Hyperdeterminant and Tensor Rank

Lek-Heng Lim

Workshop on Tensor Decompositions and Applications CIRM, Luminy, France
August 29-September 2, 2005

Thanks: NSF DMS 01-01364

Collaborators

Pierre Comon
Laboratoire I3S
Université de Nice Sophia Antipolis

Vin de Silva
Department of Mathematics Stanford University

Matrix Multiplication

Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear maps; U, V, W vector spaces over \mathbb{R} of dimensions n, m, l.

With choice of bases on U, V, W, g, f have matrix representations $A=\left[a_{i j}\right] \in \mathbb{R}^{l \times m}, B=\left[b_{j k}\right] \in \mathbb{R}^{m \times n}$.

The matrix representation of $h=g \circ f$ (ie. $h(\mathbf{x}):=g(f(\mathbf{x}))$) is then $C=\left[c_{i k}\right] \in \mathbb{R}^{l \times n}$ where

$$
c_{i k}:=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

Similarly for bilinear $g: V_{1} \times V_{2} \rightarrow \mathbb{R}$ and linear $f_{1}: U_{1} \rightarrow V_{1}, f_{2}$: $U_{2} \rightarrow V_{2}$ with matrix representations $A \in \mathbb{R}^{d_{1} \times d_{2}}, B_{1} \in \mathbb{R}^{d_{1} \times s_{1}}$, $B_{2} \in \mathbb{R}^{d_{2} \times s_{2}}$.

The composite map h, where $h(\mathbf{x}, \mathbf{y}):=g\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{y})\right)$, has matrix representation

$$
C=B_{2}^{\top} A B_{1} \in \mathbb{R}^{s_{1} \times s_{2}}
$$

Multilinear Matrix Multiplication

Do the same for multilinear map $g: V_{1} \times \cdots \times V_{k} \rightarrow \mathbb{R}$ and linear maps $f_{1}: U_{1} \rightarrow V_{1}, \ldots, f_{k}: U_{k} \rightarrow V_{k} ; \operatorname{dim}\left(V_{i}\right)=s_{i}, \operatorname{dim}\left(U_{i}\right)=d_{i}$.

With choice of bases on V_{i} 's and U_{i} 's, g is represented by $A=$ $\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and f_{1}, \ldots, f_{k} by $M_{1}=\left[m_{j_{1} i_{1}}^{1}\right] \in \mathbb{R}^{d_{1} \times s_{1}}, \ldots, M_{k}=$ $\left[m_{j_{k} i_{k}}^{k}\right] \in \mathbb{R}^{d_{k} \times s_{k}}$.

If we compose g by f_{1}, \ldots, f_{k} to get $h: U_{1} \times \cdots \times U_{k} \rightarrow \mathbb{R}$ defined by

$$
h\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)=g\left(f\left(\mathrm{x}_{1}\right), \ldots, f\left(\mathrm{x}_{k}\right)\right),
$$

then h is represented by $\llbracket c_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{s_{1} \times \cdots \times s_{k}}$ where

$$
\begin{equation*}
c_{i_{1} \cdots i_{k}}:=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} a_{j_{1} \cdots j_{k}} m_{j_{1} i_{1}}^{1} \cdots m_{j_{k} i_{k}}^{k} . \tag{1}
\end{equation*}
$$

The covariant multilinear matrix multiplication will be written

$$
A\left(M_{1}, \ldots, M_{k}\right):=\llbracket c_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{s_{1} \times \cdots \times s_{k}} .
$$

Contravariant Version

The contravariant multilinear matrix multiplication of $\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in$ $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ by matrices $L_{1}=\left[\ell_{i_{1} j_{1}}^{1}\right] \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k}=\left[\ell_{i_{k} j_{k}}^{k}\right] \in$ $\mathbb{R}^{r_{k} \times d_{k}}$ is defined by

$$
\begin{align*}
\left(L_{1}, \ldots, L_{k}\right) A & =\llbracket b_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{r_{1} \times \cdots \times r_{k}}, \\
b_{i_{1} \cdots i_{k}} & :=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} \ell_{i_{1} j_{1}}^{1} \cdots \ell_{i_{k} j_{k}}^{k} a_{j_{1} \cdots j_{k}} . \tag{2}
\end{align*}
$$

This comes from the composition of a multilinear map $g: V_{1}^{*} \times$ $\cdots \times V_{k}^{*} \rightarrow \mathbb{R}$ by linear maps $f_{1}: V_{1} \rightarrow U_{1}, \ldots, f_{k}: V_{k} \rightarrow U_{k}$.

Simple relation if we disregard covariance/contravariance:

$$
\begin{aligned}
\left(L_{1}, \ldots, L_{k}\right) A & =A\left(L_{1}^{\top}, \ldots, L_{k}^{\top}\right) \\
A\left(M_{1}, \ldots, M_{k}\right) & =\left(M_{1}^{\top}, \ldots, M_{k}^{\top}\right) A .
\end{aligned}
$$

Works over \mathbb{C} too (replace L_{i}^{\top} by L_{i}^{\dagger}).

Properties

- Let $A, B \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k} \in$ $\mathbb{R}^{r_{k} \times d_{k}}$. Then

$$
\left(L_{1}, \ldots, L_{k}\right)(\lambda A+\mu B)=\lambda\left(L_{1}, \ldots, L_{k}\right) A+\mu\left(L_{1}, \ldots, L_{k}\right) B .
$$

- Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{k} \in \mathbb{R}^{r_{k} \times d_{k}}$, and $M_{1} \in \mathbb{R}^{s_{1} \times r_{1}}, \ldots, M_{k} \in \mathbb{R}^{s_{k} \times r_{k}}$. Then

$$
\left(M_{1}, \ldots, M_{k}\right)\left(L_{1}, \ldots, L_{k}\right) A=\left(M_{1} L_{1}, \ldots, M_{k} L_{k}\right) A
$$

where $M_{i} L_{i} \in \mathbb{R}^{s_{i} \times d_{i}}$ is simply the matrix-matrix product of M_{i} and L_{i}.

- Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ and $\lambda, \mu \in \mathbb{R}$. Let $L_{1} \in \mathbb{R}^{r_{1} \times d_{1}}, \ldots, L_{j}, M_{j} \in$ $\mathbb{R}^{r_{j} \times d_{j}}, \ldots, L_{k} \in \mathbb{R}^{r_{k} \times d_{k}}$. Then

$$
\begin{aligned}
& A\left(L_{1}, \ldots, \lambda L_{j}+\mu M_{j}, \ldots, L_{k}\right)= \\
& \quad \lambda\left(L_{1}, \ldots, L_{j}, \ldots, L_{k}\right) A+\mu\left(L_{1}, \ldots, M_{j}, \ldots, L_{k}\right) A .
\end{aligned}
$$

Aside: Relation with Kronecker Product

Forgetful map $\mathbb{R}^{d_{1} \times \cdots \times d_{k}} \rightarrow \mathbb{R}^{d_{1} \cdots d_{k}}, A \mapsto \operatorname{vec}(A)$ ('forgets' the multilinear structure), then

$$
\operatorname{vec}\left(\left(L_{1}, \ldots, L_{k}\right) A\right)=L_{1} \otimes \cdots \otimes L_{k} \operatorname{vec}(A)
$$

where $L_{1} \otimes \cdots \otimes L_{k} \in \mathbb{R}^{d_{1} \cdots d_{k} \times d_{1} \cdots d_{k}}$ is the Kronecker product of L_{1}, \ldots, L_{k}.

Matrix Techniques

Start with $\mathbb{R}^{m \times n \times l}$ and $\mathbb{C}^{m \times n \times l}$. $l=2$ is well understood, may be regarded as pairs of matrices $(A, B) \in\left(\mathbb{C}^{m \times n}\right)^{2}$ or $\left(\mathbb{R}^{m \times n}\right)^{2}$, or equivalently, as a matrix pencil $\lambda A+\mu B \in \mathbb{C}[\lambda, \mu]^{m \times n}$ or $\mathbb{R}[\lambda, \mu]^{m \times n}$.

Kronecker-Weierstrass Theory. There exist $S \in \mathrm{GL}(m), T \in$ GL (n) such that ($S A T, S B T$) can be decomposed into block pairs of the following forms

$$
\begin{aligned}
& \begin{array}{c}
\left(\left[\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right],\left[\begin{array}{llll}
0 & & & \\
1 & 0 & & \\
& 1 & \ddots & \\
& & \ddots & 0 \\
& & & 1
\end{array}\right]\right) \in \mathbb{R}^{(p+1) \times p}, \\
\left(\left[\begin{array}{lllll}
1 & 0 & 0 & & \\
& 1 & 0 & \ddots & \\
& & & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & \ddots & \ddots
\end{array}\right.\right. \\
\end{array} \\
& \left(\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & & & -a_{0} \\
1 & \ddots & & \vdots \\
& \ddots & 0 & -a_{r-2} \\
& & 1 & -a_{r-1}
\end{array}\right]\right) \in \mathbb{R}^{r \times r} .
\end{aligned}
$$

Likewise for \mathbb{C}. Similar but simpler results obtained by Jos ten Berge for generic pairs.

Larger Sizes and Higher Orders

Want to obtain results as general as possible - for tensors of arbitrary size and order over both \mathbb{R} and \mathbb{C}. For larger values of k or d_{1}, \ldots, d_{k}, techniques relying on multilinear matrix multiplications become increasingly less effective.

Inherent limitation:

$$
\operatorname{dim}\left(\mathbb{R}^{d_{1} \times \cdots \times d_{k}}\right)=d_{1} \cdots d_{k}=O\left(d^{k}\right)
$$

while

$$
\operatorname{dim}\left(\mathrm{GL}\left(d_{1}\right) \times \cdots \times \mathrm{GL}\left(d_{k}\right)\right)=d_{1}^{2}+\cdots+d_{k}^{2}=O\left(k d^{2}\right)
$$

and
$\operatorname{dim}\left(\bigcirc\left(d_{1}\right) \times \cdots \times \bigcirc\left(d_{k}\right)\right)=d_{1}\left(d_{1}-1\right) / 2+\cdots+d_{k}\left(d_{k}-1\right) / 2=O\left(k d^{2}\right)$.
The action of $\mathrm{GL}\left(d_{1}\right) \times \cdots \times \mathrm{GL}\left(d_{k}\right)$ on $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ has uncountably many orbits,

$$
\left\{\left(L_{1}, \ldots, L_{k}\right) A \mid\left(L_{1}, \ldots, L_{k}\right) \in \mathrm{GL}\left(d_{1}\right) \times \cdots \times \mathrm{GL}\left(d_{k}\right)\right\}
$$

as soon as $d_{i}>2, k>4$.

Multilinear Functional and its Gradient

Multilinear functional associated with $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, ie.

$$
\begin{align*}
f_{A}: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} & \rightarrow \mathbb{R} \tag{3}\\
\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right) & \mapsto \sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} a_{j_{1} \cdots j_{k}} x_{j_{1}}^{1} \cdots x_{j_{k}}^{k}
\end{align*}
$$

can be written as

$$
\begin{equation*}
f_{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)=A\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right) \tag{4}
\end{equation*}
$$

where the rhs is the right multilinear multiplication by $\mathrm{x}_{i}=$ $\left(x_{1}^{i}, \ldots, x_{d_{i}}^{i}\right)^{\top}$, regarded as a $d_{i} \times 1$ matrix.

Gradient of f_{A} may be written as

$$
\nabla f_{A}=\left(\nabla_{\mathbf{x}_{1}} f_{A}, \ldots, \nabla_{\mathbf{x}_{k}} f_{A}\right)
$$

where
$\nabla_{\mathbf{x}^{i}} f_{A}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=\left(\frac{\partial f_{A}}{\partial x_{1}^{i}}, \ldots, \frac{\partial f_{A}}{\partial x_{d_{i}}^{i}}\right)=A\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, I_{d_{i}}, \mathbf{x}_{i+1}, \ldots, \mathbf{x}_{k}\right)$.
$I_{d_{i}}$ denotes $d_{i} \times d_{i}$ identity matrix.

Hyperdeterminant

Work in $\mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$ for the time being $\left(d_{i} \geq 1\right)$. Consider

$$
S:=\left\{A \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \nabla f_{A}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=0\right.
$$

$$
\text { for some non-zero } \left.\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\right\}
$$

Theorem (Gelfand, Kapranov, Zelevinsky, 1992). S is a hypersurface if and only if

$$
d_{j} \leq \sum_{i \neq j} d_{i}
$$

for all $j=1, \ldots, k$. Let Δ be the equation of the hypersurface, ie. a multivariate polynomial in the entries of A such that

$$
S=\left\{A \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \Delta(A)=0\right\}
$$

Then Δ may be chosen to have integer coefficients.
For $\mathbb{C}^{m \times n}$, the condition becomes $m \leq n$ and $n \leq m$ - that's why matrix determinants is only defined for square matrices.

Since Δ has integer coefficients, $\Delta(A)$ is real-valued for $A \in$ $\mathbb{R}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$.

Geometric View

Let $X=\left\{\mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{k} \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \mathbf{x}_{i} \in \mathbb{C}^{d_{i}+1}\right\}$ be the (smooth) manifold of decomposable tensors (X oftened called the Segre variety).

Let $A \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$. Then the condition $\nabla f_{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)=$ $\mathbf{0}$ for some non-zero $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$ is equivalent to saying that the hyperplane orthogonal to A, ie.

$$
H_{A}:=\left\{B \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid\langle A, B\rangle=0\right\}
$$

contains a tangent to X at the point $\mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{k}$. This may also be taken as an alternative definition of the hyperdeterminant $\Delta(A)$.

Projective duality:

$$
X^{*}=S
$$

Minor Inaccuracy

Should really be working in projective spaces $P\left(\mathbb{C}\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)\right)=$ $\mathbb{P}^{\left(d_{1}+1\right) \cdots\left(d_{k}+1\right)-1}$. This is the set of equivalence classes

$$
[A]:=\left\{\lambda A \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \lambda \in \mathbb{C}^{\times}\right\}
$$

Thing to note is that the for any $A \in \mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$ and $\lambda \in \mathbb{C}^{\times}$,

$$
\operatorname{rank}_{\otimes}(\lambda A)=\operatorname{rank}_{\otimes}(A)
$$

So outer-product rank is well-defined in $P\left(\mathbb{C}\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)\right)$, ie. given $[A] \in P\left(\mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}\right)$ define

$$
\operatorname{rank}_{\otimes}([A])=\operatorname{rank}_{\otimes}(A)
$$

for any $A \in[A]$.

Examples

A. Cayley, "On the theory of linear transformation," Cambridge Math. J., 4 (1845), pp. 193-209.

Hyperdeterminant of $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 2}$ is

$$
\begin{aligned}
& \Delta(A)=\frac{1}{4}[\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]+\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right) \\
&\left.-\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]-\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right]^{2} \\
&-4 \operatorname{det}\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right] .
\end{aligned}
$$

A result that parallels the matrix case is the following: the system
of bilinear equations

$$
\begin{array}{r}
a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=0, \\
a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=0, \\
a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=0, \\
a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=0,
\end{array}
$$

has a non-trivial solution iff $\Delta(A)=0$.

Examples

Hyperdeterminant of $A=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{2 \times 2 \times 3}$ is

$$
\begin{aligned}
\Delta(A)=\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{100} & a_{101} & a_{102} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \\
\quad-\operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{100} & a_{101} & a_{102} \\
a_{110} & a_{111} & a_{112}
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
a_{000} & a_{001} & a_{002} \\
a_{010} & a_{011} & a_{012} \\
a_{110} & a_{111} & a_{112}
\end{array}\right]
\end{aligned}
$$

Again, the following is true:

$$
\begin{aligned}
& a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \\
& a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0, \\
& a_{002} x_{0} y_{0}+a_{012} x_{0} y_{1}+a_{102} x_{1} y_{0}+a_{112} x_{1} y_{1}=0, \\
& a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{002} x_{0} z_{2}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}+a_{102} x_{1} z_{2}=0, \\
& a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{012} x_{0} z_{2}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}+a_{112} x_{1} z_{2}=0, \\
& a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{002} y_{0} z_{2}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}+a_{012} y_{1} z_{2}=0, \\
& a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{102} y_{0} z_{2}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}+a_{112} y_{1} z_{2}=0,
\end{aligned}
$$

has a non-trivial solution iff $\Delta(A)=0$.

For more examples, see:
I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser Publishing, Boston, MA, 1994.

Another Explanation for Degeneracy

Degeneracy here means: a sequence of tensors B_{n} of rank $\leq r$ converging to a tensor A of rank $r+1$, ie. A can be approximated arbitrarily well by tensors of lower-rank. In particular, A has no best rank-r approximations.

Question: Why do degeneracy occur in PARAFAC?

One Explanation: Alwin's talk

Alternative explanation: Degeneracy happens when a sequence of r-secants to X converges to a $(r+1)$-secant. Furthermore, this ($r+1$)-secant is always tangent to X (since X is a smooth manifold). This doesn't happen for order-2 tensors because the geometry of $X=\left\{A \in \mathbb{C}^{m \times n} \mid \operatorname{rank}(A) \leq 1\right\}$ prevents this.

Relation between the two explanations

Typical Rank(s) for Real Tensors

Conjecture. For any $d_{1}, \ldots, d_{k} \geq 1$ satisfying

$$
d_{j} \leq \sum_{i \neq j} d_{i}
$$

for all j, the outer-product rank is constant on the sets $\{A \in$ $\left.\mathbb{R}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid \Delta(A)<0\right\}$ and $\left\{A \in \mathbb{R}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)} \mid\right.$ $\Delta(A)>0\}$ (but may take different values).

Corollary. If the conjecture is true, then there exist at most two typical ranks for $\mathbb{R}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right)}$.

Generic rank for Complex Tensors

Theorem. For any $d_{1}, \ldots, d_{k} \geq 1$, a (unique) generic rank always exist for $\mathbb{C}^{\left(d_{1}+1\right) \times \cdots \times\left(d_{k}+1\right) \text {. } . ~ . ~ . ~}$

Extending hyperdeterminant

Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}, d_{i} \geq r=\operatorname{rank}_{\otimes}(A)$. Let Δ denote the hyperdeterminant in $\mathbb{R}^{r \times \cdots \times r}$.

Easy to show: There exist $Q_{i} \in \mathbb{R}^{r \times d_{i}}$ with orthonormal columns, $i=1, \ldots, k$, such that

$$
\left(Q_{1}, \ldots, Q_{k}\right) A \in \mathbb{R}^{r \times \cdots \times r} .
$$

Lemma. If A can be approximated arbitrarily closely by tensors of rank $\leq r$ in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$, then $\left(Q_{1}, \ldots, Q_{k}\right) A$ can be approximated arbitrarily closely by tensors of rank $\leq r$ in $\mathbb{R}^{r_{1} \times \cdots \times r_{k}}$.

Define r-hyperdeterminant of A by

$$
\Delta_{k, r}(A):=\Delta\left(\left(Q_{1}, \ldots, Q_{k}\right) A\right)
$$

Whether $\Delta_{k, r}(A)=0$ or not is independent of choice of Q_{1}, \ldots, Q_{k}.

Conditioning

J.W. Demmel, "On condition numbers and the distance to the nearest ill-posed problem," Numer. Math., 51 (1987), no. 3, pp. 251-289.
J.W. Demmel, "The geometry of ill-conditioning," J. Complexity, 3 (1987), no. 2, pp. 201-229.
J.W. Demmel, "The probability that a numerical analysis problem is difficult," Math. Comp., 50 (1988), no. 182, pp. 449-480.

An ill-posed problem is one that lacks either existence or uniqueness or stability (of a solution).

Condition number in a nutshell: The condition number of a well-posed problem measures the distance of that problem to
the manifold of ill-posed problems. The larger the condition number, the closer the problem is to an ill-posed one.

Example. The manifold of ill-posed $n \times n$ linear system is $\mathcal{S}=$ $\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=0\right\}$. For a non-singular B, the (normalized) condition number

$$
\frac{1}{\left\|B^{-1}\right\|}
$$

is the distance of B to \mathcal{S}. Note that the value of $\operatorname{det}(B)$ does not enter into the picture - $\operatorname{det}(B)$ can be arbitrarily small for well-conditioned B.

Using Hyperdeterminants

The set $\left\{A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \Delta_{k, r}(A)=0\right\}$ characterizes the ill-posed best rank-r approximation problems in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.

The (normalized) condition number of the problem of finding the best rank-r approximation to B is given by the reciprocal of the distance of B to $\left\{A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}} \mid \Delta_{k, r}(A)=0\right\}$.

Note again that the exact value of $\Delta_{k, r}(A)$ is unimportant (only whether it is 0).

Example: Order-3, Rank-2

Easy Fact. Let $l, m, n \geq 2$. Let $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{l}, \mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{m}, \mathbf{x}_{3}, \mathbf{y}_{3} \in$ \mathbb{R}^{n} and define

$$
A:=\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{y}_{3}+\mathbf{x}_{1} \otimes \mathbf{y}_{2} \otimes \mathbf{x}_{3}+\mathbf{y}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} \in \mathbb{R}^{l \times m \times n}
$$

Then $\operatorname{rank}_{\otimes}(A)=3$ if and only if $\mathbf{x}_{i}, \mathbf{y}_{i}$ are linearly independent, $i=1,2,3$.

Theorem (de Silva and L., 2004). Let $l, m, n \geq 2$. Let $A \in$ $\mathbb{R}^{l \times m \times n}$ with $\operatorname{rank}_{\otimes}(A) \geq 3$. The following are equivalent:

1. A is the limit of a sequence $B_{n} \in \mathbb{R}^{l \times m \times n}$ with $\operatorname{rank}_{\otimes}\left(B_{n}\right) \leq 2$,
2. $\Delta_{3,2}(A)=0$,
3. $A=\mathrm{x}_{1} \otimes \mathrm{x}_{2} \otimes \mathrm{y}_{3}+\mathrm{x}_{1} \otimes \mathrm{y}_{2} \otimes \mathrm{x}_{3}+\mathrm{y}_{1} \otimes \mathrm{x}_{2} \otimes \mathrm{x}_{3}$.
