y}) := g(f_1(\mathbf{x}), f_2(\mathbf{y}))$, has matrix representation

$$C = B_2^\top A B_1 \in \mathbb{R}^{s_1 \times s_2}.$$

Multilinear Matrix Multiplication

Do the same for multilinear map $g: V_1 \times \cdots \times V_k \to \mathbb{R}$ and linear maps $f_1: U_1 \to V_1, \ldots, f_k: U_k \to V_k$; $\dim(V_i) = s_i, \dim(U_i) = d_i$.

With choice of bases on V_i 's and U_i 's, g is represented by $A = [a_{j_1 \cdots j_k}] \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ and f_1, \ldots, f_k by $M_1 = [m_{j_1 i_1}^1] \in \mathbb{R}^{d_1 \times s_1}, \ldots, M_k = [m_{j_k i_k}^k] \in \mathbb{R}^{d_k \times s_k}$.

If we compose g by f_1, \ldots, f_k to get $h: U_1 \times \cdots \times U_k \to \mathbb{R}$ defined by

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_k) = g(f(\mathbf{x}_1),\ldots,f(\mathbf{x}_k)),$$

then h is represented by $[\![c_{i_1\cdots i_k}]\!]\in \mathbb{R}^{s_1\times\cdots\times s_k}$ where

$$c_{i_1\cdots i_k} := \sum_{j_1=1}^{d_1} \cdots \sum_{j_k=1}^{d_k} a_{j_1\cdots j_k} m_{j_1i_1}^1 \cdots m_{j_ki_k}^k.$$
(1)

The covariant multilinear matrix multiplication will be written

$$A(M_1,\ldots,M_k) := \llbracket c_{i_1\cdots i_k} \rrbracket \in \mathbb{R}^{s_1\times\cdots\times s_k}.$$

Contravariant Version

The contravariant multilinear matrix multiplication of $[\![a_{j_1\cdots j_k}]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ by matrices $L_1 = [\ell_{i_1 j_1}^1] \in \mathbb{R}^{r_1 \times d_1}, \ldots, L_k = [\ell_{i_k j_k}^k] \in \mathbb{R}^{r_k \times d_k}$ is defined by

$$(L_{1}, \dots, L_{k})A = \llbracket b_{i_{1}\cdots i_{k}} \rrbracket \in \mathbb{R}^{r_{1}\times\cdots\times r_{k}}, b_{i_{1}\cdots i_{k}} := \sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} \ell^{1}_{i_{1}j_{1}} \cdots \ell^{k}_{i_{k}j_{k}} a_{j_{1}\cdots j_{k}}.$$
(2)

This comes from the composition of a multilinear map $g: V_1^* \times \cdots \times V_k^* \to \mathbb{R}$ by linear maps $f_1: V_1 \to U_1, \ldots, f_k: V_k \to U_k$.

Simple relation if we disregard covariance/contravariance:

$$(L_1, \dots, L_k)A = A(L_1^{\perp}, \dots, L_k^{\perp})$$
$$A(M_1, \dots, M_k) = (M_1^{\perp}, \dots, M_k^{\perp})A.$$

Works over \mathbb{C} too (replace L_i^{\top} by L_i^{\dagger}).

Properties

• Let $A, B \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_1 \in \mathbb{R}^{r_1 \times d_1}, \dots, L_k \in \mathbb{R}^{r_k \times d_k}$. Then

 $(L_1,\ldots,L_k)(\lambda A + \mu B) = \lambda(L_1,\ldots,L_k)A + \mu(L_1,\ldots,L_k)B.$

• Let $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$. Let $L_1 \in \mathbb{R}^{r_1 \times d_1}, \dots, L_k \in \mathbb{R}^{r_k \times d_k}$, and $M_1 \in \mathbb{R}^{s_1 \times r_1}, \dots, M_k \in \mathbb{R}^{s_k \times r_k}$. Then

 $(M_1, \ldots, M_k)(L_1, \ldots, L_k)A = (M_1L_1, \ldots, M_kL_k)A$ where $M_iL_i \in \mathbb{R}^{s_i \times d_i}$ is simply the matrix-matrix product of M_i and L_i .

• Let $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_1 \in \mathbb{R}^{r_1 \times d_1}, \dots, L_j, M_j \in \mathbb{R}^{r_j \times d_j}, \dots, L_k \in \mathbb{R}^{r_k \times d_k}$. Then

$$A(L_1, \dots, \lambda L_j + \mu M_j, \dots, L_k) = \lambda(L_1, \dots, L_j, \dots, L_k)A + \mu(L_1, \dots, M_j, \dots, L_k)A.$$

Aside: Relation with Kronecker Product

Forgetful map $\mathbb{R}^{d_1 \times \cdots \times d_k} \to \mathbb{R}^{d_1 \cdots d_k}$, $A \mapsto \text{vec}(A)$ ('forgets' the multilinear structure), then

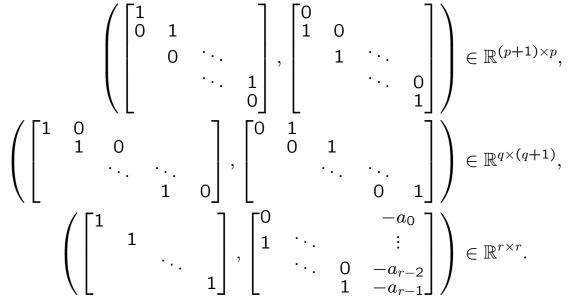
$$\operatorname{vec}((L_1,\ldots,L_k)A) = L_1 \otimes \cdots \otimes L_k \operatorname{vec}(A).$$

where $L_1 \otimes \cdots \otimes L_k \in \mathbb{R}^{d_1 \cdots d_k \times d_1 \cdots d_k}$ is the Kronecker product of L_1, \ldots, L_k .

Matrix Techniques

Start with $\mathbb{R}^{m \times n \times l}$ and $\mathbb{C}^{m \times n \times l}$. l = 2 is well understood, may be regarded as pairs of matrices $(A, B) \in (\mathbb{C}^{m \times n})^2$ or $(\mathbb{R}^{m \times n})^2$, or equivalently, as a matrix pencil $\lambda A + \mu B \in \mathbb{C}[\lambda, \mu]^{m \times n}$ or $\mathbb{R}[\lambda, \mu]^{m \times n}$.

Kronecker-Weierstrass Theory. There exist $S \in GL(m), T \in GL(n)$ such that (SAT, SBT) can be decomposed into block pairs of the following forms



Likewise for \mathbb{C} . Similar but simpler results obtained by Jos ten Berge for generic pairs.

Larger Sizes and Higher Orders

Want to obtain results as general as possible — for tensors of arbitrary size and order over both \mathbb{R} and \mathbb{C} . For larger values of k or d_1, \ldots, d_k , techniques relying on multilinear matrix multiplications become increasingly less effective.

Inherent limitation:

$$\dim(\mathbb{R}^{d_1 \times \cdots \times d_k}) = d_1 \cdots d_k = O(d^k)$$

while

$$\dim(\operatorname{GL}(d_1) \times \cdots \times \operatorname{GL}(d_k)) = d_1^2 + \cdots + d_k^2 = O(kd^2)$$

and

dim $(O(d_1) \times \cdots \times O(d_k)) = d_1(d_1-1)/2 + \cdots + d_k(d_k-1)/2 = O(kd^2).$ The action of $GL(d_1) \times \cdots \times GL(d_k)$ on $\mathbb{R}^{d_1 \times \cdots \times d_k}$ has uncountably many orbits,

 $\{(L_1, \dots, L_k)A \mid (L_1, \dots, L_k) \in \mathsf{GL}(d_1) \times \dots \times \mathsf{GL}(d_k)\},$ as soon as $d_i > 2$, k > 4.

Multilinear Functional and its Gradient

Multilinear functional associated with $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$, ie.

$$f_A : \mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_k} \to \mathbb{R},$$

$$(\mathbf{x}_1, \dots, \mathbf{x}_k) \mapsto \sum_{j_1=1}^{d_1} \cdots \sum_{j_k=1}^{d_k} a_{j_1 \cdots j_k} x_{j_1}^1 \cdots x_{j_k}^k,$$

$$(3)$$

can be written as

$$f_A(\mathbf{x}_1,\ldots,\mathbf{x}_k) = A(\mathbf{x}_1,\ldots,\mathbf{x}_k)$$
(4)

where the rhs is the right multilinear multiplication by $\mathbf{x}_i = (x_1^i, \dots, x_{d_i}^i)^{\top}$, regarded as a $d_i \times 1$ matrix.

Gradient of f_A may be written as

$$\nabla f_A = (\nabla_{\mathbf{x}_1} f_A, \dots, \nabla_{\mathbf{x}_k} f_A)$$

where

$$\nabla_{\mathbf{x}^{i}} f_{A}(\mathbf{x}_{1},\ldots,\mathbf{x}_{k}) = \left(\frac{\partial f_{A}}{\partial x_{1}^{i}},\ldots,\frac{\partial f_{A}}{\partial x_{d_{i}}^{i}}\right) = A(\mathbf{x}_{1},\ldots,\mathbf{x}_{i-1},I_{d_{i}},\mathbf{x}_{i+1},\ldots,\mathbf{x}_{k}).$$

 I_{d_i} denotes $d_i \times d_i$ identity matrix.

Hyperdeterminant

Work in $\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)}$ for the time being $(d_i \ge 1)$. Consider $S := \{A \in \mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)} \mid \nabla f_A(\mathbf{x}_1,\ldots,\mathbf{x}_k) = 0$ for some non-zero $(\mathbf{x}_1,\ldots,\mathbf{x}_k)\}.$

Theorem (Gelfand, Kapranov, Zelevinsky, 1992). S is a hypersurface if and only if

$$d_j \le \sum_{i \ne j} d_i$$

for all j = 1, ..., k. Let Δ be the equation of the hypersurface, i.e. a multivariate polynomial in the entries of A such that

$$S = \{A \in \mathbb{C}^{(d_1+1) \times \cdots \times (d_k+1)} \mid \Delta(A) = 0\}.$$

Then Δ may be chosen to have integer coefficients.

For $\mathbb{C}^{m \times n}$, the condition becomes $m \leq n$ and $n \leq m$ — that's why matrix determinants is only defined for square matrices.

Since Δ has integer coefficients, $\Delta(A)$ is real-valued for $A \in \mathbb{R}^{(d_1+1)\times\cdots\times(d_k+1)}$.

Geometric View

Let $X = \{\mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_k \in \mathbb{C}^{(d_1+1) \times \cdots \times (d_k+1)} \mid \mathbf{x}_i \in \mathbb{C}^{d_i+1}\}$ be the (smooth) manifold of decomposable tensors (X oftened called the Segre variety).

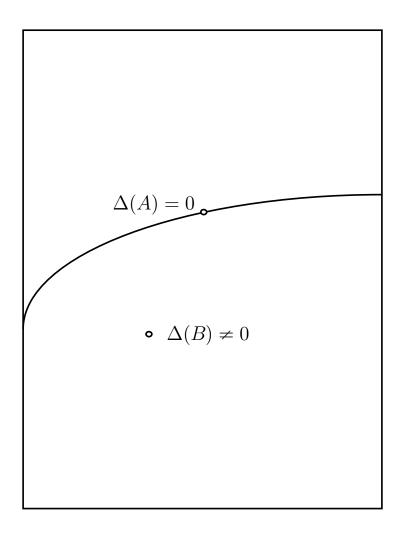
Let $A \in \mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)}$. Then the condition $\nabla f_A(\mathbf{x}_1,\ldots,\mathbf{x}_k) = \mathbf{0}$ for some non-zero $(\mathbf{x}_1,\ldots,\mathbf{x}_k)$ is equivalent to saying that the hyperplane orthogonal to A, ie.

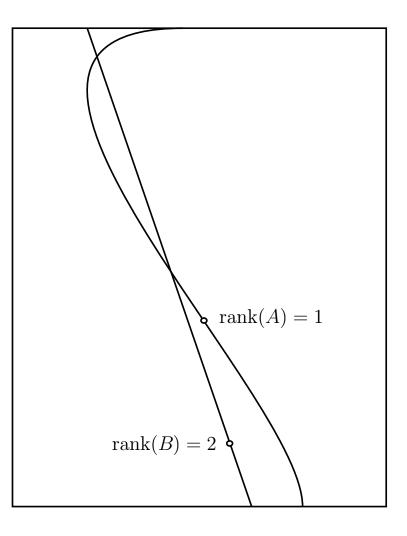
$$H_A := \{ B \in \mathbb{C}^{(d_1+1) \times \dots \times (d_k+1)} \mid \langle A, B \rangle = 0 \}$$

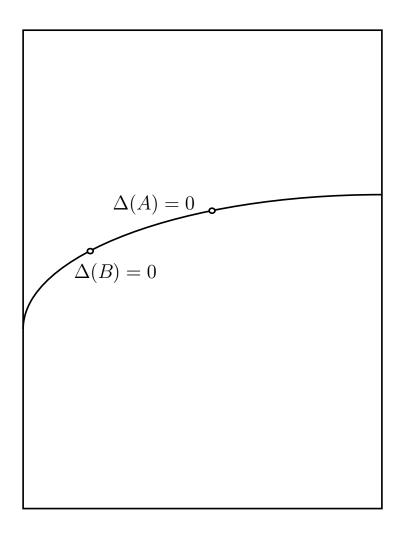
contains a tangent to X at the point $\mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_k$. This may also be taken as an alternative definition of the hyperdeterminant $\Delta(A)$.

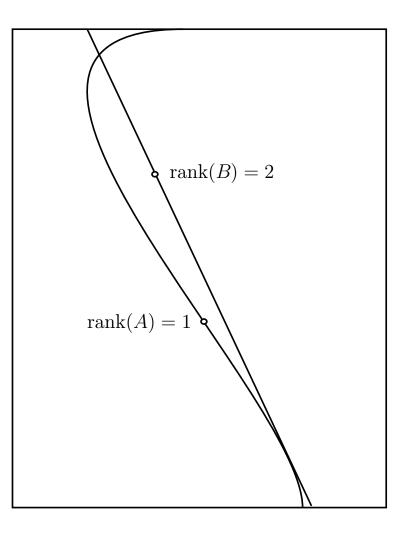
Projective duality:

$$X^* = S.$$









Minor Inaccuracy

Should really be working in projective spaces $P(\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)}) = \mathbb{P}^{(d_1+1)\cdots(d_k+1)-1}$. This is the set of equivalence classes

$$[A] := \{ \lambda A \in \mathbb{C}^{(d_1+1) \times \dots \times (d_k+1)} \mid \lambda \in \mathbb{C}^{\times} \}.$$

Thing to note is that the for any $A \in \mathbb{C}^{(d_1+1) \times \cdots \times (d_k+1)}$ and $\lambda \in \mathbb{C}^{\times}$,

 $\operatorname{rank}_{\otimes}(\lambda A) = \operatorname{rank}_{\otimes}(A).$

So outer-product rank is well-defined in $P(\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)})$, ie. given $[A] \in P(\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)})$ define

 $\operatorname{rank}_{\otimes}([A]) = \operatorname{rank}_{\otimes}(A)$

for any $A \in [A]$.

Examples

A. Cayley, "On the theory of linear transformation," *Cambridge Math. J.*, **4** (1845), pp. 193–209.

Hyperdeterminant of $A = \llbracket a_{ijk} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ is

$$\Delta(A) = \frac{1}{4} \left[\det \left(\begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} + \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix} \right) \right]^2 \\ - \det \left(\begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} - \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix} \right) \right]^2 \\ - 4 \det \begin{bmatrix} a_{000} & a_{010} \\ a_{001} & a_{011} \end{bmatrix} \det \begin{bmatrix} a_{100} & a_{110} \\ a_{101} & a_{111} \end{bmatrix}.$$

A result that parallels the matrix case is the following: the system

of bilinear equations

 $\begin{aligned} a_{000}x_{0}y_{0} + a_{010}x_{0}y_{1} + a_{100}x_{1}y_{0} + a_{110}x_{1}y_{1} &= 0, \\ a_{001}x_{0}y_{0} + a_{011}x_{0}y_{1} + a_{101}x_{1}y_{0} + a_{111}x_{1}y_{1} &= 0, \\ a_{000}x_{0}z_{0} + a_{001}x_{0}z_{1} + a_{100}x_{1}z_{0} + a_{101}x_{1}z_{1} &= 0, \\ a_{010}x_{0}z_{0} + a_{011}x_{0}z_{1} + a_{110}x_{1}z_{0} + a_{111}x_{1}z_{1} &= 0, \\ a_{000}y_{0}z_{0} + a_{001}y_{0}z_{1} + a_{010}y_{1}z_{0} + a_{011}y_{1}z_{1} &= 0, \\ a_{100}y_{0}z_{0} + a_{101}y_{0}z_{1} + a_{110}y_{1}z_{0} + a_{111}y_{1}z_{1} &= 0, \end{aligned}$

has a non-trivial solution iff $\Delta(A) = 0$.

Examples

Hyperdeterminant of $A = \llbracket a_{ijk} \rrbracket \in \mathbb{R}^{2 \times 2 \times 3}$ is

 $\Delta(A) = \det \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{100} & a_{101} & a_{102} \\ a_{010} & a_{011} & a_{012} \end{bmatrix} \det \begin{bmatrix} a_{100} & a_{101} & a_{102} \\ a_{010} & a_{011} & a_{012} \\ a_{110} & a_{111} & a_{112} \end{bmatrix}$ $-\det \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{100} & a_{101} & a_{102} \\ a_{110} & a_{111} & a_{112} \end{bmatrix} \det \begin{bmatrix} a_{000} & a_{001} & a_{002} \\ a_{010} & a_{011} & a_{012} \\ a_{110} & a_{111} & a_{112} \end{bmatrix}$

Again, the following is true:

 $\begin{aligned} a_{000}x_0y_0 + a_{010}x_0y_1 + a_{100}x_1y_0 + a_{110}x_1y_1 &= 0, \\ a_{001}x_0y_0 + a_{011}x_0y_1 + a_{101}x_1y_0 + a_{111}x_1y_1 &= 0, \\ a_{002}x_0y_0 + a_{012}x_0y_1 + a_{102}x_1y_0 + a_{112}x_1y_1 &= 0, \\ a_{000}x_0z_0 + a_{001}x_0z_1 + a_{002}x_0z_2 + a_{100}x_1z_0 + a_{101}x_1z_1 + a_{102}x_1z_2 &= 0, \\ a_{010}x_0z_0 + a_{011}x_0z_1 + a_{012}x_0z_2 + a_{110}x_1z_0 + a_{111}x_1z_1 + a_{112}x_1z_2 &= 0, \\ a_{000}y_0z_0 + a_{001}y_0z_1 + a_{002}y_0z_2 + a_{010}y_1z_0 + a_{011}y_1z_1 + a_{012}y_1z_2 &= 0, \\ a_{100}y_0z_0 + a_{101}y_0z_1 + a_{102}y_0z_2 + a_{110}y_1z_0 + a_{111}y_1z_1 + a_{112}y_1z_2 &= 0, \end{aligned}$

has a non-trivial solution iff $\Delta(A) = 0$.

For more examples, see:

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, *Discriminants, resultants, and multidimensional determinants*, Birkhäuser Publishing, Boston, MA, 1994.

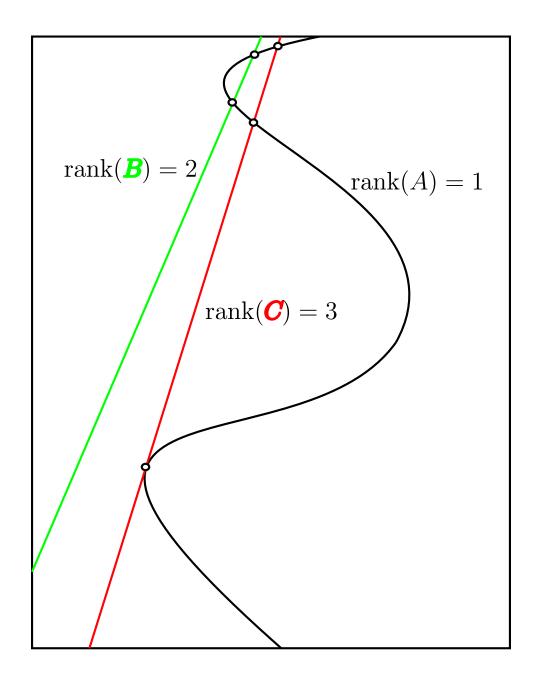
Another Explanation for Degeneracy

Degeneracy here means: a sequence of tensors B_n of rank $\leq r$ converging to a tensor A of rank r+1, ie. A can be approximated arbitrarily well by tensors of lower-rank. In particular, A has no best rank-r approximations.

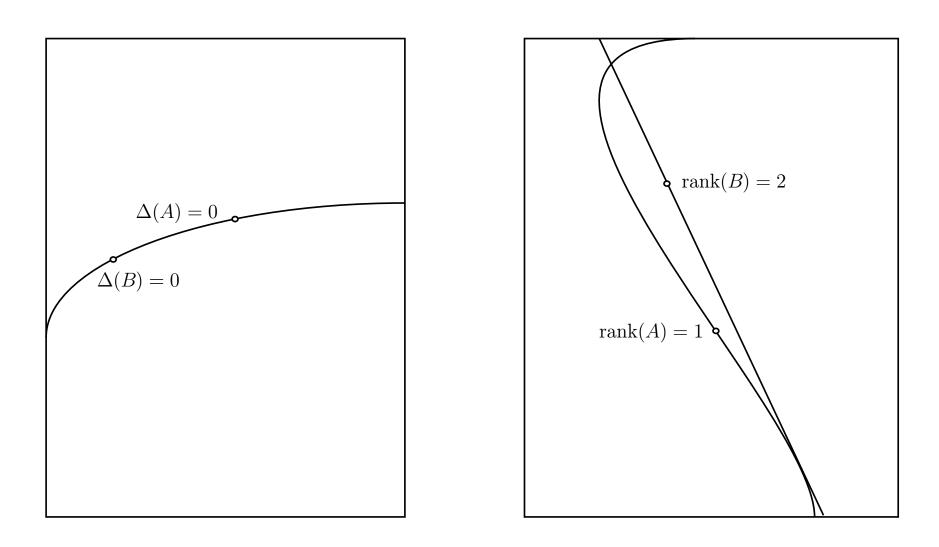
Question: Why do degeneracy occur in PARAFAC?

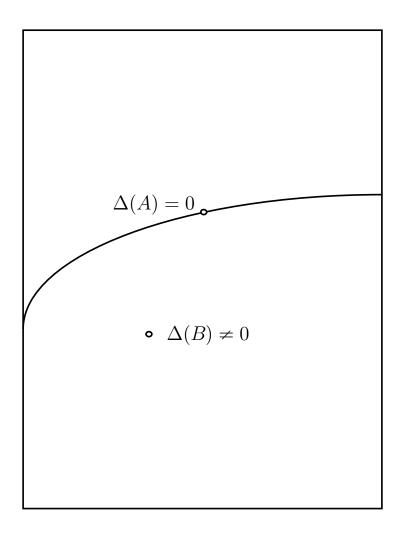
One Explanation: Alwin's talk

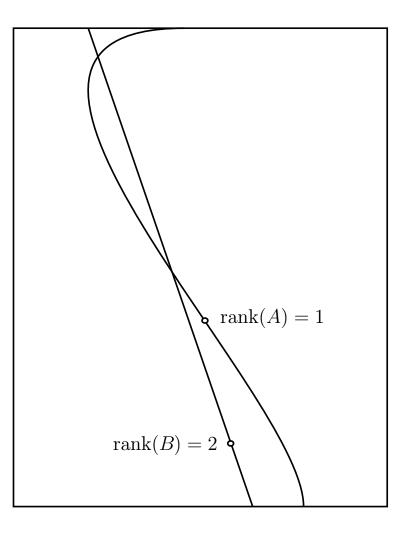
Alternative explanation: Degeneracy happens when a sequence of *r*-secants to *X* converges to a (r + 1)-secant. Furthermore, this (r + 1)-secant is always tangent to *X* (since *X* is a smooth manifold). This doesn't happen for order-2 tensors because the geometry of $X = \{A \in \mathbb{C}^{m \times n} \mid \operatorname{rank}(A) \leq 1\}$ prevents this.



Relation between the two explanations







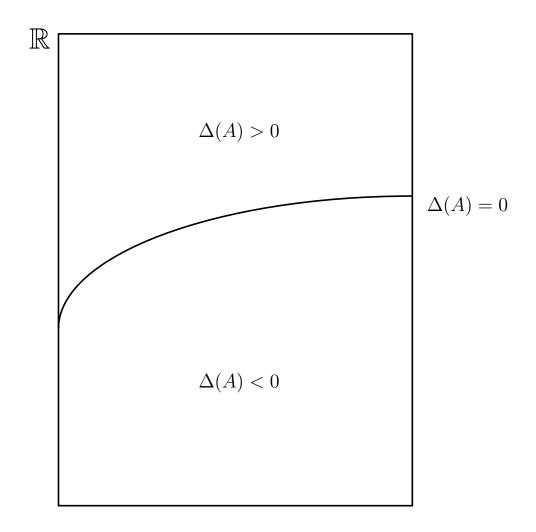
Typical Rank(s) for Real Tensors

Conjecture. For any $d_1, \ldots, d_k \ge 1$ satisfying

$$d_j \le \sum_{i \ne j} d_i$$

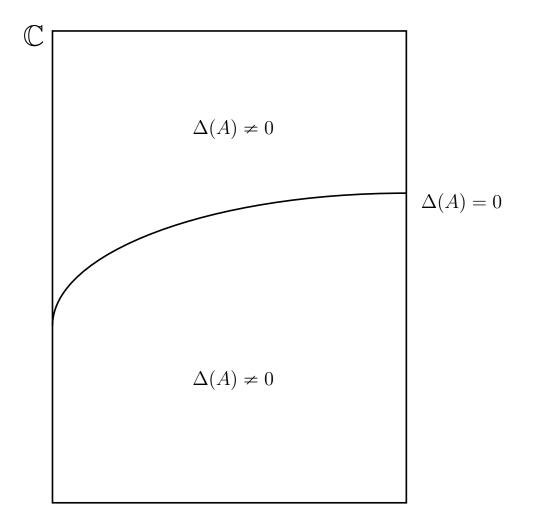
for all j, the outer-product rank is constant on the sets $\{A \in \mathbb{R}^{(d_1+1)\times\cdots\times(d_k+1)} \mid \Delta(A) < 0\}$ and $\{A \in \mathbb{R}^{(d_1+1)\times\cdots\times(d_k+1)} \mid \Delta(A) > 0\}$ (but may take different values).

Corollary. If the conjecture is true, then there exist at most two typical ranks for $\mathbb{R}^{(d_1+1)\times\cdots\times(d_k+1)}$.



Generic rank for Complex Tensors

Theorem. For any $d_1, \ldots, d_k \ge 1$, a (unique) generic rank always exist for $\mathbb{C}^{(d_1+1)\times\cdots\times(d_k+1)}$.



Extending hyperdeterminant

Let $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$, $d_i \ge r = \operatorname{rank}_{\otimes}(A)$. Let Δ denote the hyperdeterminant in $\mathbb{R}^{r \times \cdots \times r}$.

Easy to show: There exist $Q_i \in \mathbb{R}^{r \times d_i}$ with orthonormal columns, $i = 1, \ldots, k$, such that

$$(Q_1,\ldots,Q_k)A \in \mathbb{R}^{r \times \cdots \times r}$$

Lemma. If A can be approximated arbitrarily closely by tensors of rank $\leq r$ in $\mathbb{R}^{d_1 \times \cdots \times d_k}$, then $(Q_1, \ldots, Q_k)A$ can be approximated arbitrarily closely by tensors of rank $\leq r$ in $\mathbb{R}^{r_1 \times \cdots \times r_k}$.

Define r-hyperdeterminant of A by

$$\Delta_{k,r}(A) := \Delta((Q_1, \dots, Q_k)A).$$

Whether $\Delta_{k,r}(A) = 0$ or not is independent of choice of Q_1, \ldots, Q_k .

Conditioning

J.W. Demmel, "On condition numbers and the distance to the nearest ill-posed problem," *Numer. Math.*, **51** (1987), no. 3, pp. 251–289.

J.W. Demmel, "The geometry of ill-conditioning," *J. Complexity*, **3** (1987), no. 2, pp. 201–229.

J.W. Demmel, "The probability that a numerical analysis problem is difficult," *Math. Comp.*, **50** (1988), no. 182, pp. 449–480.

An ill-posed problem is one that lacks either existence or uniqueness or stability (of a solution).

Condition number in a nutshell: The condition number of a well-posed problem measures the distance of that problem to

the manifold of ill-posed problems. The larger the condition number, the closer the problem is to an ill-posed one.

Example. The manifold of ill-posed $n \times n$ linear system is $S = \{A \in \mathbb{R}^{n \times n} \mid \det(A) = 0\}$. For a non-singular *B*, the (normalized) condition number

$\frac{1}{\|B^{-1}\|}$

is the distance of B to S. Note that the value of det(B) does not enter into the picture — det(B) can be arbitrarily small for well-conditioned B.

Using Hyperdeterminants

The set $\{A \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \Delta_{k,r}(A) = 0\}$ characterizes the ill-posed best rank-*r* approximation problems in $\mathbb{R}^{d_1 \times \cdots \times d_k}$.

The (normalized) condition number of the problem of finding the best rank-*r* approximation to *B* is given by the reciprocal of the distance of *B* to $\{A \in \mathbb{R}^{d_1 \times \cdots \times d_k} \mid \Delta_{k,r}(A) = 0\}$.

Note again that the exact value of $\Delta_{k,r}(A)$ is unimportant (only whether it is 0).

Example: Order-3, Rank-2

Easy Fact. Let $l, m, n \ge 2$. Let $\mathbf{x}_1, \mathbf{y}_1 \in \mathbb{R}^l$, $\mathbf{x}_2, \mathbf{y}_2 \in \mathbb{R}^m$, $\mathbf{x}_3, \mathbf{y}_3 \in \mathbb{R}^n$ and define

 $A := \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3 \in \mathbb{R}^{l \times m \times n}.$

Then rank_{\otimes}(A) = 3 if and only if $\mathbf{x}_i, \mathbf{y}_i$ are linearly independent, i = 1, 2, 3.

Theorem (de Silva and L., 2004). Let $l, m, n \ge 2$. Let $A \in \mathbb{R}^{l \times m \times n}$ with rank_{\otimes} $(A) \ge 3$. The following are equivalent:

1. A is the limit of a sequence $B_n \in \mathbb{R}^{l \times m \times n}$ with rank_{\otimes} $(B_n) \leq 2$,

2. $\Delta_{3,2}(A) = 0$,

3. $A = \mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{y}_3 + \mathbf{x}_1 \otimes \mathbf{y}_2 \otimes \mathbf{x}_3 + \mathbf{y}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3$.