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Abstract

High frequency data have become an important feature of many areas of research. They per-
mit the creation of estimators in highly non-parametric classes of continuous-time models. In
the context of continuous semi-martingale models, we here provide a locally parametric “double
Gaussian” approximation, to facilitate the analysis of estimators. As in Mykland and Zhang
(2009), the error in the approximation can be offset with a post-asymptotic likelihood correc-
tion. The current approximation is valid in large neighborhoods, permitting a sharp analysis of
estimators that use local behavior over asymptotically increasing numbers of observations.

Keywords: consistency, cumulants, contiguity, continuity, discrete observation, efficiency,
equivalent martingale measure, Itô process, leverage effect, likelihood inference, partial likeli-
hood, quarticity, realized beta, realized volatility, stable convergence, volatility of volatility.



Double Gaussian Approximation for High Frequency Data 1

1 Introduction

The purpose of this paper is to investigate the size of neighborhoods under which a discretely
observed semimartingale can be taken to have a simple parametric form. The problem arises in high
frequency data, financial or otherwise. We have previously investigated this problem in Mykland
and Zhang (2009), where it is shown that the data can be taken to be conditionally normal over
windows of finitely many observations, with a post-asymptotic likelihood ratio adjustment. The
background is the rapidly growing literature on high frequency data in econometrics, and we refer to
our earlier paper for a review of the literature. See also Sections 2.2 and 2.4 for further background.

In this paper we show that a more complex parametric structure, the Double Gaussian model,
can approximate the distribution of the data in much larger sets of observations. Specifically, if
there are n observations, the approximation is good in neighborhoods of size Op(n1/2) observations.
It also provides a structure which is conditional on the volatility, which is desirable in a number of
settings.

The need for easy calculation in neighborhoods of increasing size occurs because many esti-
mators are either not efficient (integrals of powers of volatility, ANOVA, realized betas) or even
not consistent (leverage effect, volatility of volatility (see Section 2.4), and most estimators when
there is microstructure1 in the data) in finite neighborhoods, cf. the discussion in our earlier paper.
Neighborhoods of size Op(n1/2) often provide the critical trade-off, or the emergence of otherwise
unseen bias and variance terms. For references in this direction, see the literature on microstruc-
ture (such as Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006), Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008), Jacod, Li, Mykland, Podolskij, and Vetter (2009), Podolskij and
Vetter (2009), and Reiss (2010)), as well as Mykland, Shephard, and Sheppard (2011) and Wang
and Mykland (2011). When neighborhoods of observations are finite or of size op(n1/2), there is
no contiguity adjustment. When using blocks of size Op(n1/2), the post-asymptotic adjustment is
quite simple. A worked example is provided in Section 5.

As in Mykland and Zhang (2009), the setting for the approximation is partial likelihood (Cox
(1975), Wong (1986)), cf. Remark 4 in Section 4.2. To make for greater comparability, we have
kept the notation from the earlier paper whenever possible. The model is defined in Section 2, the
double Gaussian approximation is introduced and discussed in Section 3, and the main theorem is
given in Section 4. We apply the results to the estimation of quarticity in Section 5.
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2 Setting

2.1 The Data Generating Mechanism and its Representations

We shall work with a broad class of continuous semimartingales, namely second order Itô processes.
This is to say that the primary observed process Xt satisfies

dXt = µtdt+ σtdWt, where

dσt = σDR
t dt+ ftdWt + gtdBt, (1)

and where µt, ft, gt, and σDR
t are adapted locally bounded random processes, and Wt and Bt

are independent Wiener processes. The underlying filtration will be called (Ft). The probability
distribution will be called P .

It is handy to immediately rewrite the mechanism (1) in a couple of ways. First of all, by
standard orthogonal transformation, an equivalent system is given by

dXt = µtdt+ σt (atdZt + btdUt)

dσt = σDR
t dt+ ctdZt, (2)

where Zt and Ut are, again, independent Wiener processes, and where

ct = (f2
t + g2

t )
1/2 , at = ft/ct , and bt = gt/ct. (3)

Also, under regularity conditions2, there is an equivalent “statistical risk neutral measure” (Section
2.2 in Mykland and Zhang (2009)) P ∗ under which

Z∗t = Zt +
∫ t

0

σDR
s

cs
ds and U∗t = Ut +

∫ t

0

1
bs

(
µs −

asσsσ
DR
s

cs

)
ds

are independent Wiener processes. System (2) can thus further be written as

dXt = σt (atdZ∗t + btdU
∗
t ) ,

dσt = ctdZ
∗
t . (4)

The representation (4) is the central one for our development. Since all convergence in this paper
will be of the stable type,3 one can show that all our asymptotic results will apply with suitable
modification to the systems (2) and (1).

2.2 What Kind of Processes are Covered by this Development?

Continuous time processes are widely used in economics and finance. A main milestone was the
development of the Black and Scholes (1973)-Merton (1973) options pricing (and trading) formula,
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and subsequent developments in this direction, which have practically become a separate area of
study. Another main application of such processes is the theory of optimal consumption, and
market equilibrium, see for example Merton (1971, 1992), He and Leland (1993), and Hansen and
Sargent (2007).

In the earliest models, σ is constant, but over time, both (longitudinal) econometrics and (cross-
sectional) empirical options pricing found that σt will typically be time varying. An early deviation
from constant σ was provided by Heston (1993), with the model

dXt =
(
ν − σ2

t

2

)
dt+ σtdWt

dσ2
t = κ(α− σ2

t )dt+ γσtd(ρWt + (1− ρ2)1/2Bt) . (5)

This model has the emblematic feature that σt can vary, but it is mean reverting (asymptotically
stationary). This is a common feature of most models for volatility. More general models of this
type would have the form of a two variable (X,σ) Markov process, driven by two Brownian motions.
This can be extended, of course, to arbitrary dimension. Such models are popular for explaining
the prices of derivative securities.

At the same time, on the statistical and econometric side, it was also found that σ could
be time varying. This was first introduced in a time series setting by Engle (1982, 2000), and
Bollerslev (1986). Gradually, the interface with continuous processes was developed. Particularly
influential were Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2001, 2002),
Meddahi (2001), and subsequent work by these and other authors. Unlike the options pricing and
equilibrium literature, the econometric literature has been more agnostic when it comes to specific
parametric form of the price process, but a substantial amount of work falls within the framework
of model (1).

A popular (but mostly unrealistic) model is the pure “state space” model dXt = ν(Xt)dt +
γ(Xt)dWt. This model falls under description (1), but is only driven by one Brownian motion. In
this case gt ≡ 0, and hence the measure change which makes both Xt and σt into martingales will
typically fail. In a sense, this is a singular point of our model, and results for this model have to be
argued directly. In high frequency analysis, however, such a direct analysis typically yields that the
non-martingale terms in system (1)-(2) are negligible. See Jacod and Protter (1998) and Mykland
and Zhang (2006) for examples of direct argument.

A class not covered by model (1) is where σt has long range dependence, for example, being
driven by a fractional Brownian motion, as in, e.g. Comte and Renault (1998). We conjecture that
a similar theory can be built up for this situation, but this is beyond the scope of this paper.

Another class of models not covered by (1) are systems that allow jumps. For the kind of
computation discussed here, however, it means that the part of the system with jumps is studied
separately. Systems that are pure jump (see, for example, Barndorff-Nielsen and Shephard (2001)
and Carr, Geman, Madan, and Yor (2003)) fall outside our model.
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2.3 Sampling Times, and High Frequency Data Asymptotics

We shall suppose that the process Xt is observed at times 0 = t0 < t1 < ... < tn = T .

In asymptotic analysis, we suppose that tj = tn,j (the additional subscript will sometimes be
suppressed). The grids Gn = {0 = tn,0 < tn,1 < ... < tn,n = T} are not nested when n varies. We
then do asymptotics as n→∞, while T is fixed. The basic assumption is that

max
1≤i≤n

|tn,j − tn,j−1| = op(1). (6)

We also suppose that the observation times tn,j are independent of the Xt process. An alterna-
tive formulation is thus that the times are conditionally nonrandom, but they are allowed to be
irregularly spaced.

We thus preclude dependence between the observation times and the process. Such dependence
does appear to exist in some cases, cf. Renault and Werker (2009) and Li, Mykland, Renault, Zhang,
and Zheng (2009), but is beyond the scope of this paper. For further discussion of conditions on
sampling times, see Sections 3-4 of Mykland and Zhang (2010).

2.4 Quadratic Variation and Covariation; Connection to Volatility and Leverage

Effect

For continuous semimartingales X(1), and X(2), their quadratic covariation is given as

〈X(1), X(2)〉t = lim
∑

tn,j+1≤t
∆X(1)

tn,j+1
∆X(2)

tn,j+1

= lim
∑

tn,j+1≤t
Cov(∆X(1)

tn,j+1
,∆X(2)

tn,j+1
|Ftn,j ),

where the latter equality depends on regularity conditions, and where the limit is as in (6). If there
is discontinuity, the two limits will normally be different. If X(1) = X(2), one refers to the quadratic
variation of X(1).4

If Xt is given as in (1), then

〈X,X〉t =
∫ t

0
σ2
udu.

One usually refers to either σt or σ2
t as the (spot, or instantaneous) volatility of Xt, while 〈X,X〉t

is variously called the integrated volatility or integrated variance of Xt. It is customary to use an
annualized and square root scale to quote actual numbers. If [0, T ] refers to one trading day, then
the integrated volatility would usually be given as5

√
250× 〈X,X〉T , often multiplied by 100 and

quoted as “percent volatility”. The volatility of a firm’s stock is measured in this fashion, where
X is the log stock price.
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In this parlance, the volatility of volatility is 〈σ, σ〉t, or its derivative, perhaps on the square root
scale. The leverage effect is some version of the covariation of Xt and σt, in spot form ranging from
〈X,σ2〉′t, via 〈X,σ〉′t and 〈X, log σ〉′t, to a correlation measure 〈X,σ〉′t/σt

√
〈σ, σ〉′t. In the Heston

model (system (5) in Section 2.2), for example, the correlation measure of the leverage effect is ρ.
Tne extreme case of leverage effect is bt ≡ 0, which in the Heston model translates into ρ = ±1.
Both the volatility of volatility and the leverage effect are part of what is normally referred to as
volatility risk.

The term leverage effect goes back at least to Black (1976), and originally describes asymmetry
in volatility due to financial leverage. A firm can increase the leverage of its share capital by issuing
bonds. Even if the value of the firm has a constant volatility, borrowing will induce time varying
volatility which is (normally) negatively correlated with the log stock price (see, for example, Section
2.5.4 of Mykland and Zhang (2010)). In more recent studies, the term leverage effect is generally
taken to refer to this negative relationship, which can also be explained by, in particular, fear on
the part of investors. For a further discussion, see Wang and Mykland (2011).

3 The Double Gaussian Approximation

3.1 Definition

We approximate over Kn windows of the form (τn,i−1, τn,i], where

Hn = {0 = τn,0 < τn,1 < ... < τn,Kn = T} ⊆ Gn. (7)

Also set

Mn,i = #{tn,j ∈ (τn,i−1, τn,i]} = number of intervals (tn,j−1, tn,j ] in (τn,i−1, τn,i]. (8)

To see how the approximation works, consider the system (4). In the earlier paper (Mykland
and Zhang (2009)), σt was approximated by a constant over windows of finitely many observation
points tn,j , i.e., maxiMn,i = Op(1) as n→∞. Our proposal here is instead to go one level deeper,
and hold ft and gt constant over windows (τn,i−1, τn,i]. Specifically, define the measure on C2((τ, τ ′])
by Q((Xt, σ̃t), t ∈ (τ, τ ′])|τ, τ ′, x, s, f, g), where

dXt = σ̃t (adZ∗t + bdU∗t ) , and

dσ̃t = cdZ∗t for t ∈ (τ, τ ′],

with window initial values:

lim
t↓τ

Xt = x and lim
t↓τ

σ̃t = s. (9)

and where a, b, and c are given by

c = (f2 + g2)1/2 , a = f/c , and b = g/c. (10)
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We propose to approximate the distribution of X and σ from (4) on (τn,i−1, τn,i], and given
Fτn,i−1 , by the distribution of X and σ̃ under

Q(·|τn,i−1, τn,i, Xτn,i−1 , σ̃τn,i−1 , fτn,i−1 , gτn,i−1). (11)

The reason for putting a tilde on σ and not on X is given in Section 4.1.

3.2 The Representation of Observables

To see why this is a double Gaussian approximation, set

dmt = σ̃tdσ̃t for t ∈ (τn,i−1, τn,i] (12)

Under (11), conditionally on σ̃t, and for (tn,j , tn,j+1] ⊆ (τn,i−1, τn,i], we have, with τ = τn,i−1, a = aτ
and similarly for b and c,

∆Xtn,j+1 =
a

c
∆mtn,j+1 +

b

c
Un,j+1(∆〈m,m〉tn,j+1)1/2 (13)

where the Un,j , j = 1, ..., n are iid standard normal, and where ∆〈m,m〉tn,j+1 is as defined in
Section 2.4. In other words,

∆Xtn,j+1 = N

(
a

c
∆mtn,j+1 ,

(
b

c

)2

∆〈m,m〉tn,j+1

)
(14)

Thus, the approximate X process is Gaussian given the σ̃ process, which itself is Gaussian. Hence
“double Gaussian” as our term for the approximation. Note also that, under Q,

∆mtn,j+1 =
1
2

(
σ̃2
tn,j+1

− σ̃2
tn,j
− c2∆tn,j+1

)
. (15)

Necessarily, inference is based on estimation in each window, and then aggregation across windows.

Remark 1. (Cumulants). Here and in later sections, we shall sometimes use cumulants. These
were originally introduced under the name of semi-invariants by Thiele (see Lauritzen (2002)), and
later by Fisher at the suggestion of Hotelling. See Stigler (2007), p. 611, for some of the colorful
discussion surrounding the history of this and related concepts. For a general review of cumulant
based methods in statistics, see McCullagh (1987). The first cumulant is the expectation, and the
second cumulant is the variance. If random variables Ui have expectation zero, then the third and
fourth cumulants are given by

cum(U1, U2, U3) = E(U1U2U3)

cum(U1, U2, U3, U4) = E(U1U2U3U4)− E(U1U2)E(U3U4)[3]

= E(U1U2U3U4)− E(U1U2)E(U3U4)− E(U1U3)E(U2U4)− E(U1U4)E(U2U3),
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where the notation “[3]” denotes the sum over all three permutations, as spelled out in the subse-
quent line. For random variables with non-zero expectation, the definition is extended by noting
that all cumulants (except the expectation) are invariant to the addition of constants. We write
cum3(U) = cum(U,U, U), and so on. Subscript Q means that the relevant expectations are taken
w.r.t. probability Q. 2

To see how complex calculations become possible in this framework, let

∆Sn,j+1 = ∆X2
tn,j+1

−
∫ tn,j+1

tn,j

σ̃2
t dt, (16)

and consider the computation of VarQ(∆Sn,j+1 | Ftn,j ). Let Atn,j be the smallest sigma-field
containing Ftn,j and under which (σ̃t, t ≤ tn,j+1) is measurable. From (C.24) in Appendix C,

EQ
(
∆S2

n,j+1 | Atn,j

)
=
(a
c

)4
(∆mtn,j+1)4 +

(
4
(a
c

)2
(
b

c

)2

− 2
(a
c

)4
)

(∆mtn,j+1)2∆〈m,m〉tn,j+1

+

((a
c

)4
+ 2

(
b

c

)4
)

∆〈m,m〉2tn,j+1
. (17)

Now use that VarQ(∆Sn,j+1 | Ftn,j ) is the expectation of (17) underQ.6 Since VarQ(∆mtn,j+1 |Ftn,j ) =
EQ(∆〈m,m〉tn,j+1 |Ftn,j ) and

EQ(∆〈m,m〉tn,j+1(∆mtn,j+1)2|Ftn,j )

= EQ(∆〈m,m〉tn,j+1 |Ftn,j )2 + cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j ), (18)

we can rewrite on cumulant form:

VarQ(∆Sj+1 | Ftn,j ) = 2c−4EQ(∆〈m,m〉tn,j+1 |Ftn,j )2

+
(a
c

)4
cum4,Q(∆mtn,j+1 |Ftn,j )

+

(
4
(a
c

)2
(
b

c

)2

− 2
(a
c

)4
)

cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j )

+

((a
c

)4
+ 2

(
b

c

)4
)

VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) (19)

For a more detailed calculation, see (C.25)-(C.26) in Appendix C.

For further analysis, we use the following lemma, which is derived in Appendix C:

Lemma 1. The following identities are valid:

EQ(∆〈m,m〉tn,j+1 |Ftn,j ) = c2
(
c2

2
(∆tn,j+1)2 + σ̃2

tn,j
∆tn,j+1

)
and

VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) =
4
3
c6
(
c2

4
(∆tn,j+1)4 + σ̃2

tn,j
(∆tn,j+1)3

)
. (20)
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Furthermore, with higher order cumulants also computed under Q,

cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j ) = 2VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) and

cum4(∆mtn,j+1 |Ftn,j ) = 9VarQ(∆〈m,m〉tn,j+1 |Ftn,j ). (21)

Thus,

VarQ(∆Sn,j+1 | Ftn,j ) = 2c−4EQ(∆〈m,m〉tn,j+1 |Ftn,j )2 + 2c−4(1 + 2a2)VarQ(∆〈m,m〉tn,j+1 |Ftn,j )

= 2σ̃4
tn,j

∆t2n,j+1 +
(
7 + 8a2

)(2
3
c2σ̃2

tn,j
∆t3n,j+1 +

1
6
c4∆t4n,j+1

)
. (22)

The biggest order term is, of course, well known from asymptotics of realized volatility. By looking
at higher order terms, however, we note that leverage effect does contribute to variance. The
formula is used later on in (48), where the second order term has to be included, though only to
vanish because of a martingale argument.

4 Main Theorem

4.1 An Extended System, and the QADD

To look at the quality of the approximation, we need to extend Q to allow both the original and
the approximated (Gaussian) volatility processes to live on the same space. Thus define P ∗n as an
extension of (11), as follows:

For all t ∈ [0, T ] : dσt = ctdZ
∗
t ;

for t ∈ (τn,i−1, τn,i] : dXt = σ̃t
(
aτn,i−1dZ

∗
t + bτn,i−1dU

∗
t

)
and dσ̃t = cτn,i−1dZ

∗
t ,

with initial values: lim
t↓τn,i−1

σ̃t = στn,i−1

and lim
t↓τn,i−1

Xt =
∫ τn,i−1

0
σt (atdZ∗t + btdU

∗
t ) (23)

The purpose for the final line is to avoid distinguishing between X and X̃. Apart from complicating
notation, such a distinction would obscure that our approximation is a measure change on Xt but
a process change on σt. P ∗n defines a measure on the whole line [0, T ].

The distribution of (Xt, σ̃t, t ∈ (τn,i−1, τn,i]) under P ∗n(·|Fτn,i−1) is the same as that of (11).

Definition 1. To measure the extent to which we err in approximation under Q, we define the
following “Quadratic Asymptotic Decoupling Delay” (QADD) by

K2(t) = lim
n→∞

∑
i

∑
tn,j∈(τn,i−1,τn,i)∩[0,t]

(tn,j − τn,i−1)2, (24)
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provided the limit exists.

For discussion of existence and form of K2, see Remark 2 and Section 4.3 after the main theorem.

4.2 The Theorem

The following main result is proved in Appendix B:

Theorem 1. (Contiguity of P ∗ and P ∗n on the Observables ∆Xtn,j ). Consider the system (23).
Assume that the Quadratic Asymptotic Decoupling Delay K2 exists. Let Vn,j+1 be given as one of
the following

Vn,j+1 =
∆X2

tn,j+1

∆tn,j+1σ̃2
tn,j

− 1

or =
∆X2

tn,j+1
−
∫ tn,j+1

tn,j
σ̃2
t dt

∆tn,j+1σ̃2
tn,j

(25)

and define
M (0)
n =

∑
i

∑
tn,j∈[τn,i−1,τn,i)

Vn,j+1σ
−2
τn,i−1

(σ̃tn,j − σtn,j ) (26)

as well as

Γ0 =
∫ T

0
σ−2
t 〈c, c〉′tdK2(t). (27)

Then, subject to regularity conditions, with the proviso in Remark 5, and with either choice in (25),
as n → ∞, M (0)

n converges stably in law under P ∗n to a normal distribution with mean zero and
variance Γ0. Also, under P ∗n ,

log
dP ∗

dP ∗n
= M (0)

n −
1
2

Γ0 + op(1). (28)

The theorem implies that P ∗ and the approximation P ∗n are contiguous on the observables.7

This is to say that the likelihood ratio dP ∗n/dP
∗ is uniformly integrable under P ∗ (as is dP ∗/dP ∗n

under P ∗n). In particular, if an estimator is consistent under P ∗n , it is also consistent under P ∗ and
P . Rates of convergence (typically n1/2) are also preserved, but the asymptotic distribution may
change. For a general definition and discussion of contiguity, see Hájek and Sidak (1967), LeCam
(1986), LeCam and Yang (2000), as well as Chapter IV of Jacod and Shiryaev (2003).

Remark 2. (Window sizes of order op(n−1/2)) From our assumptions, if supiMn,i = op(n1/2),
then K2 ≡ 0, and the limiting term in Theorem 1 is zero. There is thus no contiguity adjustment
in this case. The results in Mykland and Zhang (2009) can be derived from this. 2
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Remark 3. (The two choices of Vn,j+1) The M (0)
n in (26) is the end point of a P ∗n -martingale

for the second choice in (25). The first option makes M (0)
n the end point of a martingale under

measure R̃∗n, defined in the proof in Appendix B. As is seen in the Appendix, R̃∗n/P
∗
n
p→1 as n→∞.

An alternative use of Theorem 1, therefore, is to proceed under R̃∗n with the first choice of Vn,j+1

in (25). 2

Remark 4. (Partial likelihood construction) We have been deliberately opaque about the
choice of partial likelihood. There are two ways of setting the likelihod ratio dP ∗/dP ∗n , both valid
under the proof in Appendix B. One is to use

∏
i
dP ∗

dP ∗n
(Xt, σt, σ̃t; τn,i−1 < t ≤ τn,i|Fτn,i−1), the other

is to instead condition on (Xτn,i−1 , στn,i−1 , aτn,i−1 , bτn,i−1 , cτn,i−1 , 〈c, c〉′τn,i−1
). The latter approach is

in analogy with the discussion surrounding formula (13) (p. 1410) in Mykland and Zhang (2009).
2

Remark 5. (How to handle small values of σt and σ̃t). We assume that σt is continuous and
nonzero. From this, the process is locally bounded both above and away from zero. From Section
4.5 in Mykland and Zhang (2010), we can thus assume, by a stopping argument, and without loss
of generality, that σt is bounded above and away from zero on [0, T ]. This stopping is convenient
both for Theorem 1, and for the application of Girsanov’s Theorem in passing from System (2) to
System (4) in Section 2.1.

The situation with σ̃t is more precarious, in that this process can be zero or negative. To
obtain boundedness (both ways), we can proceed as follows. Since we can assume that σt is
suitably bounded, the same stopping argument applies to σ̃t, is view of the modulus of continuity
of Brownian Motion (see, e.g., Chapter 2.9.F (p. 114-116) of Karatzas and Shreve (1991)). The
extent to which this affects Theorem 1 is discussed presently. (1) For the first choice of Vn,j+1, there
is no need to stop σ̃, cf. the statement (for contiguous measure R̃∗n) just before equation (B.16).
(2) For the second choice of Vn,j+1, stopping due to σ̃tn,j being too small may be needed, but the
probability of this occurring is asymptotically negligible. (Instead of stopping, one can alternatively
set Vn,j+1 = 0 when σ̃tn,j is small, and continue.) If one wishes to avoid the stopping issue, one can
take Vn,j+1 = Sn,j+1/(Var∗n(Sn,j+1|Ftn,j )/2)1/2, where this variance is given in formula (16). The
difference from the second choice of Vn,j+1 is negligible in most symbolic calculations. 2

4.3 Further study of the QADD

Under conditions discussed in the context of AQVT in Zhang, Mykland, and Aı̈t-Sahalia (2005)
(p. 1411) and ADD in Mykland and Zhang (2009) (p. 1418), every subsequence has a further
subsequence for which K2(·) exists and is Lipschitz continuous. Thus one can take the limit K2 in
(24) to exist without any major loss of generality.

Consider the case of equally sized blocks of Mn observations (Mn,i = Mn for all i), with

Mn/n
1/2 → v. (29)
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In the case where the tn,j have a reasonably regular local dispersion,

∑
tn,j∈(τn,i−1,τn,i)

(tn,j − τn,i−1)2 = ∆τ2
n,i

Mn∑
k=1

(
j

Mn

)2

(1 + op(1))

=
1
3

∆τ2
n,iMn (1 + op(1)) . (30)

In this case, therefore,

K2(t) =
1
3
v2TH(t), (31)

where H(t) is the “Asymptotic Quadratic Variation of Time” (AQVT) of the τn,i’s, given by

H(t) = lim
n→∞

Kn

T

∑
τn,i+1≤t

(τn,i+1 − τn,i)2, (32)

provided that the limit exists (cf. the references at the beginning of this remark). The AQVT
concept comes up in a number of our earlier investigations. What is unusual here is that it is based
on the window boundaries τn,i rather than the underlying observation points tn,j .

In the case of equidistant observations, the QADD thus takes the form

K2(t) =
1
3
v2Tt. (33)

In the case where the observations times follow a Poisson process, then (30) also holds, and
it follows from considerations like those in Example 6 in Mykland and Zhang (2010) that the
τn,i+1 − τn,i are identically distributed, with law TU(Mn), where U(Mn) is the Mn’th order statistic
among n iid standard uniform random variables. Thus H(t) = tK2

nEU
2
(Mn) (1 + op(1)) = t, and so

also in this case, the QADD gets the form (33).

4.4 Adjusting for the Change from P ∗ to P ∗n

Theorem 2. Assume the setup in Theorem 1. Suppose that, under P ∗n , (Zn,M
(0)
n , ) converges stably

to a bivariate distribution b+ aN(0, I), where N(0, I) is a bivariate normal vector independent of
FT , where the vector b = (b1, b2)T and the symmetric 2 × 2 matrix a are FT measurable. Set
A = aaT . Then Zn converges stably under P ∗ to b1 + A12 + (A11)1/2N(0, 1), where N(0, 1) is
independent of FT .

Recall that b2 = 0 and A22 = Γ0. The proof is the same as for Theorems 2 and 4 in Mykland
and Zhang (2009). Theorem 2 states that when adjusting from Qn to P ∗, the asymptotic variance
of Zn is unchanged, while the asymptotic bias may change.
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5 Worked Example: Estimation of Quarticity

For brevity, we here give a single application of the theory, namely that of estimating quarticity:

θ =
∫ T

0
σ4
t dt. (34)

The example is worked out in some detail, in the hope that this section can provide guidance on
how to use the theory. The quarticity is particularly important in that it is proportional to the
asymptotic variance8 of the realized volatility, which is the standard estimator of

∫ T
0 σ2

t dt in the
no-microstructure case. The name goes back to Barndorff-Nielsen and Shephard (2002). See also
Jacod and Protter (1998) and Mykland and Zhang (2006).

For simplicity, assume in following that sampling is equispaced (so ∆tn,j = ∆tn = T/n for all
j). We take the block size Mn = Mn,i to be independent of i. See Remark 6 for a closer discussion
of this. Similarly, ∆τn = ∆tnMn. Define

σ̂2
n,i =

1
∆tnMn

∑
tn,j∈(τn,i−1,τn,i]

(∆Xtn,j )2 (35)

Set σ̂4
n,i = (σ̂2

n,i)
2. We consider two different estimators:

θ̆n =
∑
i

σ̂4
n,i∆τn and θ̂n =

Mn

Mn + 2

∑
i

σ̂4
n,i∆τn. (36)

The Mn finite case is analyzed in Section 4.1 of Mykland and Zhang (2009). In this case,
considerations of unbiasedness would lead to the use of θ̂n, which is consistent and asymptotically
mixed normal, but not quite efficient for finite block sizes.

Three questions arise from the earlier treatment: (1) Can the estimator be made efficient by
letting Mn → ∞ with n? (2) Does blocking give rise to biases or extra variance, which is unseen
in the asymptotics based on Mn = Op(1)? (3) Does the difference between θ̆n and θ̂n matter when
Mn →∞?

We shall therefore re-investigate this estimation problem from the angle of Mn going to infinity
with n. We work in the framework of blocks Mn of size Op(n1/2), specifically (29). This is because
this gives rise to the most informative asymptotic results. For Mn going to infinity at rate op(n1/2),
see Remark 7.

The third question is most easily answered, without much technology. The difference between
the two estimators from (36) is

n1/2(θ̂n − θ̆n) = −2
n1/2

Mn + 2

∑
i

σ̂4
n,i∆τn

= −2
v

∫ T

0
σ4
t dt+ op(1), (37)
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so at most one of the two estimators can be asymptotically unbiased. In fact, it will turn out that
neither of them is asymptotically unbiased.9 (The result (37) follows from considerations like those
below, but much more simply.)

We now approach questions (1) and (2). The final conclusion on quarticity is in Section 5.3.

5.1 Estimation under P ∗n

For questions (1) and (2), we will initially estimate (under P ∗n)

θ̃n =
∫ T

0
σ̃4
t dt. (38)

We will then do the post-asymptotic adjustment to obtain results for the estimation of θ under P ∗

and P .

To analyze this estimator, denote

∆Li = σ̂2
n,i −

1
∆τn

∫ τn,i

τn,i−1

σ̃2
t dt. (39)

It is well known that
Var∗n(∆Li|Fτn,i−1) =

2
Mn

σ4
τn,i−1

+Op(M−3/2
n ) (40)

Meanwhile, from Itô’s Formula, we get that∫ τn,i

τn,i−1

σ̃2
t dt = σ2

τn,i−1
∆τn +

1
2
c2τn,i−1

∆τ2
n + 2

∫ τn,i

τn,i−1

(τi − t)σ̃tdσ̃t , (41)

and simlarly for
∫ τn,i

τn,i−1
σ̃4
t dt, so that(

1
∆τn

∫ τn,i

τn,i−1

σ̃2
t dt

)2

=
1

∆τn

∫ τn,i

τn,i−1

σ̃4
t dt−

2
3

∆τnσ2
τn,i−1

c2τn,i−1
−∆Gi + Op(∆τ3/2

n ) (42)

where

∆Gi =
4

∆τn

∫ τn,i

τn,i−1

(τi − t)σ̃t(σ̃2
t − σ2

τn,i−1
)dσ̃t.

It follows that

σ̂4
n,i =

(
1

∆τn

∫ τn,i

τn,i−1

σ̃2
t dt

)2

+ ∆L2
i + 2σ2

τn,i−1
∆Li −∆Gi +Op(n−3/4)

=
1

∆τn

∫ τn,i

τn,i−1

σ̃4
t dt−

2
3

∆τnσ2
τn,i−1

c2τn,i−1
+ ∆L2

i + 2σ2
τn,i−1

∆Li −∆Gi +Op(n−3/4). (43)
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Hence, by (29)

n1/2(θ̆n − θ̃n) = n1/2∆τn
∑
i

(
−2

3
∆τnσ2

τn,i−1
c2τn,i−1

+ ∆L2
i + 2σ2

τn,i−1
∆Li −∆Gi

)
+Op(n−1/4)

= n1/2∆τn

(
−2

3

∫ T

0
σ2
t c

2
tdt +

2
Mn

∑
i

σ4
τn,i−1

+ 2
∑
i

σ2
τn,i−1

∆Li

)
+Op(n−1/4)

(44)

by (40), since
∑

i(∆L
2
i−Var(∆Li|Fτn,i−1)) = Op(n−1), and since

∑
i ∆Gi = Op(∆τ1/2) = Op(n−1/4).

From the first line in (37), and since n1/2∆τn → vT ,

n1/2(θ̂n − θ̃n) = vT

(
−2

3

∫ T

0
σ2
t c

2
tdt + 2

∑
i

σ2
τn,i−1

∆Li

)
+ op(1). (45)

For the asymptotics under P ∗n , we thus obtain from (40) and standard martingale central limit
considerations (Hall and Heyde (1980), Jacod and Shiryaev (2003)) that

n1/2(θ̂n − θ̃n) L→ − vT 2
3

∫ T

0
σ2
t c

2
tdt +

(
8T
∫ T

0
σ8
t dt

)1/2

N(0, 1), (46)

where the convergence is stable and the N(0, 1) random variable is independent of the underlying
filtration.

5.2 Adjustment to Measure P ∗

On the one hand,

θ̃n − θ =
∑
i

∫ τn,i

τn,i−1

(σ̃4
t − σ4

t )dt

=
∑
i

∫ τn,i

τn,i−1

(τi − t)d(σ̃4
t − σ4

t )

=
∑
i

∫ τn,i

τn,i−1

(τi − t)
(
4σ̃3

t dσ̃t − 4σ3
t dσt + 6σ̃2

t c
2dt− 6σ2

t c
2
tdt
)

= op(n−1/2). (47)

This is since the martingale part is of order Op(n−2), and the drift part is no bigger than op(n−1/2).

The other part of the adjustment involves the quadratic covariation between M
(0)
n (use the

second choice for Vn,j+1 in (25)) and the P ∗n -martingale term in (45), whose end point is Rn =
2vT

∑
i σ

2
τn,i−1

∆Li. As in (16), write ∆Sn,j+1 = ∆X2
tn,j+1

−
∫ tn,j+1

tn,j
σ̃2
t dt, and note that

M (0)
n = ∆t−1

n

∑
i

∑
tn,j∈[τn,i−1,τn,i)

σ−2
τn,i−1

σ̃−2
tn,j

(σ̃tn,j − σtn,j )Sn,j+1 and

Rn = 2vT∆τ−1
n

∑
i

σ2
τn,i−1

∑
tn,j∈[τn,i−1,τn,i)

Sn,j+1.



Double Gaussian Approximation for High Frequency Data 15

Now first let 〈·, ·〉G denote quadratic covariation (under P ∗n) with respect to the times tn,j . Using
(22) in Section 3.2, we obtain (where a and c are the values of the process at τn,i−1)

∆〈R,M (0)〉Gtn,j+1
= 2vT∆τ−1

n ∆t−1
n σ̃−2

tn,j
(σ̃tn,j − σtn,j )VarP ∗n (Sn,j+1|Ftn,j )

= 2vT∆τ−1
n ∆t−1

n σ̃−2
tn,j

(σ̃tn,j − σtn,j )
(

2σ̃4
tn,j

∆t2n +
2
3

(7 + 8a2)c2σ̃2
tn,j

∆t3n +Op(∆t4n)
)

= 2vTM−1
n (σ̃tn,j − σtn,j )

(
2σ̃2

tn,j
+

2
3

(7 + 8a4)c2∆tn +Op(∆t2n)
)
. (48)

If we consider the quadratic variation 〈·, ·〉H with respect to the times τn,i, we see from taking
the expectation in the above (w.r.t. Fτn,i−1) that the second term vanishes because of being a
P ∗n -martingale, whence

∆〈R,M (0)〉Hτn,i
= 4vTM−1

n

∑
tn,j∈[τn,i−1,τn,i)

E∗n

{
σ̃2
tn,j

(σ̃tn,j − σtn,j )|Fτn,i−1

}
+Op(n−2). (49)

To finalize this calculation, note that by a stopping argument along the lines of Remark 5, we can
(without loss of generality) take |ct|, 〈c, c〉′t ≤ C2, where C2 is a nonrandom constant. With this,
E∗((σ̃tn,j−σtn,j )2|Fτn,i−1) = E∗(〈σ̃−σ, σ̃−σ〉tn,j−〈σ̃−σ, σ̃−σ〉τn,i−1 |Fτn,i−1) ≤ (C2/2)(tn,j−τn,i−1)2.
Thus

|E∗n
{
σ̃2
tn,j

(σ̃tn,j − σtn,j )|Fτn,i−1

}
| = |2στn,i−1E

∗
n

{
(σ̃tn,j − στn,i−1)(σ̃tn,j − σtn,j )|Fτn,i−1

}
+ E∗n

{
(σ̃tn,j − στn,i−1)2(σ̃tn,j − σtn,j )|Fτn,i−1

}
|

≤ C3(tn,j − τn,i−1)3/2

where C3 is a nonrandom constant. With this bound, (49) yields

|∆〈R,M (0)〉Hτn,i
| ≤ 4vTM−1

n C3∆t3/2n

Mn−1∑
j=1

j3/2 +Op(n−2)

= 4vTM3/2
n C3∆t3/2n

∫ 1

0
x3/2dx (1 + op(1))

= Op(n−3/4).

Hence, in the end,
〈R,M (0)〉HT = Op(n−1/4).

By Theorem 2, there is thus no adjustment due to contiguity when passing from P ∗n to P ∗.

5.3 Final Result on Quarticity

Since Section 5.2 yielded no adjustment, the result from (46) remains valid under P ∗, and with θ

replacing θ̃n. By measure change, the same result also holds for P . Thus:
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Proposition 1. Under both P and P ∗, given (29), and subject to regularity conditions,

n1/2(θ̂n − θ)
L→ − vT 2

3

∫ T

0
σ2
t c

2
tdt +

(
8T
∫ T

0
σ8
t dt

)1/2

N(0, 1), (50)

where the convergence is stable and the N(0, 1) random variable is independent of the underlying
filtration.

There is, in other words, an asymptotic bias when estimating quarticity with θ̂n in block sizes
of Op(n1/2). From equation (37), the alternative estimator θ̆n would be even worse, so the M/(M+
2) adjustment for unbiasedness does still have meaning when the window size increases at rate
Op(n1/2).

In principle, it is possible to estimate the bias, or to eliminate it using a two scales construction.
Also, following Section 4.1.2 of Mykland and Zhang (2009), the asymptotic variance is most likely
the best possible. The investigation of these issues is, however, beyond the scope of this paper.

Remark 6. (Block size). In most cases, n/Mn is not an integer, and n−Mn[n/Mn] = Op(n1/2).
One can thus not just let all blocks be equal except the last block, because the edge effect in
estimation may be of the same order as the asymptotic normal distribution. The best solution is
to have blocks of size Mn + 1 scattered around the interval [0, T ] about evenly. The asymptotics
above is then not impacted. 2

Remark 7. (Smaller window sizes). We here consider the case where Mn → ∞, but at rate
op(n1/2). (The finite M case was discussed in the earlier paper.) In this case, there is no contiguity
adjustment, and the asymptotic bias is zero. In other words, we then have

n1/2(θ̂n − θ)
L→
(

8T
∫ T

0
σ8
t dt

)1/2

N(0, 1). (51)

The bias is gone! There are two interpretations of this, both valid. One is that by using smaller
block size, one avoids the bias problem. The other is that this is a way of putting one’s head in the
sand: the bias is there, but it is just of slightly lower order. According to this viewpoint, one never
really knows what is the limit v in (29), since n is finite, and one ought to do inference replacing a
hypothetical vT by an actual Mn/n

1/2. 2

Remark 8. (Another approach to analysis). The above is not the only path one can take. For
example, denote by Yn,i the information at time τn,i−1, along with the information in σ̃t, τn,i−1 <

t ≤ τn,i. By the conditional independence in Section 3.2, we obtain for cumulants under P ∗n (for all
integer p) that

cump(σ̂2
n,i|Yn,i) =

1
(∆tnMn)p

∑
tn,j∈(τn,i−1,τn,i]

cump((∆Xtn,j )2|Yn,i). (52)

From this, one can easily see that

cump(σ̂2
n,i|Yn,i) = Op(M1−p

n ), (53)

and one can then build an analysis on this. 2



Double Gaussian Approximation for High Frequency Data 17

6 Conclusion

The paper has shown that locally parametric approximations can be extended to windows of
Op(n1/2) observations. This yields easier calculations than working with the original system, and
the post-asymptotic contiguity adjustment is also relatively straightforward.

We have seen in Section 5 that this method can find asymptotic (higher order) biases in consis-
tent estimators, and we conjecture that the same will be true if investigating other such estimators,
whether of integrated powers of volatility, realized regressions, or ANOVA (in the latter case, we
know the bias is there from Zhang (2001)).

Another application of these results arises in the case when estimators are consistent only when
the block size is increasing with sample size. This includes the estimation of leverage effect and
of the volatility of volatility, and estimation when microstructure is present in the data (cf. the
Introduction and Section 2.4 for references).

We conjecture that the results in this paper extend to the multivariate case. System (1) is then
replaced with definitions that are given on p. 1406 and 1431 (equation (A.1)) of Mykland and
Zhang (2009), but theorems in this direction are left for another day.

We finally note that by investigating each estimator individually, one can obtain precise and
weakest possible regularity conditions. This was not the aim here; our goal was to provide an
analytic tool for finding asymptotic behavior without calculations being too cumbersome. In fact,
from the development in Sections 3.2 and 5, many of the techniques can be used in symbolic
calculation programs.

Endnotes

1Microstructure for this purpose means measurement error. The term also has a wider usage; see,
for example, O’Hara (1995) and Hasbrouck (1996).

2The regularity conditions are mostly about integrability in Girsanov’s Theorem. See, for
example, Chapter 5.5 of Karatzas and Shreve (1991). They also, however, preclude the leverage
effect from being so big that gt = 0. For these cases, results similar to the current ones can be
derived in a direct (but more tedious) fashion. See Sections 2.2 and 2.4 for further discussion of
this.

3Let Zn be a sequence of FT -measurable random variables. We say that Zn converges stably in
law to Z as n → ∞ if Z is measurable with respect to an extension of FT so that for all A ∈ FT
and for all bounded continuous g, EIAg(Zn) → EIAg(Z) as n → ∞. IA denotes the indicator
function of A, and = 1 if A and = 0 otherwise. The same definition applies to triangular arrays. In
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the context of inference, Zn = n1/2(θ̂n − θ), for example, and Z = N(b, a2). For further discussion
of stable convergence, and for the relationship to measure change, see Section 2.2 of Mykland and
Zhang (2009), which draws on Rootzén (1980).

4One can also define quadratic (co-)variations for a fixed grid {0 = tn,0 < tn,1 < ... < tn,n = T},
in which case there is no taking of limits. We use this kind of quadratic variation twice, in Section 5.2
and Appendix B, and in these cases with reference to the (co-)variance based definition (“predictable
quadratic variation”).

5There are approximately 250 trading days in a year.

6Var(· | Ftn,j ) = E(Var(· | Atn,j ) | Ftn,j ) + Var(E(· | Atn,j ) | Ftn,j ), since Ftn,j ⊆ Atn,j .

7Of course, they are not even equivalent on the whole process (Xt, 0 ≤ t ≤ T ).

8The expression asymptotic variance is in this case functionally accurate, even though the
quarticity can be random.

9We emphasize that asymptotic bias is different from inconsistency. The term usually (and
here) refers to a bias of the same size as the asymptotic (mixed) normal distribution.
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APPENDIX: PROOFS

A Approximation in Windows of one Observation

We here discretize to the nearest tn,j instead of to τn,i−1.

Consider the the cumulative distribution function F (x|s, f, g; ∆tn,j+1) of ∆Xtn,j+1/(s∆t
1/2
n,j+1)

under Q(·|tn,j , tn,j+1, Xtn,j , s, f, g). The partial log likelihood ratio with P ∗ is given by

LR1,n =
n∑
j=1

log
dF (∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ftn,j , gtn,j ; ∆tn,j+1)

dP ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|Ftn,j )
(A.1)

We also consider discretization of f and g to

t′n,j = max{τn,i ≤ tn,j}. (A.2)

The approximating measure is then formed with the help of

LR2,n =
n∑
j=1

log
dF (∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ft′n,j

, gt′n,j
; ∆tn,j+1)

dP ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|Ftn,j )
(A.3)
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Lemma 2. (1) Subject to regularity conditions,10

LR1,n
p→ 0 as n→∞. (A.4)

The result remains valid if P ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|Ftn,j ) is replaced by

P ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ftn,j , gtn,j ) in (A.1).

(2) If ft and gt are themselves continuous semimartingales,

LR2,n
p→ 0 as n→∞. (A.5)

The result remains valid (and the limit of LR2,n is unchanged) if
P ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|Ftn,j ) is replaced by P ∗(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ft′n,j

, g′tn,j
) in (A.3).

In either case, call the resulting probability P ′n, and to sum up,

log
dP ′n
dP ∗

p→ 0 as n→∞. (A.6)

Proof of Lemma 2. This follows from the proof of Theorem 1 in Mykland and Zhang (2009).
Compare the martingale M̌ (0)

n in (A.20) (p. 33) for the numerator and the denominator in the
likelihood ratio, and obtain, in the case (2) that

M̌ (0)num
n − M̌ (0)denom

n =
n−1∑
j=0

1
2

(
∆t1/2n,j+1

ft′n,j
− ftn,j

σtn,j

+Op(∆tn,j+1)

)
h3(∆Xtn,j+1/(σtn,j ∆tn,j+1)1/2)

(A.7)
where h3 is the third Hermite polynomial. (Note that in the notation of the earlier paper,
∆W̆tn,j+1 = ∆Xtn,j+1/σtn,j ). The discrete time quadratic variation of this difference goes to zero.

In the case (1), M̌ (0)num
n − M̌ (0)denom

n = 0.

B Proof of Theorem 1

Let R∗n be the probability distribution formed by further replacing
F (∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ft′n,j

, gt′n,j
; ∆tn,j+1) by Φ(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)), i.e., one further

uses the likelihood ratio

LR3,n =
n∑
j=1

log
dΦ(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1))

dF (∆Xtn,j+1/(σtn,j ∆t1/2n,j+1)|σtn,j , ft′n,j
, gt′n,j

; ∆tn,j+1)
(B.8)

R∗n is thus the probability distribution given in Section 2.3 of Mykland and Zhang (2009), but with
ft′n,j

replacing ftn,j . By the proof of Theorem 1 in Mykland and Zhang (2009), dR∗n
dP ′n

= exp{LR3,n}
converges stably in law and is uniformly integrable (under P ′n), and the same applies to dP ′n

dR∗n
=

exp{−LR3,n} (under R∗n).
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If σ̃t replaces σt in the above, we can form P̃ ′n and R̃∗n, as well as let L̃R3,n denote the expression
(B.8) with σ̃tn,j replacing σtn,j . Note that

P ∗n = P̃ ′n. (B.9)

We now focus on

LR4,n =
n∑
j=1

log
dΦ(∆Xtn,j+1/(σ̃tn,j ∆t1/2n,j+1))

dΦ(∆Xtn,j+1/(σtn,j ∆t1/2n,j+1))
(B.10)

Our aim is to show that dR̃∗n
dR∗n

= exp{LR4,n} is uniformly integrable and converges stably in law

under R∗n, and similarly for dR∗n
dR̃∗n

under R̃∗n. It follows from this that all of R∗n, R̃∗n, P̃n, P̃ ′n, and
P ∗ are contiguous. In particular, convergence in probability has the same meaning under all these
measures. Further inspection of the proof of Theorem 1 in Mykland and Zhang (2009) then yields
that

LR3,n − L̃R3,n
p→ 0. (B.11)

Thus, from (A.6),

log
dP̃ ′n
dP ∗

= log
dP̃ ′n
dR̃∗n

+ log
dR̃∗n
dR∗n

+ log
dR∗n
dPn

+ log
dP ′n
dP ∗

= log
dR̃∗n
dR∗n

+ op(1). (B.12)

It therefore remains to study the properties of (B.10).

Following Proposition 2 (p. 1417) of Mykland and Zhang (2009),

LR4,n = Z(1)
n +

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

(log σ2
tn,j
− log σ̃2

tn,j
) (B.13)

where Z(1)
n =

∑
j ∆Z(1)

n,tn,j+1
, and

∆Z(1)
n,tn,j+1

=
1
2

(σ−2
tn,j
− σ̃−2

tn,j
)∆X2

tn,j+1
.∆t−1

n,j+1 (B.14)

Set An,j = σ−2
tn,j

σ̃2
tn,j
− 1 and let Vn,j+1 be defined as the first option in (25) in the Theorem,11 so

that

∆Z(1)
n,tn,j+1

=
1
2

(Vn,j+1 + 1)An,j . (B.15)

Note that Vn,j+1 + 1 is conditionally χ2
1 under R̃∗n. Set

Bn,j =
2

στn,i−1

(σ̃tn,j − σtn,j ) (B.16)
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If p ≥ 1 and Ci are a sequence of constants, we obtain, for p-norms under R̃∗n

||An,j −Bn,j ||p ≤

|| σ̃tn,j − σtn,j

σ2
tn,j

||2p + 2|| 1
σ2
tn,j

− 1
σ2
t′n,j

||2p

 ||σ̃tn,j − σtn,j ||2p

≤ C1

∣∣∣|〈σ̃ − σ, σ̃ − σ〉tn,j ||p||〈σ, σ〉tn,j − 〈σ, σ〉t′n,j
||p
)
||〈σ̃ − σ, σ̃ − σ〉tn,j ||p

≤ C2(tn,j − t′n,j)3. (B.17)

Hence, if we set Z(0)
n =

∑
j ∆Z(0)

n,tn,j+1
, with

∆Z(0)
n,tn,j+1

=
1
2

(Vn,j+1 + 1)Bn,j = (Vn,j+1 + 1)στn,i−1(σ̃tn,j − σtn,j ), (B.18)

we obtain

E|Z(1)
n − Z(0)

n |2 ≤
∑
j

||Vn,j+1 + 1||2q||An,j −Bn,j ||2p

≤ C3

∑
j

(tn,j − t′n,j)3

→ 0 as n→∞.

Now note that

ER̃∗n
(∆Z(0)

n,tn,j+1
|Ftn,j ) =

1
2
Bn,j (B.19)

and
conditional variance of ∆Z(0)

n,tn,j+1
=

1
2
B2
n,j (B.20)

Finally, let M (0)
n be the (end point of the) martingale part (under R̃∗n) of Z(0)

n , so that

M (0)
n = Z(1)

n − (1/2)
∑
j

Bn,j =
1
2

∑
j

Vn,j+1Bn,j . (B.21)

This coincides with the definition (26) in the statement of the theorem. If 〈·, ·〉G represents discrete
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time predictable quadratic variation on the grid G (under R̃∗n), then equation (B.20) yields

〈M (0)
n ,M (0)

n 〉G =
1
2

∑
j

B2
n,j

= 2
∑
j

σ−2
τn,i−1

(σ̃tn,j − σtn,j )2

= 2
∑
j

σ−2
τn,i−1

〈σ̃ − σ, σ̃ − σ〉tn,j + op(1)

= 2
∑
j

σ−2
τn,i−1

∫ tn,j

t′n,j

(ct − ct′n,j
)2dt+ op(1)

= 2
∑
j

σ−2
τn,i−1

∫ tn,j

t′n,j

(〈c, c〉t − 〈c, c〉t′n,j
dt) + op(1)

=
∑
j

σ−2
τn,i−1

(tn,j − t′n,j)2〈c, c〉′t′n,j
) + op(1)

=
∫ T

0
(σ−2
t 〈c, c〉′t)dK2(t) + op(1)

= Γ0 + op(1), (B.22)

where K2 is the QADD given by equation (24).

From (B.13), we can now proceed as in the proof of Theorem 3 in Mykland and Zhang (2009);
note in particular that supj B2

j → 0, and also equation (A.29) in that paper:

LR4,n = Z(0)
n +

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

(log σ2
tn,j
− log σ̃2

tn,j
) + op(1)

= Z(0)
n +

1
2

∑
j

log(1−Bj) + op(1)

= M (0)
n −

1
2
〈M (0)

n ,M (0)
n 〉G + op(1)

(B.23)

The result now follows as in the earlier paper

C Derivations for Section 3.2

We are here wholly under measure Q. Let Atn,j and Sn,j+1 be as defined in Section 3.2.
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Derivation of (17). This follows from

EQ
(
Sn,j+1|Atn,j

)
=
(a
c

)2 (
(∆mtn,j+1)2 −∆〈m,m〉tn,j+1

)
and

VarQ
(
Sn,j+1|Atn,j

)
= 4

(a
c

)2
(
b

c

)2

∆〈m,m〉tn,j+1(∆mtn,j+1)2 + 2
(
b

c

)4

(∆〈m,m〉tn,j+1)2. (C.24)

More detailed derivation of equation (19):

VarQ
(
∆Sn,j+1 | Ftn,j

)
= EQ

(
∆S2

n,j+1 | Ftn,j

)
=
(a
c

)4
EQ
(
(∆mtn,j+1)4| Ftn,j

)
+

(
4
(a
c

)2
(
b

c

)2

− 2
(a
c

)4
)
EQ
(
(∆mtn,j+1)2∆〈m,m〉tn,j+1 | Ftn,j

)
+

((a
c

)4
+ 2

(
b

c

)4
)
EQ

(
∆〈m,m〉2tn,j+1

| Ftn,j

)
=
(a
c

)4 (
3VarQ

(
∆mtn,j+1 | Ftn,j

)2 + cum4,Q

(
∆mtn,j+1 | Ftn,j

))
+

(
4
(a
c

)2
(
b

c

)2

− 2
(a
c

)4
)

×
(
EQ(∆〈m,m〉tn,j+1 |Ftn,j )2 + cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j )

)
+

((a
c

)4
+ 2

(
b

c

)4
)(

VarQ
(
∆〈m,m〉tn,j+1 |Ftn,j

)
+ EQ

(
∆〈m,m〉tn,j+1 |Ftn,j

)2) (C.25)

Collecting terms, the coefficient in front of EQ
(
∆〈m,m〉tn,j+1 |Ftn,j

)2 is therefore

3
(a
c

)4
+

(
4
(a
c

)2
(
b

c

)2

− 2
(a
c

)4
)

+

((a
c

)4
+ 2

(
b

c

)4
)

= 2
(
a2 + b2

c2

)2

. (C.26)

Using a2 + b2 = 1 yields (19).

Proof of Lemma 1. Let p be a positive integer. By using Itô’s formula on d(tn,j+1−t)p(σ̃2
t − σ̃2

tn,j
)

and collecting terms, we obtain that∫ tn,j+1

tn,j

(tn,j+1−t)p−1d〈m,m〉t =
c2

p

(
2
∫ tn,j+1

tn,j

(tn,j+1 − t)pdmt +
c2

p+ 1
(∆tn,j+1)p+1 + σ̃2

tn,j
(∆tn,j+1)p

)
.

(C.27)
Hence, using (C.27) with p = 1, we get (20), in the case of the variance because

VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) = 4c4EQ

(∫ tn,j+1

tn,j

(tn,j+1 − t)2d〈m,m〉t|Ftn,j

)
(C.28)



Double Gaussian Approximation for High Frequency Data 27

where the transition to the second equation in (20) uses (C.27) with p = 3. Again using p = 1, we
also get

cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j )

= 2c2cum3,Q

(∫ tn,j+1

tn,j

(tn,j+1 − t)dmt,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j

)
. (C.29)

By using the Bartlett identities for martingales (Mykland (1994)),

cum3,Q

(∫ tn,j+1

tn,j

(tn,j+1 − t)dmt,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j

)

= CovQ

(∫ tn,j+1

tn,j

(tn,j+1 − t)dmt,∆〈m,m〉tn,j+1 |Ftn,j

)

+ 2CovQ

(∫ tn,j+1

tn,j

(tn,j+1 − t)d〈m,m〉t,∆mtn,j+1 |Ftn,j

)

= CovQ

(∫ tn,j+1

tn,j

(tn,j+1 − t)dmt, 2c2
∫ tn,j+1

tn,j

(tn,j+1 − t)dmt|Ftn,j

)

+ 2CovQ

(
c2
∫ tn,j+1

tn,j

(tn,j+1 − t)2dmt,∆mtn,j+1 |Ftn,j

)

= 4c2EQ

(∫ tn,j+1

tn,j

(tn,j+1 − t)2d〈m,m〉t|Ftn,j

)
, (C.30)

where the second to last transition uses (C.27) with p = 1 for the first term, and with p = 2 for
the second term. Thus, from (C.28),

cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j ) = 2VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) (C.31)

Next, again by the Bartlett identities,

cum4,Q(∆mtn,j+1 |Ftn,j ) = −3VarQ(∆〈m,m〉tn,j+1 |Ftn,j )
+ 6cum3,Q(∆〈m,m〉tn,j+1 ,∆mtn,j+1 ,∆mtn,j+1 |Ftn,j )
= 9VarQ(∆〈m,m〉tn,j+1 |Ftn,j ) (C.32)

by (C.31). Hence (21) follows. This proves the lemma.


