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Abstract. The problem of error detection in general inbred and outbred pedigrees on the

basis of genome screen data is considered. We develop a novel characterization of pairwise

relationships, which is extended to k-wise relationships. Given an arbitrary pedigree specify-

ing the relationship among a set of k individuals, we show how to prune the pedigree so that

no information on the genetic relationships is lost and yet no excess meioses remain. We take

a likelihood-based approach to inference. Under the assumption of no interference, all the

crossover processes in a pedigree can be viewed jointly as a continuous time Markov random

walk on the vertices of a hypercube, so a hidden Markov method is a natural approach for

likelihood calculation. One strategy to make likelihood calculation feasible is to use aspects

of the pedigree structure to find the orbits of the group of symmetries on the hypercube that

preserve the information of identity by descent. We describe strategies for accomplishing

this for arbitrary pedigrees and give weak sufficient conditions under which the resulting

chain has the minimum number of states needed to both contain all the information of the

IBD process and to satisfy the Markov property under no interference.
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1. Introduction. Genetic linkage analysis is used to locate genetic variants associated

with traits of interest. The initial goal is to identify genetic markers whose alleles tend to

be co-inherited with the trait within families. This analysis depends on accurate knowledge

of the relationships among individuals in the study. If the relationship among individuals

is misspecified, this may lead to either reduced power (e. g. when the the true relationship

among individuals with similar trait values is more distant than what is believed) or false

positive evidence for linkage (e. g. when the true relationship among individuals with similar

trait values is closer than what is believed). The importance of identification of relationship

errors in a linkage study is demonstrated by Boehnke and Cox (1997) in an application to

non-insulin-dependent diabetes mellitus.

It is common in linkage studies for data to be collected on hundreds (or thousands) of loci

throughout the genome, in what is called a genome screen. Relationships among individuals

in the study are ascertained by other methods and can be summarized by a pedigree. We

consider the problem of using the genome screen data collected for linkage analysis to detect

errors in the assumed pedigree. For outbred pairwise relationships, Thompson (1975) consid-

ers the special case of unlinked loci, Browning (1998; 2000) assumes that continuous identity

by descent information is available, and Zhao and Liang (2001) further assume gamete data.

Practical methods for detection of errors in sibling pair relationships from genotype data

on linked loci include Göring and Ott (1997), Boehnke and Cox (1997), Ehm and Wagner
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(1998), and Olson (1999). Methods for a wider range of common outbred pairwise rela-

tionships are given by Thompson and Meagher (1998), McPeek and Sun (2000), Epstein,

Duren, and Boehnke (2000), and Sun, Wilder, and McPeek (submitted). To identify errors

in pairwise relationships in a complex inbred pedigree, Sun, Abney, and McPeek (2001) use

a simple graphical method.

We take a likelihood-based approach to inference and use the MLLR test of McPeek and

Sun (2000), extended to k-wise relationships. We give a novel characterization of pairwise

relationships, which we extend to k-wise relationships. This characterization allows one to

determine which individuals in a pedigree have an impact on the genetic relationship among

any given set of individuals, and it is particularly relevant for complex inbred pedigrees. The

question of how to automatically generate minimal-state hidden Markov chains to implement

the MLLR test for any given pairwise relationship was left as an open problem by McPeek

and Sun (2000). In the current work, we describe how to find the hidden Markov model with

the minimum number of states for a given k-wise relationship, among those Markov chains

that are aggregations of the joint crossover process. This involves finding the orbits of the

group of symmetries on a hypercube that preserve certain sets of vertices. Furthermore, we

give weak sufficient conditions under which the resulting Markov chain has the minimum

number of states needed to both contain all the information of the IBD process and to satisfy

the Markov property under no interference. We discuss the practical problems of inference

based on genetic data.

2. Likelihood-Based Inference. Let X denote genotype data on a set of k individ-

uals, and suppose that, for each k-wise relationship R, we have a fully specified model for

X and can calculate the likelihood LR(X). In a linkage study, one would typically have
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a pedigree obtained, for instance, by asking the individuals in the study how they are re-

lated. Suppose that the pedigree specifies some relationship R0 for the k individuals. In

performing linkage analysis, one would typically assume that the relationship R0 is correct

unless there are strong indications to the contrary. Thus, one natural approach to pedi-

gree error detection is hypothesis testing with H0 : true relationship is R0 vs. HA : true

relationship is not R0. We choose some subset R of k-wise relationships and consider the

statistic MLLR = max{A∈R\{R0}} log(LA)− log(LR0) of McPeek and Sun (2000). We obtain

an empirical estimate F̂0 of the null distribution F0 of MLLR by simulation under R0, us-

ing the same map of markers as in the data set. We calculate the p-value associated with

{MLLR = m} as 2 min{F̂0(m), 1− F̂0(m)}. If the p-value associated with R0 is sufficiently

small, we reject the null hypothesis. As a point estimate, we could set R̂ = B ∈ R for some

B satisfying log(LB) = max{A∈R} log(LA). More useful is a confidence set, which we could

define to consist of all relationships in R for which the p-value is greater than α, for some

chosen α > 0, in addition to all relationships not included in R. We discuss, in Sections

3 and 4, the space of possible R and, in Sections 5 and 6, the model for X assuming R.

Likelihood calculation is discussed in Section 7.

3. Human Pedigrees. The defining characteristics of a pedigree depend on the mating

system. For instance, a pedigree for organisms capable of asexual reproduction would follow

different rules from one for humans. For humans (or other organisms that reproduce simi-

larly), we define a pedigree to consist of a directed graph P and a function s, where P has

nodes N (P ) ⊂ Z, |N (P )| < ∞, corresponding to individuals in the pedigree, and directed

edges E(P ) ⊂ N (P ) × N (P ), with (a, b) ∈ E(P ) precisely when a is a parent of b. Here

s : N (P ) → {male, female} assigns a sex to each individual. (For other ways to represent
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a pedigree, see Cannings and Thompson (1981), Chap. 1 and Thompson (1986), Chap. 2.)

Given b ∈ N (P ), let p(b) = {a ∈ N (P ) : (a, b) ∈ E(P )} be the set of parents of b. For a, b ∈

N (P ) and k ≥ 2, we define (a, a1, . . . , ak−1, b) ∈ N (P )k+1 to be a directed path of length

k from a to b if {(a, a1), (a1, a2), . . . , (ak−2, ak−1), (ak−1, b)} ⊂ E(P ). We define (a, b) to be a

directed path of length 1 from a to b if a ∈ p(b). We define A(b) ⊂ N (P ) to be the set of

ancestors of b, A(b) = {a ∈ N (P ) : there is a directed path of length l ≥ 1 from a to b}.

In order to be a human pedigree, (P, s) must satisfy the following conditions:

1. For all b ∈ N (P ), |p(b)| = 0, 1 or 2 (each individual has 0, 1, or 2 parents in the

pedigree).

2. For all b ∈ N (P ), if a1, a2 ∈ p(b) with a1 6= a2, then s(a1) 6= s(a2) (if an individual has

two parents in the pedigree, they must have opposite sexes).

3. For all a ∈ N (P ), a /∈ A(a) (an individual cannot be his or her own ancestor).

Let P be the set of all pedigrees, i. e. the set of all (P, s) satisfying the above conditions.

If |p(b)| = 0 we call b ∈ N (P ) a founder of the pedigree, if |p(b)| = 1 we call b a half

founder, and if |p(b)| = 2 we call b a nonfounder. (We note that it is conventional to

further restrict the definition of a pedigree by disallowing half founders; however, we find

this restriction disadvantageous for our purposes.) Let F(P ) ⊂ N (P ) be the set of founders

of P , Hm(P ) ⊂ N (P ) be the set of half founders with a mother in the pedigree, i.e. with

s(a) = female where p(b) = {a}, let Hf (P ) ⊂ N (P ) be the set of half founders with a father

in the pedigree, and let NF(P ) ⊂ N (P ) be the set of nonfounders of P . Note that the

number of directed edges in the graph is always 2|NF(P )| + |Hm(P )| + |Hf (P )|. Finally,

for the purposes of this study, if a pair of individuals in the pedigree are monozygotic twins,
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we identify their nodes and treat them as if they were a single individual. The reason is that

they are genetically identical (or virtually so).

We define two distinct individuals a, b ∈ N (P ) to be unrelated (with respect to pedi-

gree (P, s)) if they have no common ancestors and neither is an ancestor or descendant of

the other, i. e. [{a} ∪ A(a)] ∩ [{b} ∪ A(b)] = ∅. We define a nonfounder a ∈ NF(P ) to

be outbred (with respect to pedigree (P, s)) if a’s 2 parents are unrelated. In addition, all

founders and half founders are considered to be outbred. An individual who is not outbred

will be said to be inbred. We define a pedigree P to be outbred if a is outbred for all

a ∈ N (P ). A pedigree that is not outbred is said to be inbred.

4. Characterization of Pairwise Relationships, with Extension to k-wise Rela-

tionships. The relationships encountered in linkage analysis can range from the very simple,

such as sibling and parent-offspring relationships, to the extraordinarily complex. Examples

of the latter can be found in the Hutterite data set described in Abney, McPeek, and Ober

(2000). This data set involves 806 genotyped individuals related by a 1623-member, 13-

generation pedigree with virtually every genotyped individual inbred and most individuals

related to one another through multiple lines of descent. Motivated by the richness of rela-

tionships in such data and by the need for efficient computational methods to cope with the

corresponding pedigrees, we develop below a characterization of k-wise relationships.

Suppose that within a pedigree, we wish to consider the relationship among k chosen

individuals. Consider the set Pk ⊂ P × Zk such that every (P, s, i1, . . . , ik) ∈ Pk satis-

fies {i1, . . . , ik} ⊂ N (P ) and |{i1, . . . , ik}| = k. We first focus on P2 and define pairwise

relationships to be equivalence classes of a particular equivalence relation on P2. Given

γ = (P, s, i, j) ∈ P2, we define an individual a ∈ N (P ) \ {i, j} to be superfluous with
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respect to γ if at least one of the following two conditions holds:

1. a /∈ A(i) ∪ A(j) (a is not an ancestor of i or j).

2. A(a)∩{i, j} = ∅ (neither i nor j is an ancestor of a), and there exist c ∈ N (P ) \ {i, j}

and d ∈ N (P ) such that for every e ∈ {a} ∪ A(a), for every l ≥ 1, and for every

directed path q = (q0, ..., ql) of length l with q0 = e and ql ∈ {i, j}, we have c = qm and

d = qm+1 for some 0 ≤ m ≤ l − 1 (every directed path from a or ancestors of a to i or

j passes through directed edge (c, d)).

Theorems 1 and 2 in Section 5 justify the terminology “superfluous” in this case. Let

S(γ) ⊂ N (P ) be the set of superfluous nodes with respect to γ.

Given γ1 = (P1, s1, i1, j1) and γ2 = (P2, s2, i2, j2) ∈ P2, we define γ∗1 = (P ∗1 , s
∗
1, i1, j1) and

γ∗2 = (P ∗2 , s
∗
2, i2, j2) to be the restrictions of γ1 and γ2, respectively, to their nonsuperfluous

nodes. That is, we define the directed graph P ∗1 to have nodes N (P ∗1 ) = N (P1) \ S(γ1)

and directed edges E(P ∗1 ) = {(a, b) ∈ N (P ∗1 ) × N (P ∗1 ) : (a, b) ∈ E(P1)}. Define s∗1 on

N (P ∗1 ) by s∗1(a) = s1(a). We call (P ∗1 , s
∗
1) the pruned pedigree with respect to γ1. Define

(P ∗2 , s
∗
2) to be the pruned pedigree with respect to γ2. We say that γ1 and γ2 specify the

same sex-specific pairwise relationship, and write γ1 ≡ γ2 whenever there exists a bijection

g : N (P ∗1 ) → N (P ∗2 ) such that the following three conditions hold:

1. g(i1) = i2, g(j1) = j2 (the two focal individuals are preserved).

2. (a, b) ∈ E(P ∗1 ) ⇔ (g(a), g(b)) ∈ E(P ∗2 ) (directed edges are preserved, i.e. the directed

graphs P ∗1 and P ∗2 are isomorphic).

3. For all a ∈ N (P ∗1 ), s∗1(a) = s∗2(g(a)) (sexes are preserved).
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As defined above, “≡” clearly satisfies the requirements of an equivalence relation. We de-

fine the set of sex-specific pairwise relationships to be the resulting set of equivalence

classes. Examples include father-daughter, paternal aunt-niece, and maternal grandmother-

grandson. It is usually convenient to further aggregate relationships by removing Condition

3. This has the effect of, for instance, combining the 8 possible avuncular relationships

(maternal uncle-niece, paternal aunt-nephew, etc.) into a single class. When Condition 3 is

removed, we call the resulting set of equivalence classes the set of pairwise relationships.

As an example, the pedigree graphs in Figures 1a and b specify the same pairwise relation-

ship for individuals i and j, while that in Figure 1c is different. We say that a pairwise

relationship or sex-specific pairwise relationship R is outbred if for γ ∈ R, the pruned pedi-

gree with respect to γ is outbred. This is clearly a class property. A pairwise relationship

that is not outbred is said to be inbred.

Note that our definitions of superfluous, pruned pedigree, sex-specific pairwise rela-

tionship, pairwise relationship, and inbred and outbred pairwise relationships extend in a

straightforward way to k-wise relationships. If (P, s, i1, . . . , ik) ∈ Pk, then, for instance, in

the definition of superfluous, we require a ∈ N (P ) \ {i1, . . . , ik}, we change Condition 1 to

specify a /∈ ∪kj=1A(ij), and we change Condition 2 to specify A(a) ∩ {i1, . . . , ik} = ∅, c ∈

N (P ) \ {i1, . . . , ik} and ql ∈ {i1, . . . , ik}.

In Theorem 1 of Section 5, we show that if γ1 and γ2 ∈ Pk specify the same k-wise re-

lationship, then they yield the same expanded IBD process on the autosomal chromosomes,

where the expanded IBD process is defined below in Section 5. Furthermore, suppose γ∗

is the pruned pedigree corresponding to γ ∈ Pk. We show in Theorem 2 of Section 5 that

if any directed edge is removed from γ∗, then the resulting IBD process is different. These
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results justify the definition of superfluous and the characterization of k-wise relationships

given above. The additional information on sex given by a sex-specific k-wise relationship

is used to determine the IBD process on sex chromosomes (the pairwise case is discussed in

Epstein, Duren, and Boehnke (2000)).

Given (P, s, i, j) ∈ P2, if i and j are both outbred, we may further aggregate relationships

by setting (P, s, i, j) ≡ (P, s, j, i). The IBD process will be invariant to the interchange of i

and j in that case.

5. Crossover Process, Mendelian Inheritance at a Single Locus, and Identity

States. To each directed edge of a pedigree graph is associated a meiosis, and each meiosis

results in an independent realization of the crossover process. The crossover process is a

binary process {Ct} that describes at each point t along the genome whether an offspring

inherited from the given parent that parent’s maternal (Ct = 0) or paternal (Ct = 1) DNA.

Switches from 0 to 1 or 1 to 0 are called crossovers. It is usually assumed that {Ct} and

{1 − Ct} have the same distribution. The restrictions of the crossover process to different

chromosomes are assumed to be independent within a meiosis. Crossover processes for dif-

ferent meioses are also independent and will be assumed to be identically distributed. There

are special restrictions on the crossover process on the parent’s pair of sex chromosomes. In

humans, there are two types of sex chromosomes, X and Y . Individuals possessing two X

chromosomes are female, and individuals possessing one X and one Y chromosome are male.

In females, crossovers between the two X chromosomes are permitted. In males, there is a

region that is homologous between X and Y , called the pseudoautosomal region, on which

crossovers are permitted, but crossovers are not permitted outside that region.

For a given pedigree (P, s), we can consider the joint crossover process consisting of a
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component crossover process for each directed edge of the pedigree. For the remainder of

this section, we consider a single locus on an autosomal (i. e. non-sex) chromosome. Then

the joint crossover process results in a random function V : E(P ) → {0, 1} where V (a, b) is

equal to the value of the crossover process associated with directed edge (a, b), at the given

chromosomal location (Donnelly (1983)). Assuming Mendelian inheritance, the distribution

of V puts mass 2−|E(P )| on each point of {0, 1}E(P ). Define the allele function to be a

random function α : N (P )× {0, 1} → Z, where α(a, 0) gives a’s maternal allele and α(a, 1)

gives a’s paternal allele. Define FA(P ) = [F(P )×{0, 1}]∪ [Hf (P )×{0}]∪ [Hm(P )×{1}].

We refer to the restriction of α to FA(P ) as the assignment of founder alleles, and we let

α(FA(P )) denote the set of founder alleles. Given V and the assignment of founder alleles,

which we will assume to be independent, the function α is completely determined and can

be calculated by recursion.

The identity state (Gillois (1964); Harris (1964)) for γ = (P, s, i, j) ∈ P2 at a given locus

can be defined as follows: suppose that each element of FA(P ) is assigned a unique founder

allele. Then for a given V , the value of A = (α(i, 0), α(i, 1), α(j, 0), α(j, 1)) is determined

from V and the assignment of founder alleles. Each value of A can be mapped to one of the 15

identity states depicted in Figure 2, where each node represents one of (i, 0), (i, 1), (j, 0) and

(j, 1), and an edge is drawn between nodes a and b whenever α(a) = α(b) (Jacquard (1974),

Chap. 6). Since the founder alleles are assumed to be distinct, it is apparent that the identity

state depends only on V and not on the assignment of founder alleles. The identity states

can be viewed as equivalence classes on the range of V . Then the distribution of V induces a

distribution on the identity state for γ ∈ P2 at the given locus. In Section 6, when we discuss

genotype data, we will see that it is usually desirable to combine some of the 15 identity
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states to yield the 9 condensed identity states (Harris (1964); Jacquard (1974), Chap. 6)

depicted in Figure 2. These result from identifying elements v1, v2 ∈ {0, 1}E(P ) when their

identity states are the same up to a permutation of α(i, 0) and α(i, 1) and a permutation of

α(j, 0) and α(j, 1). Let ∆ be the distribution on the condensed identity states induced by the

distribution of V , as shown in Figure 2. Then ∆ can be used to define quantities of interest

such as the kinship coefficient for i and j, Φ(i, j) = ∆1 + (∆3 + ∆5 + ∆7)/2 + ∆8/4 and the

inbreeding coefficients for i and j, H(i) = ∆1 +∆2 +∆3 +∆4 and H(j) = ∆1 +∆2 +∆5 +∆6.

The concepts of identity state and condensed identity state extend in a natural way from

P2 to Pk. The details can be found in Thompson (1974). Given γ ∈ Pk, we define the

identity-by-descent (IBD) process {It} by It = the condensed identity state for γ at

location t (in the autosomal portion of the genome). We define the expanded IBD process

{Et} by Et = the identity state for γ at location t (in the autosomal portion of the genome).

Theorem 1: If γ1 and γ2 specify the same k-wise relationship, then their expanded IBD

processes have the same distribution.

It immediately follows that their IBD processes also have the same distribution.

Theorem 2: Suppose γ = (P, s, i1, . . . , ik) ∈ Pk has no superfluous nodes. Given A ⊂ E(P ),

A 6= ∅, define P ′ by N (P ′) = N (P ), E(P ′) = E(P ) \A, and set γ′ = (P ′, s, i1, . . . , ik). Then

the IBD processes of γ and γ′ have different distributions.

It follows that their expanded IBD processes also have different distributions.

Remarks: Theorem 2 provides only a partial converse to Theorem 1. It is possible to

have two distinct relationships that yield the same IBD process, e. g. half-first-cousin and

grand-half-avuncular pairs, but note that neither relationship is obtainable from the other

by removal of edges. Theorems 1 and 2 do not depend on the particular choice of model for
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the crossover process, as long as Var(Ct) > 0 for some t. In particular, the theorems hold in

the presence of interference and when {Ct} and {1− Ct} have different distributions.

Theorems 1 and 2 extend in a straightforward way to the X chromosome. Given

γj = (Pj, sj, ij,1, . . . , ij,k) ∈ Pk, j = 1 or 2, we first eliminate from Pj all directed edges (a, b)

for which sj(a) = sj(b) = male. Call the resulting pedigree P̃j. Let γ̃j = (P̃j, sj, ij,1, . . . , ij,k)

and let (P̃ ∗j , s̃
∗
j) be the pruned pedigree for γ̃j. We have: (1) if γ̃1 and γ̃2 specify the

same sex-specific k-wise relationship, then the expanded IBD processes for γ1 and γ2 on

the nonpseudoautosomal X have the same distribution; (2) given γ1 and γ2, if (P̃ ∗2 , s̃
∗
2) is

obtained from (P̃ ∗1 , s̃
∗
1) by removal of directed edges, then the IBD processes for γ1 and γ2

on the nonpseudoautosomal X have different distributions.

6. Models for Genotype Data. For each genotyped individual, data are typically

collected on hundreds (or thousands) of markers throughout the genome. Thus, informa-

tion on {It} is obtained only at discrete sites t. Furthermore, different individuals will

typically have missing data at different markers for various reasons, such as failure of the

experiment to determine the genotype at a marker. Recall that determination of the iden-

tity state depends on observation of (α(i1, 0), α(i1, 1)), . . . , (α(ik, 0), α(ik, 1)) ∈ α(FA(P ))2k.

However, based on a single individual’s observed genotype data, when z1 6= z2, the two

possibilities {α(a, 0) = z1, α(a, 1) = z2} and {α(a, 0) = z2, α(a, 1) = z1} cannot be distin-

guished. Therefore, we define an equivalence relation on α(FA(P ))2 by (a, b) ≡ (b, a) for all

{a, b} ⊂ α(FA(P )). Then an individual’s observed genotype at the given marker will be one

of the equivalence classes under this relation. The difficulty in distinguishing maternally and

paternally inherited alleles, together with the assumption that the crossover processes {Ct}

and {1− Ct} have the same distribution, leads naturally to consideration of the condensed
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identity states instead of the identity states (see Figure 2 for the pairwise case and Thompson

(1974) for the k-wise case). When genotypes are observed for a single individual at two loci,

say equivalence class {(a1, a2), (a2, a1)} at marker a and equivalence class {(b1, b2), (b2, b1)}

at marker b, the genotype data for the individual do not determine whether a1 and b1 were

inherited from the same or different parents. This missing information is called phase. Note

that if one has genotype data on other close relatives of the individual, one may have full or

partial information to determine phase and distinguish paternal and maternal inheritance.

However, one would need to assume that these relationships were correct in order to use this

information. Thus, this approach is less useful for relationship inference than for linkage

analysis.

A further complication in real data is that founder alleles are generally not unique.

Thus, for example, in the case of a pairwise relationship, the observation {α(i, 0) = α(i, 1) =

α(j, 0) = α(j, 1)} is compatible with all the identity states. In addition there is some rate

of genotyping error, so that, in principle, any observation is compatible with any identity

state. The rate of genotyping error is generally assumed to be low. However in the pairwise

case, for example, genotyping errors cause problems for any relationship for which ∆9 = 0,

for example parent-offspring or monozygotic twin relationships. A genotyping error may

cause the observation that the four alleles of individuals i and j are all distinct, resulting in

likelihood 0 under any relationship for which ∆9 = 0, unless genotyping errors are included

in the model (see e.g. Broman and Weber (1998)).

In order to calculate the likelihood for the data, we need to specify models for the

crossover process {Ct}, for the assignment of founder alleles, and for genotyping errors. The

most widely used model for {Ct} is a Poisson process, and failure of {Ct} to follow this model
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is known as interference. Note that in linkage studies, distance t along the chromosome

is scaled so that the expected number of transitions of the process {Ct} in an interval of

width s is equal to s. Thus, we need not specify the intensity of the Poisson process or

even whether or not it is homogeneous, as long as we assume that the intensity function is

bounded (see McPeek and Speed (1995) for details). While the Poisson process model is

useful in a wide range of applications, it has long been known to provide a poor fit to data.

Although alternative models exist, their use with human data can be computationally quite

challenging because of the types of missing information described above. In what follows, we

use the Poisson process model and discuss the extension to the Poisson-skip class of models

(Lange, Zhao, Speed (1997); Lange (1997), Section 12.5). McPeek and Sun (2000) have

performed simulations to investigate the robustness to interference of pairwise relationship

inference based on the Poisson process model.

The model for assignment of founder alleles is determined by population genetic assump-

tions such as Hardy-Weinberg equilibrium and linkage equilibrium, and it requires allele

frequency distributions for every marker. In practice, these assumptions may not hold, and

accurate estimates of allele frequencies may not be available. The population genetic mod-

eling assumptions certainly have an effect on the analysis, and model misspecification can

be problematic. With closer relatives and more informative markers, the impact of such

assumptions is diminished.

As long as the rate of genotyping errors is low, they should not have much impact on the

analysis except in special cases, such as pairwise relationships with ∆9 = 0. To deal with

this case, Broman and Weber (1998) assume that errors are i.i.d. across loci and meioses.

Their model is quite serviceable for relationship inference, even though error rates are known
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to vary across loci.

X chromosome data can be important in linkage studies. On the non-pseudoautosomal

part of the X chromosome, the crossover process {Ct} depends on the sexes of the parent

and child. For a mother-child meiosis, {Ct} behaves as on autosomes. For a father-daughter

meiosis {Ct} is identically 0 on the non-pseudoautosomal X chromosome, while for a father-

son meiosis, no X chromosome is transmitted. When data are available on the X chromo-

some in addition to the autosomes, relationships such as paternal aunt-niece and maternal

aunt-niece are potentially distinguishable (Epstein, Duren, and Boehnke (2000)). Methods

for detecting relationship errors in linkage data have generally ignored the Y chromosome.

Differences among individuals on the non-pseudoautosomal Y would have arisen exclusively

by mutation. Thus, linkage disequilibrium is not expected to decay with distance, and as-

sumptions about the populations from which founder males were drawn are critical for the

likelihood calculation. Therefore, the mathematical problem of relationship inference based

on non-pseudoautosomal Y data has salient features that distinguish it from the problems

of relationship inference considered here.

7. Likelihood Calculation. In light of the probability models and data issues described

above, the question arises as to how to calculate the likelihood of the data. Göring and Ott

(1997) have calculated the likelihood under the assumption of no interference for the special

cases of sibling, half-sibling and unrelated pairs, using the fact that the IBD process {It} is

Markov for these cases. Boehnke and Cox (1997) performed the same calculations more effi-

ciently by using the hidden Markov method (Baum (1972)), with the hidden Markov chain

given by restriction of the process {It} to the marker positions, on which the data provide

only partial information. Broman and Weber (1998) extended this method to calculate the
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likelihood for parent-offspring and monozygotic twins, which have It = 1 and It = 2 for all

t, respectively, by inclusion of a model for genotyping error in the observation distribution

of the hidden Markov model. However, outside of a few special cases in which the IBD pro-

cess {It} is either trivial (parent-offspring, unrelated, monozygotic twin) or Markov (sibling,

half-sibling, grandparent-grandchild), {It} will not in general be Markov, even under the

assumption of no interference (Donnelly (1983); Feingold (1993)). For instance, {It} is not

Markov for the cases of avuncular and first-cousin relationships. On the other hand, the

joint crossover process {Vt} will always be Markov under the assumption of no interference

(Donnelly (1983)). Thus, one possible approach to likelihood calculation is to apply the

hidden Markov method with the hidden Markov chain taken to be the restriction of the

process {Vt} to the marker positions, and with the observed data viewed as providing partial

information on the function {It} of {Vt} at the marker positions (Lander and Green (1987)).

This approach allows for data at a large number of loci, but the computational time

is exponential in the number of directed edges in the graph P . The first step in reducing

the computational time is to apply the characterization of k-wise relationships in Section 4

and Theorems 1 and 2 of Section 5 to determine which directed edges in the graph can be

removed without changing the IBD process {It}. Further dramatic reduction in the state

space of the Markov chain can be obtained by expanding on ideas discussed by Donnelly

(1983). He observed that {Vt} is a Markov random walk on a hypercube. Suppose there is

a non-injective map h from the set H of vertices of the hypercube to some finite set (in our

case, to the condensed identity states). Consider the group S of symmetries of the hyper-

cube, i. e. permutations of H that preserve all the edges of the hypercube. Let G ⊂ S be

the subgroup of symmetries of the hypercube that also preserve values of h, and let O be



17

the set of orbits of G. Define an equivalence relation on H by saying that for v1, v2 ∈ H we

have v1 ≡ v2 when v1 and v2 lie in the same element of O. Let {At} be the process taking

values in O, viewed as a function of {Vt}, defined so that if Vt = v, then At = the unique

element of O containing v. Then {At} is an irreducible Markov chain with a state space no

larger than that of {Vt}, and often substantially smaller.

In our case, {It} can be viewed as a function of {At}. Thus, to calculate the likeli-

hood for our observed data, we could apply the hidden Markov method with the hidden

Markov chain taken to be the restriction of the process {At} to the marker positions. To

implement this approach, one needs to determine, for each k-wise relationship considered,

the orbits O, the transition matrix P (t) for {At}, and the stationary distribution for {At}.

Let Q be the matrix of infinitesimal parameters of {At}. Given v1, v2 ∈ {0, 1}E(P ), define

|v1−v2| = ∑
k∈E(P ) |v1(k)−v2(k)|. Given the set of orbits O, the Q matrix is obtained as fol-

lows: given k, choose v ∈ Ok. Then qkl = |{v′ ∈ Ol : |v−v′| = 1}| for k 6= l, qkk = −∑
l 6=k qkl.

It is not hard to show that this does not depend on the choice of v. From the Q matrix, the

transition matrix is obtained as P (t) = eQt. For the restriction of {At} to the marker posi-

tions, we actually prefer to specify the transition matrix in terms of recombination fraction

θ rather than t, where θ = (1− e−2t)/2 under the assumption of no interference. In practice,

we find that specification of the transition matrix in terms of θ rather than t makes our

analysis more robust to the presence of interference, because data are usually obtained on

the value of θ between markers, with the value of t between markers estimated from θ using

some (incorrectly specified) model for interference. We note that the one-step conditional

distribution P (θ) itself does not depend on assumptions about interference, although the

assumption of no interference is used to obtain the Markov property.
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We now give sufficient conditions for the Markov process {At} obtained by the above

procedure to have the minimum number of states needed to both contain all the information

of the IBD process {It} and to satisfy the Markov property under no interference. Sup-

pose {At} is a continuous-time finite state space Markov process, with cardinality of the

state space equal to n, and suppose that {It} is defined by a deterministic function of {At},

It = f(At), where f is defined on the state space of {At}. Let S be the state space of {It},

and for each s ∈ S, let ns = |f−1(s)|. Following Larget (1998), we define an observable

sequence (y, t) to consist of a finite sequence y of elements of S and a finite nondecreasing

sequence t of nonnegative real times, where |y| = |t| and the first element of t is always 0.

For each observable sequence (y, t) with |y| = |t| = k, define

Q(y,t) = Iy1eQ(t2−t1)Iy2eQ(t3−t2)Iy3 · · · Iyk−1eQ(tk−tk−1)Iyk for k ≥ 2

and Q(y,t) = Iy1 for k = 1, where Q is the matrix of infinitesimal parameters of {At} and Is

is the n × n diagonal matrix which is the identity on the submatrix where f(i) = f(j) = s

and is zero elsewhere. Furthermore, suppose π is the initial distribution of {At} (which is

the stationary distribution in our case) and 1 is a vector of ones.

Theorem 3: Suppose {At} is a continuous-time Markov process with finite state space of

size n, and suppose that {It} is defined by a deterministic function of {At}, It = f(At),

where f is defined on the state space of {At}. Then the following conditions are sufficient to

ensure that for any other continuous-time finite state space Markov process {Bt} such that

{It} is defined by a deterministic function of {Bt}, the cardinality of the state space of {Bt}

is no less than n:

(1) For each s ∈ S, there exist ns observable sequences {(y, t)i}ns
i=1 such that the vectors
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{πTQ(y,t)iIs}ns
i=1 are linearly independent.

(2) For each s ∈ S, there exist ns observable sequences {(y, t)i}ns
i=1 such that the vectors

{IsQ(y,t)i1}ns
i=1 are linearly independent.

Remarks: Theorem 3 is a continuous-time analogue of a result by Gilbert (1959) for discrete-

time Markov chains. Conditions (1) and (2) are easily checked once Q is constructed. Later

in this section we give some examples to which Theorem 3 applies.

For the following kinds of outbred pairwise relationships, the orbits O, matrix Q, and

the stationary distribution are given by Donnelly (1983): ancestor-descendant (i is a gth-

generation ancestor of j for g ≥ 1); half-sib type (i is a µth-generation descendant of a

and j is a νth-generation descendant of b, for µ, ν ≥ 0, where a and b are half siblings);

cousin-type (i is a µth-generation descendant of a and j is a νth-generation descendant of b,

for µ, ν ≥ 0, where a and b are first cousins); uncle-type (j is a µth-generation descendant

of a, for µ ≥ 1, where a and i are full siblings). The transition matrix P (θ) can be found

in Bishop and Williamson (1990) for the half-sib and grandparent-grandchild relationships,

for which {At} and {It} are the same, and in McPeek and Sun (2000) for the avuncular

and first-cousin relationships, for which {At} and {It} are different. We now give P (θ) for

the other pairwise relationship types considered by Donnelly (1983). For the outbred gth-

generation ancestor-descendant relationship, in which i is a gth generation ancestor of j,

with g > 1, the pruned pedigree (P, s) has N (P ) = {i, j, a1, . . . , ag−1}, |N (P )| = g + 1, and

E(P ) = {(i, a1), (a1, a2), . . . , (ag−1, j)}. Let v′ assign to each (a, b) ∈ E(P ) the indicator of

whether a is male, and let v′−1 be the restriction of v′ to E(P ) \ {(i, a1)}. Then Ok = {v ∈
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{0, 1}E(P ) : |v−1 − v′−1| = k} and P (θ) has (k, l)th element

Pkl(θ) =
min(k,g−l−1)∑

m=max(0,k−l)
Ck,mCg−k−1,l−k+mθl−k+2m(1− θ)g−l+k−2m−1,

where Ca,b = a!/[(a − b)!b!]. Think of this transition matrix as a function of g and call it

Pg. Note that when g = 1 (parent-offspring), the Markov chain {At} is trivial, with only a

single state, so we can set P1 = 1. Then for the half-sib type relationships, the transition

matrix is Pµ+ν+1 ⊗H, where H is the matrix for half-sibs given in Bishop and Williamson

(1990) and ⊗ is Kronecker product. For the cousin-type relationships, the transition matrix

is Pµ+ν+1 ⊗ C where C is the matrix for cousins given in McPeek and Sun (2000), and for

the uncle-type relationships, the transition matrix is Pµ ⊗ U where U is the matrix for the

avuncular relationship given in McPeek and Sun (2000). Thus, computation of the likelihood

can be accomplished for these types of relationships.

Note, however, that even if we restrict ourselves to outbred pairwise relationships for

which the pruned pedigree has no directed paths of length greater than 2, there are 23 dis-

tinct non-trivial types of relationships, only 8 of which are covered by the above results.

When inbred relationships are permitted, when the lengths of directed paths are allowed to

be greater than 2, or when individuals are considered k-wise, the number of possibilities is

enormous. Thus, it is desirable to have more general, automatic ways of determining the

{At} process. Note that for the symmetry group S, we have |S| = 2d × d!, where d is the

number of directed edges in the pruned pedigree P . One could find O by considering each

of these permutations in turn, deciding whether or not it belongs in G, and then finding the

orbits of G. We describe below some shortcuts that make it unnecessary to consider every

element of S.
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There are certain symmetries in the pedigree structure that can be easily exploited to

reduce the size of the state space of the Markov process. These symmetries allow one to

find a subgroup of G, resulting in a set of orbits O′ that is a finer partition of the state

space than O. For instance, the two parental alleles within a founder individual a can be

permuted without altering the condensed identity state of γ. In the joint crossover process

{Vt}, this amounts to replacing Vt(a, b) by 1− Vt(a, b) for every child b of a at every locus t.

By making use of this symmetry, the state space is reduced from 2d elements to |O′| = 2d−f ,

where f = |F(P )|. In the context of linkage analysis with moderate-sized outbred pedigrees,

this state-space reduction is used by Kruglyak, Daly, Reeve-Daly, Lander (1996). Define a,

b ∈ F(P ), a 6= b to form a founder couple if {c : a ∈ p(c)} = {d : b ∈ p(d)}. Another

symmetry in the pedigree structure that can be used to reduce the state space is that the

permutation of individuals within a founder couple does not alter the condensed identity

state of γ, provided that neither individual in the couple is one of the focal individuals

{i1, . . . , ik}. In the crossover process {Vt}, this amounts to interchanging Vt(a, c) and Vt(b, c)

and switching Vt(c, d) to 1− Vt(c, d) for all c with p(c) = {a, b}, all d with c ∈ p(d), and all

t. In the context of linkage analysis with moderate-sized outbred pedigrees, this type of ap-

proach was used by Gudbjartsson, Jonasson, Frigge, and Kong (2000). Let g be the number

of founder couples where neither individual is in {i1, . . . , ik} and where they have at least one

grandchild in the pedigree. For k = 1, 2, . . ., let c(k) be the number of founder couples where

neither individual is in {i1, . . . , ik} and where they have k children and 0 grandchildren in

the pedigree. Let n be the number of founders who are not part of a founder couple or who

are in a founder couple in which one of the individuals is in {i1, . . . , ik}. By making use of

the orbits O′ of the subgroup of G generated by permutation of individuals within founder
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couples and permutation of the two alleles within each founder, the state space would be

reduced from 2d elements to |O′| = 2d−3g−n ∏
k(2

−3 + 2−k−2)c(k). For example, for a pair of

full sibs, 2d = 16 and |O′| = |O| = 3, and for an avuncular pair 2d = 32 and |O′| = |O| = 4.

Thus, application of the above two types of symmetry leads to the minimum number of

states in these cases. (That these are, indeed, the minimum number of states for these

two relationships follows from Theorem 3.) For a pair of first cousins, 2d = 64, |O′| = 8,

and |O| = 7, so application of the above two types of symmetry leads to 1 extra state be-

yond the minimum, where application of Theorem 3 confirms that 7 is the minimum. For

l > 1, define the directed path q = (q0, . . . , ql) to be an isolated branch of length l if

qh ∈ [Hm(P ) ∪ Hf (P )] \ {i1, . . . , ik} and qh has exactly one offspring for all 0 ≤ h ≤ l − 1.

A further symmetry in the pedigree structure that, when present, can be used to reduce the

state space is the permutation of meioses within isolated branches. Given a permutation

π on {1, . . . , l}, in the crossover process {Vt}, permutation of meioses within the isolated

branch amounts to replacing Vt(qh−1, qh) by |1{s(qπ(h)−2) 6= s(qh−2)} − Vt(qπ(h)−1, qπ(h))| for

all t and for h = 1, . . . , l, where we define q−1 to be the mother of q0 if q0 ∈ Hm(P ) and

the father of q0 if q0 ∈ Hf (P ). Let n(b) be the number of isolated branches of length b.

By making use of this symmetry, the state space would be reduced from 2d elements to

|O′| = 2d × ∏
b≥2(

b+1
2b )n(b). For a pair of third cousins, 2d = 1024 and |O| = 35. If we make

use of all three types of symmetry described above, we obtain |O′| = 72.

A brute force approach to finding O is to consider each element of S, determine whether

or not it is in G, and then find O from G. When the symmetries described above are used to

obtain the set of orbits O′, this can be used to find the coarser partition O by consideration

of fewer elements of S than would be required by the brute force approach. Recall that if
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two elements of {0, 1}E(P ) are in the same orbit of O′, then they lead to the same condensed

identity state for γ. Thus, to each orbit in O′ can be associated a condensed identity state.

For each condensed identity state φ, let h(φ) be the number of orbits in O′ with condensed

identity state φ. Let ψ be a condensed identity state such that h(ψ) ≤ h(φ) for all φ. Then

the set of orbits O can be obtained from the set of orbits O′ by consideration of no more

than h(ψ)d! − 1 symmetries of H. For the case of an outbred pairwise relationship, this

can be reduced to h(ψ)d!2−f − 1, where f is the number of founders excluding i and j. See

Appendix D for details. For example, for first cousins, d = 6, f = 2, and h(ψ) = 2. Thus,

O could be obtained from O′ by consideration of 359 elements of S instead of all 46,079

non-identity elements.

8. Discussion. In practical applications, it may be useful to focus attention initially

on inference for pairwise relationships, based on genome screen data for the pair. This al-

lows one to easily identify particular directed edges of the pedigree that are likely in error,

and it gives useful information for determining plausible alternatives for the local pedigree

structure. The pairwise approach can be supplemented by considering multiple individuals

jointly, with a set of alternative relationships constructed on the basis of the pairwise results.

Likelihood-based inference on pedigree structure is closely related to likelihood-based in-

ference for linkage mapping, but there are important differences. The goal in linkage mapping

is to detect a local change in distribution of the IBD process, whereas in pedigree inference,

we are interested in the distribution of the process throughout the entire genome. Use of

other genotyped relatives to provide additional information on the IBD process for a set of

individuals is important for linkage analysis, but is problematic for pedigree inference be-

cause it depends on the accuracy of these relationships.
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The likelihood calculations described in Section 7 depend on the fact that {Vt} is Markov,

which holds under the assumption of no interference. These calculations could be extended

to the Poisson-skip class of models for interference (Lange, Zhao, and Speed (1997); Lange

(1997), Section 12.5), of which the χ2 model (Zhao, Speed, and McPeek (1995)) is a special

case. For this class of models, {Vt} is not Markov, but it can be viewed as hidden Markov,

as described by Lange ((1997), Section 12.5).

There are many practical considerations not treated here. One involves the choice of

the set R of relationships over which the likelihood is maximized. Computational feasibility

places constraints on the size of R. Important considerations in choosing R include, first,

power to distinguish among relationships based on the data. For instance, common ancestry

that is too many generations away will have little impact on the likelihood, even if the IBD

process is observed on the entire genome. Second, knowledge of individuals’ ages, or of the

fact that they were alive simultaneously, combined with knowledge of human generation

times, suggests restrictions on the numbers of generations separating a pair of genotyped

individuals. For modest-sized outbred pedigrees, Sun, Wilder, and McPeek (submitted)

implement pairwise relationship analysis using R = {monozygotic twins, parent-offspring,

full siblings, half siblings plus first cousins, half siblings, grandparent-grandchild, avuncular,

first cousin, half-avuncular, half-first-cousin, unrelated}. This set was chosen based on the

pedigrees encountered in data and based on the alternative relationships suggested by the

estimation of (∆7,∆8,∆9) by the method of McPeek and Sun (2000).

A somewhat simpler approach to pedigree inference was taken by Göring and Ott (1997),

who assigned prior probabilities to pairwise relationships, with prior mass 1 on some small

finite set R of relationships and then calculated posterior probabilities for the elements of
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R. In Göring and Ott (1997), the reported relationship was full sib, and R consisted of full

sib, half-sib, and unrelated. Aside from the fact that their approach is Bayesian and ours is

frequentist, one of the main differences between our approach and theirs is the performance

when the true relationship does not lie in R, which is always a possibility. For example, in

the case considered by Göring and Ott (1997), some reasonable alternatives not in R (and

which could certainly have an impact on the linkage results if true) are (a) that the sibs are

inbred in one of various ways, (b) that they are half-sibs with, say, the same mother and

fathers who are related, or (c) that they have some other outbred relationship such as an

avuncular relationship. If the true relationship does not lie in R, then by Göring and Ott’s

(1997) method there is, in principle, no possibility of recognizing this as long as prior mass

1 is assigned to R and not all likelihoods are 0 for the elements of R. For instance, with

the choice of R and prior distribution used by Göring and Ott (1997), a pedigree error in

which a true inbred sib pair is falsely reported as an outbred sib pair would have essentially

no chance of being detected. If prior mass less than 1 is assigned to R, but likelihoods are

calculated only for the elements of R, then posterior probabilities for the elements of R are

known up to a constant multiple, and one cannot generally construct a confidence set; in

particular, one still cannot determine that none of the relationships in R is in the confidence

set (unless all likelihoods are 0 for the elements of R). The previous example of an inbred

sib pair being virtually undetectable still applies when prior mass on R is less than 1. In

contrast the Monte-Carlo-based method we use can, in principle, and also sometimes in prac-

tice, have power to reject all relationships in R, even though likelihoods are calculated only

for relationships in R. In that case, the method could report that the confidence set does

not contain any element of R. The trade-off is that our method is more computationally
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expensive than the Bayesian approach, because simulations are required.

An additional difficulty with the Bayesian approach is that, in general, there is no

straightforward choice of prior distribution. One would presumably want to incorporate

prior information such as a higher probability for the reported pedigree and information on

the frequencies of various types of errors. Rates of non-paternity and inbreeding can de-

pend on the population and the phenotype under study and are not well-known. Problems

can arise such as confusion of individuals with similar names and relatedness of individu-

als thought to be unrelated, which are difficult to quantify. Other sources of error include

switched or duplicated samples.

An important set of questions beyond the scope of this paper involves how to perform

linkage analysis in light of the pedigree errors detected. In practice, it may be possible to

go back and collect additional data that confirm and explain some of the pedigree errors

detected (e. g. see Epstein, Duren, and Boehnke (2000)). The uncertainty about other parts

of the pedigree could, in principle, be incorporated into the analysis.

Sampling of pedigrees for a linkage study is often based on the presence of multiple rel-

atives affected by a trait. Assuming that the trait has genetic determinants, these relatives

may be expected to share regions of the genome containing these genetic determinants. This

could have an impact on the distributions of their IBD processes, but this ascertainment

effect is not expected to be noticeable in practice.
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Appendix A. Proof of Theorem 1. We employ Lemma 1 to show that the identity

state for γ = (P, s, i1, . . . , ik) at a given locus depends on V only through V ∗, where (P ∗, s∗)

is the pruned pedigree, and V ∗ is the restriction of V to E(P ∗). We assume throughout that
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each element of FA(P ) is assigned a unique founder allele.

Lemma 1. Suppose {(a1, j1), . . . , (an, jn)} ∈ FA(P ∗), |{(a1, j1), . . . , (an, jn)}| > 1, and

α(a1, j1) = α(a2, j2) = . . . = α(an, jn). Then (1) {a1, . . . , an} ⊂ [Hm(P ∗)∪Hf (P
∗)]∩NF(P )

and (2) there exist c ∈ N (P ∗) \ {i1, . . . , ik}, d ∈ N (P ∗) such that (c, d) ∈ E(P ∗) and, for

every directed path q = (q1, . . . , ql) in P ∗ with q1 ∈ {a1, . . . , an}, ql ∈ {i1, . . . , ik}, we have

qm = c and qm+1 = d for some 1 ≤ m ≤ l − 1.

To prove Lemma 1, we consider (a, j) ∈ FA(P ∗) and consider each of the following

five possibilities in turn: (i) a ∈ F(P ∗) ∩ F(P ), (ii) a ∈ F(P ∗) ∩ Hφ(P ), φ = m or f , (iii)

a ∈ F(P ∗)∩NF(P ), (iv) a ∈ Hφ(P
∗)∩Hφ(P ), φ = m or f , (v) a ∈ Hφ(P

∗)∩NF(P ), φ = m

or f . In each of cases (i) through (iv), we find that if (c, l) ∈ FA(P ∗) with (c, l) 6= (a, j),

then α(a, j) 6= α(c, l). Part (1) of the Lemma follows. Let D(P ) = [N (P )×{0, 1}]\FA(P ),

and define the parent function β : D(P ) → N (P ) by β(c, 0) = a, where a is the mother of c,

and β(c, 1) = b, where b is the father of c. In case (v), if we let ψ = 1{φ = f}, we find that

β(a, 1 − ψ) satisfies Condition 2 of superfluous with directed edge (c, d), where either (a)

(c, d) = (β(a, 1− ψ), a) or (b) a /∈ {i1, . . . , ik} and every directed path from a to {i1, . . . , ik}

passes through (c, d). In case (a), we find the same results as for cases (i)-(iv). For case (b),

part (2) of the Lemma follows.

Using Lemma 1, we show that if unique alleles are assigned to the members of FA(P )

then, at a given location t, the identity state E depends on V only through V ∗. Consider

the function α∗ defined on D(P ∗) and obtained as follows: assign unique alleles to the mem-

bers of FA(P ∗), then apply V ∗ to obtain α∗. Let E∗ be the resulting identity state for

A∗ = (α∗(i1, 0), α∗(i1, 1), . . . , α∗(ik, 0), α∗(ik, 1)). We show that E = E∗. To do this, we

construct for each V , an assignment of unique alleles to the members of FA(P ∗) so that
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application of V ∗ yields A∗ = A.

Appendix B. Proof of Theorem 2. Define identity state δ to be “≤” identity state ε if

the set of edges in the defining graph of δ is a subset of the set of edges in the defining graph

of ε, with “=” holding precisely when δ and ε are the same identity state. Given V on E(P ),

let V ′ be the restriction of V to E(P ′). Let δ be the identity state for γ based on V , and

let ε be the identity state for γ′ based on V ′. It is apparent that ε ≤ δ. In order to prove

Theorem 2, we need to show that when γ has no superfluous nodes, there is some choice of

V for which the inequality ε ≤ δ is strict. It is sufficient to show that given (a, b) ∈ E(P ),

either (i) there exist e ∈ {a}∪A(a) and directed paths q1 = (q1
1, ..., q

1
m) and q2 = (q2

1, . . . , q
2
n)

in P , with q1
1 = q2

1 = e, q1
m, q

2
n ∈ {i1, . . . , ik} such that q1 passes through (a, b), and q1 and

q2 have no common directed edges or (ii) F(P ) ∩ [{a} ∪ A(a)] \ {i1, . . . , ik} = ∅. To obtain

this result, we apply Lemma 2.

Lemma 2. Given A ⊂ N (P ), B ⊂ N (P ), k ≥ 3, and a k-tuple of directed paths from A to

B, if there is no directed edge (c, d) through which they all pass, then there exists a disjoint

pair of directed paths from A to B.

Proof of Lemma 2. Number the k directed paths 1 to k. Suppose there is no single di-

rected edge through which all k pass. For any (k− 1)-tuple of these directed paths, describe

their intersection by the set of directed edges through which they all pass. Let Ek−1 be the

union over all (k − 1)-tuples of these sets of directed edges. Note that Ek−1 (which may be

empty) is strictly ordered with (a1, b1) < (a2, b2) if b1 ∈ A(a2). Write Ek−1 = {e1, . . . , el}

where eφ < eφ+1. Aggregate (e1, . . . , el) into blocks (b1, . . . , bo) of consecutive directed edges

bφ = (eψ, . . . , eψ+ν) such that within each block the same (k − 1)-tuple of directed paths

intersects at all directed edges, but from one block to the next the (k − 1)-tuple of directed
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paths changes. Let fφ be the parent in the first directed edge of block bφ, and let lφ be

the offspring in the last directed edge of block bφ. Let h map φ to the unique ψ such that

directed path ψ does not intersect the directed edges of bφ. The proof of Lemma 2 proceeds

by induction on k. To show the result for k = 3, we construct a disjoint pair of directed paths

as follows: one path follows path h(2) to l3, then follows h(4) to l5, h(6) to l7, ..., h(2[[l/2]])

to B, while the other path follows path h(1) to l2, h(3) to l4, ..., h(2[[(l − 1)/2]] + 1) to B.

At the induction step (going from k to k + 1), the existence of a disjoint pair of directed

paths from A to B is established by first showing the existence of a disjoint pair of directed

paths from A to f1 (note that if f1 does not exist, then we are done), because the k paths

intersecting at b1 do not have a common intersection up to f1. Then the existence of a

disjoint pair of directed paths, p1 and p2, from A to fm is used to show the existence of a

disjoint pair from A to fm+1 for 1 ≤ m ≤ l − 1. This holds because there is no common

intersection among the following k directed paths, where we consider each path as a path

terminating at fm+1: path h(m), path p2 from A to fm followed by one of the k − 1 paths

that has a directed edge in both bm and bm+1, path p1 from A to fm followed by each of the

other k − 2 of the k − 1 paths that has a directed edge in both bm and bm+1. Finally, the

existence of a pair of disjoint paths, r1 and r2, from A to fl is used to show the existence of

a pair of disjoint paths from A to B. The k paths used to show this are: h(l), r2 followed

by one of the k− 1 paths that intersect at bl, r1 followed by each of a set of k− 3 paths that

intersect at bl, not including the one used with r2.

To prove Theorem 2 from Lemma 2, we show that given (a, b) ∈ E(P ), either (i) there

exist e ∈ {a} ∪ A(a) and directed paths q1 = (q1
1, ..., q

1
m) and q2 = (q2

1, . . . , q
2
n) in P , with

q1
1 = q2

1 = e, q1
m, q

2
n ∈ {i1, . . . , ik}, such that q1 passes through (a, b) and q1 and q2 have no
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common directed edges or (ii) F(P ) ∩ [{a} ∪ A(a)] \ {i1, . . . , ik} = ∅. Assume (ii) does not

hold. To construct q1 and q2, choose f ∈ F(P ) ∩ [{a} ∪ A(a)] \ {i1, . . . , ik}. Consider the

intersection of all directed paths from {f} to {i1, . . . , ik}. This must be empty. Otherwise f

would be superfluous. Thus, by Lemma 2, there is a disjoint pair of directed paths r1 and r2,

from {f} to {i1, . . . , ik}. If either directed path contains (a, b) then we are done, so assume

not. Let r3 be a directed path from {a} to {i1, . . . , ik} that passes through (a, b). Consider

case (i) either r3 does not intersect r1 or r3 does not intersect r2, and case (ii) r3 intersects

both r1 and r2. In case (i), suppose without loss of generality that r1 and r3 do not intersect.

Then we have a disjoint pair of directed paths, one from {a} to {i1, . . . , ik} that contains

edge (a, b) and one from {f} to {i1, . . . , ik}. In case (ii), suppose, without loss of generality,

that r1 intersects r3 before r2 does, i.e., the last node of the first intersecting directed edge

of r1 and r3 is ancestral to the first node of the first intersecting directed edge of r2 and r3.

Then set r′3 to follow r3 from a until the last node of the first intersecting edge of r1 and

r3, and then to follow r1. Then r2 and r′3 are disjoint and, as in case (i), we again have a

disjoint pair of paths, one from {a} to {i1, . . . , ik} that contains edge (a, b) and one from

{f} to {i1, . . . , ik}. In either case, choose r4 from {f} to {a}. If r4 intersects r2, let e be

the last node of the last edge of intersection. Then consider path r5 from {e} to {i1, . . . , ik}

which follows r2, and path r6 from {e} to {i1, . . . , ik} which follows r4 to {a} and then r3 or

r′3 in case (i) or (ii), respectively. Then e ∈ A(a) ∪ {a}, r6 passes through (a, b), and r5 and

r6 are disjoint, as required.

Appendix C. Proof of Theorem 3. Suppose {At} and {It} are such that Conditions

(1) and (2) of the theorem hold, with observable sequences {(y, t)1,i}ns
i=1 and {(y, t)2,i}ns

i=1,

respectively. Let {Bt} be any other continuous-time finite state space Markov process with
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finite state space {α1, . . . , αm}, such that {It} is defined by a deterministic function of {Bt},

say It = g(Bt). For each s ∈ S, let ms = |g−1(s)|, and write g−1(s) = {βs,1, . . . , βs,ms}.

Let ρ and M be the analogues for {Bt} of π and Q, which are defined for {At}. Let Js

be the m × ms matrix with (i, j)th entry equal to 1αi=βs,j
. Let L be the matrix which is

equal to the product of the matrix with rows {πTQ(y,t)1,iIs}ns
i=1 and the matrix with columns

{IsQ(y,t)2,j1}ns
j=1 Under (1) and (2), L is ns × ns and of full rank. Furthermore, by the

Markov property, L is also equal to the product of the matrix with rows {ρTM (y,t)1,iJs}ns
i=1,

which is of dimension ns ×ms, and the matrix with columns {(Js)TM (y,t)2,j1}ns
j=1, which is

of dimension ms × ns. If ms < ns, one has a contradiction because L could not have rank

ns. Thus, m =
∑
sms ≥ ∑′

s ns′ = n.

Appendix D. First note that an element of G is uniquely determined by specifying the

image of a single given vertex (call it v) as well as the images of each of the d vertices

connected by a single edge to v. To see that the set of orbits O can be obtained from the

set of orbits O′ by consideration of no more than h(ψ)d! − 1 symmetries of H, we choose

from each O′k ∈ O′ a representative element vk ∈ O′k. Denote the resulting set of elements

E. Given v ∈ E, O′l, O
′
m ∈ O′, O′l 6= O′m such that O′l ∪ O′m ⊂ Ok ∈ O, then, by Lemma 3,

there exists w ∈ O′l and g ∈ G such that g(v) ∈ E and g(w) ∈ O′m. Thus if we choose v to

have condensed identity state ψ, we need only consider symmetries that map v to any of the

h(ψ) elements of E that have identity state ψ.

Lemma 3. Given v ∈ E, O′l, O
′
m ∈ O′, O′l 6= O′m such that O′l ∪ O′m ⊂ Ok ∈ O, then there

exists w ∈ O′l and g ∈ G such that g(v) ∈ E and g(w) ∈ O′m.

Proof of Lemma 3. O′l ∪O′m ⊂ Ok implies that there exists w ∈ O′l and g1 ∈ G such that

g1(w) ∈ O′m. Let O′n be the unique element of O′ such that g1(v) ∈ O′n. Since O′ is the set of



32

orbits under some subgroup G′ of G, there must exist g2 ∈ G′ ⊂ G such that g2(g1(v)) = vn

and g2(g1(w)) ∈ O′m. Lemma 3 follows, letting g = g2 ◦ g1.

The reduction to h(ψ)d!2−f − 1 for a pairwise relationship when the pruned pedigree is

outbred follows from Lemma 4, which states that, for an outbred pruned pedigree P ∈ P2,

every founder, excluding i and j, has exactly 2 offspring. (Note that this no longer holds for

P ∈ Pk, k > 2.) Thus, for each founder in F(P )\{i, j}, there is a pair of edges in E(P ) such

that interchange of that founder’s 2 alleles toggles the two bits corresponding to these edges,

resulting in a mapping that takes each v1 ∈ {0, 1}E(P ) to a v2 ∈ {0, 1}E(P ) such that there

exists v3 ∈ {0, 1}E(P ) with |v1 − v3| = |v1 − v2| = 1. Thus, for a given w ∈ {0, 1}E(P ), there

are f pairs of elements at distance 1 from w such that for each pair there exists g ∈ G′ ⊂ G

such that g interchanges the 2 elements of the pair and preserves w, the other elements at

distance 1 from w, and the orbits O′ (g will interchange the relevant pair of bits if these bits

are equal in w, and g will both interchange and toggle the relevant pair of bits if these bits

are unequal in w). As shown above, given v with condensed identity state ψ, it is sufficient

to consider all symmetries of H that map v to any of the h(ψ) elements of E with identity

state ψ. Suppose v is mapped to w ∈ E. We would ordinarily consider d! possible ways

to map elements at distance 1 from v to elements at distance 1 from w. However, as a

consequence of Lemma 4, we need not consider those maps that differ only by interchanges

of elements within the f pairs at distance 1 from w mentioned above, giving only d!2−f maps

to consider.

Lemma 4. For an outbred pruned pedigree (P, s) ∈ P2, every founder, excluding i and j,

has exactly 2 offspring.

Proof of Lemma 4. If a ∈ F(P ) \ {i, j}, then a must have at least 2 offspring; other-
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wise a would be superfluous. For a pair of individuals a, b ∈ N (P ), write a ≤ b whenever

a ∈ {b}∪A(b). To avoid inbreeding, a could be ≤ at most one parent of i and one parent of

j. Given g ≥ 1, suppose that it is established that a could be ≤ at most one gth-generation

ancestor of i and one gth-generation ancestor of j. Then, to avoid inbreeding, it follows that

a could be ≤ at most one (g + 1)th-generation ancestor of i and one (g + 1)th-generation

ancestor of j. Since F(P ) \ {i, j} ⊂ A(i) ∪ A(j), it follows that a can have no more than 2

offspring in P .
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Figure Legends:

Figure 1: The pedigrees in Figures 1a and b specify the same relationship for individuals i

and j, while that in Figure 1c is different.

Figure 2: The 15 possible identity states for individuals i and j, grouped according to

their nine condensed identity states. Edges indicate alleles that are inherited from the same

founder.
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