Multilinear Spectral Theory (and its applications)
 Lek-Heng Lim

Workshop on Tensor Decompositions and Applications CIRM, Luminy, France August 29-September 2, 2005

Thanks: Pierre Comon, Gene Golub, NSF DMS 01-01364

Acknowledgement

Pierre Comon

Laboratoire I3S
Université de Nice Sophia Antipolis

Lieven de Lathauwer

Equipes Traitement des Images et du Signal
Ecole Nationale Supérieure d'Electronique et de ses Applications

Multilinear Matrix Multiplication

Multilinear map $g: V_{1} \times \cdots \times V_{k} \rightarrow \mathbb{R}, g\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right)$.

Linear maps $f_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}, \mathbf{y}_{\alpha}=f_{\alpha}\left(\mathbf{x}_{i}\right), \alpha=1, \ldots, k$.

Compose g by f_{1}, \ldots, f_{k} to get $h: U_{1} \times \cdots \times U_{k} \rightarrow \mathbb{R}$,

$$
h\left(\mathbf{x}_{1}, \ldots, \mathrm{x}_{k}\right)=g\left(f\left(\mathrm{x}_{1}\right), \ldots, f\left(\mathrm{x}_{k}\right)\right)
$$

$A=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ represents $g ;$
$M_{\alpha}=\left[m_{j_{1} i_{1}}^{\alpha}\right] \in \mathbb{R}^{d_{\alpha} \times s_{\alpha}}$ represents $f_{\alpha}, \alpha=1, \ldots, k ;$
Then h represented by

$$
\begin{aligned}
A\left(M_{1}, \ldots, M_{k}\right) & =\llbracket c_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{s_{1} \times \cdots \times s_{k}} \\
c_{i_{1} \cdots i_{k}} & :=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} a_{j_{1} \cdots j_{k}} m_{j_{1} i_{1}}^{1} \cdots m_{j_{k} i_{k}}^{k}
\end{aligned}
$$

Call the above covariant multilinear matrix multiplication.

Contravariant version: compose multilinear map

$$
g: V_{1}^{*} \times \cdots \times V_{k}^{*} \rightarrow \mathbb{R}
$$

with the adjoint of linear maps $f_{\alpha}: V_{\alpha} \rightarrow U_{\alpha}, \alpha=1, \ldots, k$,

$$
\begin{aligned}
\left(L_{1}, \ldots, L_{k}\right) A & =\llbracket b_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{r_{1} \times \cdots \times r_{k}}, \\
b_{i_{1} \cdots i_{k}} & :=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{k}=1}^{d_{k}} \ell_{i_{1} j_{1}}^{1} \cdots \ell_{i_{k} j_{k}}^{k} a_{j_{1} \cdots j_{k}}
\end{aligned}
$$

Symmetric Tensors

$A=\llbracket a_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. For a permutation $\sigma \in \Sigma_{k}$, σ-transpose of A is

$$
A^{\sigma}=\llbracket a_{i_{\sigma(1)} \cdots i_{\sigma(k)}} \rrbracket \in \mathbb{R}^{d_{\sigma(1)} \times \cdots \times d_{\sigma(k)}} .
$$

Order- k generalization of 'taking transpose'.

For matrices (order-2), only one way to take transpose (ie. swapping row and column indices) since Σ_{2} has only one non-trivial element. For an order- k tensor, there are $k!-1$ different 'transposes' - one for each non-trivial element of Σ_{k}.

An order- k tensor $A=\llbracket a_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{n \times \cdots \times n}$ is called symmetric if $A=A^{\sigma}$ for all $\sigma \in \Sigma_{k}$, ie.

$$
a_{i_{\sigma(1)} \cdots i_{\sigma(k)}}=a_{i_{1} \cdots i_{k}} .
$$

Rayleigh-Ritz Approach to Eigenpairs

$A \in \mathbb{R}^{n \times n}$ symmetric. Its eigenvalues and eigenvectors are critical values and critical points of Rayleigh quotient

$$
\mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}, \quad \mathbf{x} \mapsto \frac{\mathbf{x}^{\top} A \mathbf{x}}{\|\mathbf{x}\|^{2}}
$$

or equivalently, critical values/points constrained to unit vectors, ie. $S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|\mathrm{x}\|=1\right\}$. Associated Lagrangian is

$$
L: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}, \quad L(\mathrm{x}, \lambda)=\mathrm{x}^{\top} A \mathrm{x}-\lambda\left(\|\mathrm{x}\|^{2}-1\right) .
$$

At a critical point $\left(\mathrm{x}_{c}, \lambda_{c}\right) \in \mathbb{R}^{n} \backslash\{0\} \times \mathbb{R}$, we have

$$
A \frac{\mathbf{x}_{c}}{\left\|\mathbf{x}_{c}\right\|}=\lambda_{c} \frac{\mathbf{x}_{c}}{\left\|\mathbf{x}_{c}\right\|} \quad \text { and } \quad\left\|\mathbf{x}_{c}\right\|^{2}=1
$$

Write $\mathbf{u}_{c}=\mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\| \in S^{n-1}$. Get usual

$$
A \mathbf{u}_{c}=\lambda_{c} \mathbf{u}_{c}
$$

Variational Characterization of Singular Pairs

Similar approach for singular triples of $A \in \mathbb{R}^{m \times n}$: singular values, left/right singular vectors are critical values and critical points of

$$
\mathbb{R}^{m} \backslash\{\mathbf{0}\} \times \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}, \quad(\mathbf{x}, \mathbf{y}) \mapsto \frac{\mathbf{x}^{\top} A \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Associated Lagrangian is

$$
L: \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}, \quad L(\mathbf{x}, \mathbf{y}, \sigma)=\mathbf{x}^{\top} A \mathbf{y}-\sigma(\|\mathbf{x}\|\|\mathbf{y}\|-1)
$$

The first order condition yields

$$
A \frac{\mathbf{y}_{c}}{\left\|\mathbf{y}_{c}\right\|}=\sigma_{c} \frac{\mathbf{x}_{c}}{\left\|\mathbf{x}_{c}\right\|}, \quad A^{\top} \frac{\mathbf{x}_{c}}{\left\|\mathbf{x}_{c}\right\|}=\sigma_{c} \frac{\mathbf{y}_{c}}{\left\|\mathbf{y}_{c}\right\|}, \quad\left\|\mathbf{x}_{c}\right\|\left\|\mathbf{y}_{c}\right\|=1
$$

at a critical point $\left(\mathbf{x}_{c}, \mathbf{y}_{c}, \sigma_{c}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}$. Write $\mathbf{u}_{c}=\mathbf{x}_{c} /\left\|\mathbf{x}_{c}\right\| \in$ S^{m-1} and $\mathbf{v}_{c}=\mathbf{y}_{c} /\left\|\mathbf{y}_{c}\right\| \in S^{n-1}$, get familiar

$$
A \mathbf{v}_{c}=\sigma_{c} \mathbf{u}_{c}, \quad A^{\top} \mathbf{u}_{c}=\sigma_{c} \mathbf{v}_{c}
$$

Multilinear Functional

$A=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$; multilinear functional defined by A is

$$
\begin{aligned}
f_{A}: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} & \rightarrow \mathbb{R}, \\
\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right) & \mapsto A\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right) .
\end{aligned}
$$

Gradient of f_{A} with respect to x^{i},

$$
\begin{aligned}
\nabla_{\mathbf{x}^{i}} f_{A}\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right) & =\left(\frac{\partial f_{A}}{\partial x_{1}^{i}}, \ldots, \frac{\partial f_{A}}{\partial x_{d_{i}}^{i}}\right) \\
& =A\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{i-1}, I_{d_{i}}, \mathrm{x}^{i+1}, \ldots, \mathrm{x}^{k}\right)
\end{aligned}
$$

where $I_{d_{i}}$ denotes $d_{i} \times d_{i}$ identity matrix.

Singular Values and Singular Vectors of a Tensor

Take a variational approach as in the case of matrices. Lagrangian is

$$
L\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}, \sigma\right)=A\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right)-\sigma\left(\left\|\mathrm{x}^{1}\right\| \cdots\left\|\mathrm{x}^{k}\right\|-1\right)
$$

where $\sigma \in \mathbb{R}$ is the Lagrange multiplier. Then

$$
\nabla L=\left(\nabla_{\mathbf{x}^{1}} L, \ldots, \nabla_{\mathbf{x}^{k}} L, \nabla_{\sigma} L\right)=(\mathbf{0}, \ldots, \mathbf{0}, 0)
$$

yields

$$
\begin{aligned}
A\left(I_{d_{1}}, \frac{\mathrm{x}^{2}}{\left\|\mathrm{x}^{2}\right\|}, \frac{\mathrm{x}^{3}}{\left\|\mathrm{x}^{3}\right\|}, \ldots, \frac{\mathrm{x}^{k}}{\left\|\mathrm{x}^{k}\right\|}\right) & =\sigma \frac{\mathrm{x}^{1}}{\left\|\mathrm{x}^{1}\right\|} \\
A\left(\frac{\mathrm{x}^{1}}{\left\|\mathrm{x}^{1}\right\|}, \frac{\mathrm{x}^{2}}{\left\|\mathrm{x}^{2}\right\|}, \ldots, \frac{\mathrm{x}^{k-1}}{\left\|\mathrm{x}^{k-1}\right\|}, I_{d_{k}}\right) & =\sigma \frac{\mathrm{x}^{k}}{\left\|\mathrm{x}^{k}\right\|} \\
\left\|\mathrm{x}^{1}\right\| \cdots\left\|\mathrm{x}^{k}\right\| & =1
\end{aligned}
$$

Normalize to get $\mathbf{u}^{i}=\mathrm{x}^{i} /\left\|\mathrm{x}^{i}\right\| \in S^{d_{i}-1}$. We have

$$
\begin{gathered}
A\left(I_{d_{1}}, \mathbf{u}^{2}, \mathbf{u}^{3}, \ldots, \mathbf{u}^{k}\right)=\sigma \mathbf{u}^{1}, \\
\vdots \\
A\left(\mathbf{u}^{1}, \mathbf{u}^{2}, \ldots, \mathbf{u}^{k-1}, I_{d_{k}}\right)=\sigma \mathbf{u}^{k} .
\end{gathered}
$$

Call $\mathbf{u}^{i} \in S^{d_{i}-1}$ mode- i singular vector and σ singular value of A.
P. Comon, "Tensor decompostions: state of the art and applications," in Mathematics in signal processing, V (Coventry, UK, 2000), pp. 1-24, Inst. Math. Appl. Conf. Ser., 71, Oxford University Press, Oxford, UK, 2002.
L. de Lathauwer, B. de Moor, and J. Vandewalle, "On the best rank-1 and rank-(R_{1}, \ldots, R_{N}) approximation of higher-order tensors," SIAM J. Matrix Anal. Appl., 21 (4), 2000, pp. 1324-1342.

Same equations first appeared in the context of rank-1 tensor approximations. Our study differs in that we are interested in all critical values as opposed to only the maximum.

Norms of Multilinear Operators

Recall that the norm of a multilinear operator $f: V_{1} \times \cdots \times V_{k} \rightarrow V_{0}$ from a product of norm spaces $\left(V_{1},\|\cdot\|_{1}\right), \ldots,\left(V_{k},\|\cdot\|_{k}\right)$ to a norm space $\left(V_{0},\|\cdot\|_{0}\right)$ is defined as

$$
\sup \frac{\left\|f\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right)\right\|_{0}}{\left\|\mathrm{x}^{1}\right\|_{1} \cdots\left\|\mathrm{x}^{k}\right\|_{k}}
$$

where the supremum is taken over all $\mathrm{x}^{i} \neq 0$.

Relation with Spectral Norm

Define spectral norm of a tensor $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ by

$$
\|A\|_{\sigma}:=\sup \frac{\left|A\left(\mathrm{x}^{1}, \ldots, \mathrm{x}^{k}\right)\right|}{\left\|\mathrm{x}^{1}\right\| \cdots\left\|\mathrm{x}^{k}\right\|}
$$

where $\|\cdot\|$ in the denominator denotes the usual Euclidean 2norm. Note that this differs from the Frobenius norm,

$$
\|A\|_{F}:=\left(\sum_{i_{1}=1}^{d_{1}} \cdots \sum_{i_{k}=1}^{d_{k}}\left|a_{i_{1} \cdots i_{k}}\right|^{2}\right)^{1 / 2}
$$

for $A=\llbracket a_{i_{1} \cdots i_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.
Proposition. Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. The largest singular value of A equals its spectral norm,

$$
\sigma_{\max }(A)=\|A\|_{\sigma}
$$

Relation with Hyperdeterminant

Assume

$$
d_{i}-1 \leq \sum_{j \neq i}\left(d_{j}-1\right)
$$

for all $i=1, \ldots, k$. Let $A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$. Easy to see that

$$
\begin{aligned}
A\left(I_{d_{1}}, \mathbf{u}^{2}, \mathbf{u}^{3}, \ldots, \mathbf{u}^{k}\right) & =0 \\
A\left(\mathbf{u}^{1}, I_{d_{2}}, \mathbf{u}^{3}, \ldots, \mathbf{u}^{k}\right) & =0 \\
\vdots & \\
A\left(\mathbf{u}^{1}, \mathbf{u}^{2}, \ldots, \mathbf{u}^{k-1}, I_{d_{k}}\right) & =0
\end{aligned}
$$

has a solution $\left(\mathbf{u}^{1}, \ldots, \mathbf{u}^{k}\right) \in S^{d_{1}-1} \times \cdots \times S^{d_{k}-1}$ iff

$$
\Delta(A)=0
$$

where Δ is the hyperdeterminant in $\mathbb{R}^{d_{1} \times \cdots \times d_{k}}$.

In other words, $\Delta(A)=0$ iff 0 is a singular value of A.

Multilinear Homogeneous Polynomial

$A=\llbracket a_{j_{1} \cdots j_{k}} \rrbracket \in \mathbb{R}^{n \times \cdots \times n}$ symmetric tensor; multilinear homogeneous polynomial defined by A is

$$
\begin{aligned}
g_{A}: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
\mathbf{x} & \mapsto A(\mathbf{x}, \ldots, \mathbf{x})=\sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} a_{j_{1} \cdots j_{k}} x_{j_{1}} \cdots x_{j_{k}}
\end{aligned}
$$

Gradient of g_{A},

$$
\nabla g_{A}(\mathbf{x})=\left(\frac{\partial g_{A}}{\partial x_{1}}, \ldots, \frac{\partial g_{A}}{\partial x_{n}}\right)=k A\left(I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)
$$

where $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ occurs $k-1$ times in the argument. This is a multilinear generalization of

$$
\frac{d}{d x} a x^{k}=k a x^{k-1}
$$

Note that for a symmetric tensor,

$$
A\left(I_{n}, \mathbf{u}, \mathbf{u}, \ldots, \mathbf{u}\right)=A\left(\mathbf{u}, I_{n}, \mathbf{u}, \ldots, \mathbf{u}\right)=\cdots=A\left(\mathbf{u}, \mathbf{u}, \ldots, \mathbf{u}, I_{n}\right)
$$

Eigenvalues and Eigenvectors of a Symmetric Tensor

In this case, the Lagrangian is

$$
L(\mathrm{x}, \lambda)=A(\mathrm{x}, \ldots, \mathrm{x})-\lambda\left(\|\mathrm{x}\|^{k}-1\right)
$$

Then $\nabla_{\mathrm{x}} L=\mathbf{0}$ yields

$$
k A\left(I_{n}, \mathbf{x}, \ldots, \mathbf{x}\right)=k \lambda\|\mathbf{x}\|^{k-2} \mathbf{x}
$$

or, equivalently

$$
A\left(I_{n}, \frac{\mathbf{x}}{\|\mathbf{x}\|}, \ldots, \frac{\mathbf{x}}{\|\mathrm{x}\|}\right)=\lambda \frac{\mathbf{x}}{\|\mathrm{x}\|}
$$

$\nabla_{\lambda} L=0$ yields $\|\mathbf{x}\|=1$. Normalize to get $\mathbf{u}=\mathbf{x} /\|\mathbf{x}\| \in S^{n-1}$, giving

$$
A\left(I_{n}, \mathbf{u}, \mathbf{u}, \ldots, \mathbf{u}\right)=\lambda \mathbf{u}
$$

$\mathbf{u} \in S^{n-1}$ will be called an eigenvector and λ will be called an eigenvalue of A.

Eigenvalues and Eigenvectors of a Tensor

How about eigenvalues and eigenvectors for $A \in \mathbb{R}^{n \times \cdots \times n}$ that may not be symmetric? Even in the order-2 case, the critical values/points of the Rayleigh quotient no longer gives the eigenpairs.

However, as in the order-2 case, eigenvalues and eigenvectors can still be defined via

$$
A\left(I_{n}, \mathbf{v}^{1}, \mathbf{v}^{1}, \ldots, \mathbf{v}^{1}\right)=\mu \mathbf{v}^{1}
$$

Except that now, the equations

$$
\begin{gathered}
A\left(I_{n}, \mathbf{v}^{1}, \mathbf{v}^{1}, \ldots, \mathbf{v}^{1}\right)=\mu_{1} \mathbf{v}^{1} \\
A\left(\mathbf{v}^{2}, I_{n}, \mathbf{v}^{2}, \ldots, \mathbf{v}^{2}\right)=\mu_{2} \mathbf{v}^{2} \\
\vdots \\
A\left(\mathbf{v}^{k}, \mathbf{v}^{k}, \ldots, \mathbf{v}^{k}, I_{n}\right)=\mu_{k} \mathbf{v}^{k}
\end{gathered}
$$

are distinct.

We will call $\mathbf{v}^{i} \in \mathbb{R}^{n}$ an mode- i eigenvector and μ_{i} an mode- i eigenvalue. This is just the order- k generalization of left- and right-eigenvectors for unsymmetric matrices.

Note that the unit-norm constraint on the eigenvectors cannot be omitted for order 3 or higher because of the lack of scale invariance.

Characteristic Polynomial

Let $A \in \mathbb{R}^{n \times n}$. One way to get the characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)$ is as follows.

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j} x_{j}=\lambda x_{i}, \quad i=1, \ldots, n, \\
x_{1}^{2}+\cdots+x_{n}^{2}=1
\end{array}\right.
$$

System of $n+1$ polynomial equations in $n+1$ variables, $x_{1}, \ldots, x_{n}, \lambda$.

Use Elimination Theory to eliminate all variables x_{1}, \ldots, x_{n}, leaving a one-variable polynomial in λ - a simple case of the multivariate resultant.

The $\operatorname{det}(A-\lambda I)$ definition does not generalize to higher order but the elimination theoretic approach does.

Multilinear Characteristic Polynomial

Let $A \in \mathbb{R}^{n \times \cdots \times n}$, not necessarily symmetric. Use mode-1 for illustration.

$$
A\left(I_{n}, \mathrm{x}^{1}, \mathrm{x}^{1}, \ldots, \mathrm{x}^{1}\right)=\mu \mathrm{x}^{1}
$$

and the unit-norm condition gives a system of $n+1$ equations in $n+1$ variables $x_{1}, \ldots, x_{n}, \lambda$:

$$
\left\{\begin{array}{l}
\sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} a_{i j_{2} \cdots j_{k}} x_{j_{2}} \cdots x_{j_{k}}=\lambda x_{i}, \quad i=1, \ldots, n \\
x_{1}^{2}+\cdots+x_{n}^{2}=1
\end{array}\right.
$$

Apply elimination theory to obtain the multipolynomial resultant or multivariate resultant - a one-variable polynomial $p_{A}(\lambda)$. Efficient algorithms exist:
D. Manocha and J.F. Canny, "Multipolynomial resultant algorithms," J. Symbolic Comput., 15 (1993), no. 2, pp. 99-122.

If the $a_{i j_{2} \cdots j_{k}}$'s assume numerical values, $p_{A}(\lambda)$ may be obtained by applying Gröbner bases techniques to system of equations directly.

Roots of $p_{A}(\lambda)$ are precisely the eigenvalues of the tensor A. Adopt matrix terminology and call it characteristic polynomial of A, which has an expression

$$
p_{A}(\lambda)= \begin{cases}\operatorname{det} M(\lambda) / \operatorname{det} L & \text { if } \operatorname{det} L \neq 0 \\ \operatorname{det} m(\lambda) & \text { if } \operatorname{det} L=0\end{cases}
$$

$M(\lambda)$ is a square matrix whose entries are polynomials in λ (for order-2, $M(\lambda)=A-\lambda I$). In the $\operatorname{det}(L)=0$ case, $\operatorname{det} m(\lambda)$ denotes the largest non-vanishing minor of $M(\lambda)$.

Polynomial Matrix Eigenvalue Problem

The matrix $M(\lambda)$ (or $m(\lambda)$ in the $\operatorname{det}(L)=0$ case) allows numerical linear algebra to be used in the computations of eigenvectors as

$$
\left\{\begin{array}{l}
\sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} a_{i j_{2} \cdots j_{k}} x_{j_{2}} \cdots x_{j_{k}}=\lambda x_{i}, \quad i=1, \ldots, n \\
x_{1}^{2}+\cdots+x_{n}^{2}=1
\end{array}\right.
$$

may be reexpressed in the form

$$
M(\lambda)\left(1, x_{1}, \ldots x_{n}, \ldots, x_{n}^{n}\right)^{\top}=(0, \ldots, 0)^{\top}
$$

So if (x, λ) is an eigenpair of A. Then $M(\lambda)$ must have a nontrivial kernel.

Observe that $M(\lambda)$ may be expressed as

$$
M(\lambda)=M_{0}+M_{1} \lambda+\cdots+M_{d} \lambda^{d}
$$

where M_{i} 's are matrices with numerical entries.

This reduces the multilinear eigenvalue problem to a polynomial eigenvalue problem. Efficient algorithms for solving such problems will be discussed in the next talk.

Note that the preceding discussions also apply in the context of singular pairs, where we solve a system of $d_{1}+\cdots+d_{k}+1$ equations in $d_{1}+\cdots+d_{k}+1$ variables.

Applications

Singular values/vectors - Nash equilibria for n-person games.

Symmetric eigenvalues/vectors - spectral hypergraph theory.

Unsymmetric eigenvalues/vectors - multilinear Perron-Frobenius theory.
R.D. McKelvey and A. McLennan, "The maximal number of regular totally mixed Nash equilibria," J. Econom. Theory, 72 (1997), no. 2, pp. 411-425.
P. Drineas and L.-H. Lim, "A multilinear spectral theory of hypergraphs and expander hypergraphs," work in progress.
L.-H. Lim, "Multilinear PageRank: measuring higher order connectivity in linked objects," poster, The Internet: Today \& Tomorrow, 2005 School of Engineering Summer Research Forum, July 28, 2005, Stanford University, Stanford, CA, 2005.

