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a b s t r a c t

Empirical evidence of asset price discontinuities or ‘‘jumps’’ in financial markets has been well
documented in the literature. Recently, Aït-Sahalia and Jacod (2009b) defined a general ‘‘jump activity
index’’ to describe the degree of jump activities for asset price semimartingales, and provided a consistent
estimatorwhen the underlying process contains both a continuous and a jump component. However, only
large increments were used in their estimator so that the effective sample size is very small even for large
sample sizes. In this paper, we explore ways to improve the Aït-Sahalia and Jacod estimator by making
use of all increments, large and small. The improvement is verified through simulations. A real example
is also given.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Ito’s semimartingales are widely used in modeling asset
prices in financial markets. They are a rich class of stochastic
processes including diffusion, jump diffusion, Lévy processes, and
so on. Recent years have seen a rapidly increasing interest in
semimartingales with the discontinuous part (i.e., jumps) in the
literature; see Aït-Sahalia (2004), Aït-Sahalia and Jacod (2007), Fan
and Wang (2007), Jacod (2008) and references therein.

Is there indeed a jump part in asset prices?With the availability
of high frequency data, many tests have been established in the
statistical literature to detect jumps from discretely observed
prices, and found evidence of the presence of jumps. See Aït-
Sahalia (2002), Jiang and Oomen (2005), Barndorff-Nielsen and
Shephard (2006), Lee and Mykland (2007) and Aït-Sahalia and
Jacod (2009a), just to name a few. Furthermore, many empirical
studies in the literature show strong evidence of the existence of
jumps; see, e.g., Carr et al. (2002) and the references therein.

Given that the discontinuous part is present, a natural question
for the purpose of modeling is to study the behavior of the jumps
or the jump characteristics. As a natural measure of the activity of
jumps, Aït-Sahalia and Jacod (2009b) defined a jump activity index
for a generic semimartingale X as follows:
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βt =: inf


r ≥ 0;

−
0≤s≤t

|∆sX |
r < ∞


,

where∆sX = Xs −Xs− is the jump size at time s. This jump activity
index essentially characterizes how frequently small jumps occur
which is closely related to the near origin behavior of the Lévy
measure for semimartingales. In particular, when X is a Lévy
process, βt is equivalent to the Blumenthal–Getoor index defined
in terms of the Lévy measure as

β =: inf

r ≥ 0;

∫
R
(|x|r ∧ 1)ν(dx) < ∞


,

where ν(dx) is the density of the Lévy measure. For a stable Lévy
process, the jump activity index or the Blumenthal–Getoor index
is just the stable index.

The jump activity index βt can be used for different purposes.
From a modeling viewpoint, it could be used to judge whether the
jump part of a semimartingale has finite variation or not. From a
financial viewpoint, jump processes have been introduced since
they enable to reproduce various stylized facts of prices such as
heavy tails and big jumps. They are also very useful for reproducing
empirical features linked to options such as smile or skew under
risk neutral measure. For example, Merton’s compound Poisson
jump specification is suitable to capture large and rare events such
asmarket crashes and corporate defaults. However, as notedbyWu
(2008), empirical evidences showed that the inclusion of infinite
jumps with all sizes could not only be better suited to capture the
movements of many financial securities, but also generate better
option pricing performance.
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Various estimators of the jump activity index have been given
in the literature for high frequency financial data. We can classify
them into two categories. For ease of exposition, let us decompose
the semimartingale X into

Xt = X c
t + Xd

t ,

where X c
t and Xd

t represent the continuous and discontinuous
parts, respectively.

In the first category, it is assumed that the continuous localmar-
tingale part is absent, i.e., X c

t ≡ 0. Some literature on estimating
the jump activity index is available in this case. Woerner (2006)
and Todorov and Tauchen (2010) proposed estimators of the jump
activity index for a large class of stable-like semimartingales us-
ing power variations; Zhao and Wu (2009) gave a nonparamet-
ric estimator of the stable index of the driving stable Lévy process
with a deterministic time dependent integrand by two time scale
techniques. Incidentally, Todorov and Tauchen (2009) also studied
the inference on the activity signature functions for high frequency
data.

In the second category, it is assumed that the continuous mar-
tingale part is present, i.e., X c

t ≢ 0. (We are primarily interested in
this category in the present paper as well.) In this case, estimating
βt becomes much more challenging than those in the first cate-
gory. The reason is that the value of βt is determined by the small
jumps from the discontinuous part Xd

t , which are, unfortunately,
‘‘contaminated’’ with the small increments coming from the con-
tinuous component. To get around the problem, Aït-Sahalia and Ja-
cod (2009b) proposed an estimator of βt by counting the number
of ‘‘large’’ increments of a discretely observed semimartingale. It
should be noted that, as the threshold goes to zero, their method
will capture all the jumps asymptotically. The resulting estimator
is consistent and asymptotically normal after being properly stan-
dardized.

Despite its initial success, the Aït-Sahalia and Jacod estimator
is not trouble free. The major problem is that the effective sample
size is very small even for very large sample sizes. As a result, too
few observations are used in estimating βt , resulting in a loss of
efficiency. For instance, simulationswith 23,400 observations from
time 0 to time 1 (corresponding to an intra-day data set with one
observation per second) from the Cauchy process retain about 15
usable observations, accounting for a mere 0.0006 proportion of
all observations. We will elaborate more on this point in detail
later. Of course, these issues were well recognized in Aït-Sahalia
and Jacod (2009b), who pointed out, ‘‘this paper represents only a
first attempt at measuring the degree of jump activity’’.

In this paper, we will explore ways to improve the Aït-
Sahalia and Jacod estimator with a view to increase efficiency.
The proposed estimator, given in Section 3, makes full use of all
increments, both ‘‘large’’ and ‘‘small’’. The ‘‘larger’’ increments are
of higher quality, and are used much in the same way as in Aït-
Sahalia and Jacod (2009b). However, the ‘‘smaller’’ increments are
of lesser quality due to ‘‘contaminations’’ from the continuous
component, hence given less weight in the estimator. By doing so,
the effective sample size is increased, resulting in more efficiency,
which is confirmed both theoretically and in simulations. In fact,
our simulations show that the mean squared errors (MSE) of the
new estimator have been reduced across the board (by as much as
30% in some cases), compared with those of Aït-Sahalia and Jacod
(2009b).

This paper is organized as follows: In Section 2, we specify
a semimartingale model and present a review of the Aït-Sahalia
and Jacod estimator. Our estimator is presented in Section 3.
Asymptotic properties of the new estimator is provided in
Section 4. Simulations are carried out in Section 5. A real example
is given in Section 6. Proofs are deferred to Section 7.

2. Model settings and a review

Our model setting and assumptions are much the same as in
Aït-Sahalia and Jacod (2009b). For completeness,wewill briefly list
them below.

2.1. Model assumptions

Consider a one-dimensional asset price process Xt on the
probability space (Ω,F , {Ft}, P), which is an Ito semi-martingale
defined by Jacod and Shiryaev (2003) with the form

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs

+

∫ t

0

∫
|x|≤1

x(µ− ν)(ds, dx)+

∫ t

0

∫
|x|>1

xµ(ds, dx),

where, Wt is a standard Brownian motion, b and σ are optional
processes, and µ is a random measure related to the count of
jumps with compensator ν given by ν(dt, dx) = dtFt(dx). Instead
of working with the decomposition involving the jump measure
associated to the process, in this paper, we choose toworkwith the
Poisson randommeasure as done in Aït-Sahalia and Jacod (2009b).

We make the following assumptions.

Assumption 1. b and σ are locally bounded.

Assumption 2. There are three constants β ∈ (0, 2), β ′
∈ [0, β)

and γ > 0 and a locally bounded process Lt ≥ 1, such thatwe have
for all (ω, t):

Ft = F ′

t + F ′′

t ,

where
1. F ′

t has the form

F ′

t (dx) =
1 + |x|γ f (t, x)

|x|1+β
(a(+)t I(0 < x ≤ z(+)t )

+ a(−)t I(−z(−)t ≤ x < 0))dx,

for predictable non-negative processes a(+)t , a(−)t , z(+)t and z(−)t
and some predictable function f (t, x), satisfying for some
positive constants K , η:
a(+)t + a(−)t ≤ Lt , 1/Lt ≤ z(+)t ≤ 1;
1/Lt ≤ z(−)t ≤ 1; 1 + |x|γ f (t, x) ≥ 0, |f (t, x)| ≤ Lt ,

2. F ′′
t is singular with respect to F ′

t , such that

(|x|β

′

∧ 1)F ′′
t (dx)

≤ Lt .
Under Assumption 2, the jumps activity index becomes β . We also
need the following notation: At =

 t
0 (a

(+)
s + a(−)s )ds.

Assume that over a fixed time interval [0, T ], we have
observations Xti at equally spaced discrete times 0 = t0 ≤ · · · ≤

ti ≤ ti+1 ≤ · · · ≤ tn = T with∆n = T/n. Denote the increment in
the ith interval by
∆n

i X = Xti − Xti−1 .

2.2. A review of the Aït-Sahalia and Jacod estimator

The basestone of Aït-Sahalia and Jacod (2009b) is

U(ϖ, α)nt =:

[t/∆n]−
i=1

I(|∆n
i X | > α∆ϖn ), (2.1)

where α > 0 and 0 < ϖ < 1/2 are two constants. Basically, U
(ϖ, α)nt counts the number of ‘‘large’’ increments which contain
information on ‘‘large’’ jumps. Aït-Sahalia and Jacod (2009b)
showed that

∆ϖβn U(ϖ, α)nt −→p
At

αβ
.
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Fig. 1. The pdf’s of∆n
i W (broken curve),∆n

i Y (dotted curve) and∆n
i X (solid curve),

and the weight functions g0(x) (piecewise point line) and g2(x) (dot-dashed curve)
which are defined in Section 3. The pdf’s of∆n

i W and∆n
i X almost coincide beyond

α∆ϖn (7 standard deviation of∆n
i W suggested by Aït-Sahalia and Jacod (2009b)).

From this and using another α′, they proposed to estimate β by:

βn(t,ϖ, α, α
′) =: log

U(ϖ, α)nt
U(ϖ, α′)nt


log


α′

α


, (2.2)

and showed that βn was consistent and asymptotically normally
distributed.

The main drawback of the Aït-Sahalia and Jacod estimator is
that the effective sample size utilized by the estimator βn is small,
even if we sample at a relatively high frequency. To see why, let us
consider the special model:
Xt = Wt + Yt , (2.3)
where Wt is a standard Brownian motion and Yt is a β-stable
process, so that βt = β . Any increment∆n

i X satisfies

∆n
i X = ∆n

i W +∆n
i Y =d∆

1/2
n W1 +∆1/β

n Y1, (2.4)
where =d means equivalence in distribution. Given that there is a
large increment satisfying |∆n

i X | ≥ α∆ϖn , in view of ϖ < 1/2,
it is almost certain that the major contribution is due to Y . This is
because P(|∆n

i W | ≥ α∆ϖn ) converges to 0 at an exponential rate
which is faster than any power of n−1, hence the average number
of increments ≥ α∆ϖn is

nP(|∆n
i W | ≥ α∆ϖn ) ≈ 0. (2.5)

On the other hand, we have P(|∆n
i Y | ≥ α∆ϖn ) = P(|Y1| ≥ α

∆
ϖ−1/β
n ) ∼ 2α−βπ−1/n1−ϖβ hence the average number of incre-

ments ≥ α∆ϖn is

nP(|∆n
i Y | ≥ α∆ϖn ) ∼ 2α−βπ−1nϖβ −→ ∞. (2.6)

Fig. 1 plots the probability densities of∆n
i W ,∆

n
i Y and∆n

i X .
For numerical illustration, let us take Y to be a Cauchy process

(i.e., β = 1) with T = 1 (day), and n = 23, 400. Then the ob-
servations correspond to an intra-day data set with one observa-
tion per second. We take ϖ = 1/5, α = 5/16 and α′

= 2α,
the same values as in Aït-Sahalia and Jacod (2009b) in their sim-
ulations. By (2.6), the average number of increments exceeding
α∆ϖn (and α′∆ϖn ) are approximately 15 (and 7.5). This accounts for
a mere 0.0006 (and 0.0003) proportion of the total observations,
which is very small indeed.

3. A new estimator

3.1. Motivation

Note that U(ϖ, α)nt in (2.1) in the Aït-Sahalia and Jacod
estimatorβn only counts the number of large increments (≥α∆ϖn ).
If we define the weight function as
g0(x) = I{|x| > 1},
then we can rewrite (2.1) as

U(ϖ, α)nt =:

[t/∆n]−
i=1

I
 ∆n

i X
α∆ϖn

 > 1


=

n−
i=1

g0


∆n

i X
α∆ϖn


.

We remark that, even though U(ϖ, α) only made use of a fraction
of all jumps, it catches more and more jumps as n increases; see
(2.6) for example.

In an effort to make complete use of the data, perhaps one
should not only consider the ‘‘large’’ increments, but also those
‘‘small’’ ones. After all, the jump activity index is an index of
small jumps. From Fig. 1, we note that, if the contribution of the
increments of the diffusion term could be controlled properly,
there is still room to dig out information on β from relatively small
increments. However, the smaller the increment ∆n

i X gets, the
greater the contributions from ∆n

i W become, and consequently,
the less usable information about β the increment ∆n

i X will
contain. This motivates us to define

V (ϖ, α, g)nt =:

[t/∆n]−
i=1

g

∆n

i X
α∆ϖn


, (3.7)

where g(t) decreases to 0 as |t| goes to 0.
How do we choose the weight function g(x) in practice?

Assuming that the continuous martingale is present, it is known that
(c.f., Jacod, 2008),

(i) for p > 2,
∑n

i=1 |∆n
i X |

p
→

P ∑
0≤s≤T |∆sX |

p,
(ii) for p = 2,

∑n
i=1 |∆n

i X |
2
→

P
 T
0 σ

2
s ds +

∑
0≤s≤T |∆sX |

2,
(iii) for p < 2,∆1−p/2

n
∑n

i=1 |∆n
i X |

p
→

P E|N (0, 1)|p
 T
0 |σs|

pds,
where N (0, 1) is a standard normal r.v.

We can see that only for p > 2, the limits of
∑n

i=1 |∆n
i X |

p (or prop-
erly scaled) depend solely on jumps, i.e., the influence from the
continuous part is completely eliminated. Therefore, possible
weight functions are those having a power form near the origin.
In this paper, we will restrict attention to the following simple but
flexible class of weight functions:

Assumption 3. g(x) = |x|p if |x| ≤ a for some constant a > 0
and even integer p > 2, and g(x) is even, non-negative, bounded
and smooth with bounded and Lipschitz continuous first order
derivative.

Example 1. Let

g1(x) =


|x|p, |x| ≤ 1,
1, |x| > 1.

A simple choice of g satisfying Assumption 3 is

g2(x) =



c−1
|x|p, |x| ≤ a,

c−1


ap +

pap−1

2(b − a)
((b − a)2

− (|x| − b)2)


, a ≤ |x| ≤ b,

1, |x| ≥ b

where 0 < a < b < ∞ are two constants, and c = ap + pap−1(b−

a)/2. Fig. 2 illustrates the shape of these weight functions. The
three weight functions gi for i = 0, 1, 2 are closely related:

(i) g2(x) is a smoother version of g1(x); if a = b = 1, g2(x) =

g1(x).
(ii) g1(x) → g0(x) as p → ∞.
(iii) The larger the value of p, the lesser the weight on small

increments.

It turns out that, for properly chosen p and under Assump-
tions 1–3, we have

∆ϖβn V (ϖ, α, g)nt −→
P At

αβ

∫
∞

0

g(x)
x1+β

dx. (3.8)
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Fig. 2. Plots of g0(x) (piecewise point line), g1(x) (dashed curve) and g2(x) (solid
curve) with a = 6/5 and b = 7/5, where p = 6.

From this and for 0 < α < α′, we can define an estimator of β by

β̂n(t,ϖ, α, α′) =: log
V (ϖ, α, g)nt
V (ϖ, α′, g)nt


log


α′

α


. (3.9)

4. Asymptotic results

4.1. General cases

Here, we will establish the consistency and asymptotic
normality of the newly proposed estimator β̂n. Throughout the
paper, we will always assume that
(i) 0 < α < α′, 0 < ϖ < 1/2, and t > 0;
(ii) Assumptions 1–3 hold;

Before stating our theorems, we introduce some notation.
Let g(α, α′, x) = g(αx/α′) and g̃(α, α′, x) = g(x)g(α, α′, x).
Denote Cβ(k) =


∞

0 gk(x)/x1+βdx, k = 1, 2, and C ′

β =


∞

0 g̃
(α, α′, x)/x1+βdx.

Theorem 1. Assume that p > (2 − ϖβ)/(1 − 2ϖ), 0 ≤ β ′ <
β/2, γ > β/2, andϖ < 1/(2 + β).
1. On the set {At > 0}, we have

1

∆
ϖβ/2
n

(β̂n(t,ϖ, α, α′)− β) −→ vtN (0, 1), stably, (4.10)

where N (0, 1) is a standard normal r.v. independent of X and

v2t =


αβ

AtCβ(1)
1

log(α′/α)

2

×


Cβ(2)+


α′

α

β
(Cβ(2)− 2C ′

β)


.

2. On the set {At > 0}, we have

v̂−1
t (β̂n(t,ϖ, α, α′)− β) −→ N (0, 1), stably, (4.11)

where N (0, 1) is a standard normal r.v. independent of X and

v̂2t =


1

log(α′/α)

2

V (ϖ, α, g2)nt

V 2(ϖ, α, g)nt
+

V (ϖ, α, g2)nt

V 2(ϖ, α′, g)nt

−
2V (ϖ, α, g̃)nt

V (ϖ, α, g)nt V (ϖ, α′, g)nt


.

Remark 1. The convergence rate in (4.11) is not explicitly stated
in the theorem. It is in fact∆ϖβ/2n , the same as in (4.10).

Remark 2. The choice of ϖ controls the convergence rate in the
CLT in the theorem, with the bigger value ofϖ having a faster rate.
In Theorem 1, we require thatϖ < 1/(2 + β), so a conservative
choice isϖ < 1/4. By comparison, Aït-Sahalia and Jacod (2009b)
requires thatϖ < 1/(2 + β) ∧ 2/(5β) and a conservative choice
isϖ < 1/5. So potentially, Theorem 1might offer a faster conver-
gence rate.

Remark 3. The consistency of β̂n in fact holds if p > 2(1 −ϖβ)/
(1 − 2ϖ), β ′ < β and γ > 0, which is weaker than p > (2 −

ϖβ)/(1 − 2ϖ) given in Theorem 1. When p > 2(1 −ϖβ)/(1 −

2ϖ), small jumps dominate the increments of the continuous
part, and so we can extract information on β from small jumps.
Otherwise, increments of the continuous part will dominate the
small jumps; for example, for p = 4 < 2(1−ϖβ)/(1−2ϖ), Cont
and Mancini (2007) showed

∆4ϖ−1
n

3

[t/n]−
i=1


∆n

i X
∆ϖn

4

I(|∆n
i X | ≤ ∆ϖn )→

P
∫ T

0
σ 4
t dt. (4.12)

Hence, a conservative choice of p is p ≥ 4.

Remark 4. In Theorem1, the sample variance v̂2t approximates the
asymptotic variance v2t very well, as confirmed with our Monte-
Carlo simulations.

Remark 5. Our proposed estimator β̂n makes full use of all
increments, and hence its effective sample size should be larger
than that of β̄n. As a result, we expect that β̂n have smaller
asymptotic conditional variance than β̄n. Denote their asymptotic
conditional variances by v2(g) and v2(g0), respectively. From Aït-
Sahalia and Jacod (2009b), v2(g0) = (αβ − α′β)/{At(log(α′/α))2}.
Some simple algebras show that, for a and b sufficiently close to 1,

v2(g) ≤ v2(g0), g = g1 or g2.

We will only prove the case for g = g1 below, since the other case
can be done by letting a, b be close to 1. Since p − β < p, we have

v2(g1) <
(p − β)

pAt


log α′

α

2

(αβ + α′β)

2p
2p − β

− 2αβ
p

p − β
− 2α′β

 α
α′

p  β

2p − β
−

β

p − β


.

Comparing this with v2(g0) and in view of p > 2 and α < α′, we
have

v2(g0)− v2(g1) >
1

At(log(α′/α))2

β

2p − β

×


αβ + α′β

− 2αβ
 α
α′

p−β
> 0. �

5. Simulation studies

In this section, we conduct simulations to compare the finite
sample performances of our estimator β̂n and the Aït-Sahalia
and Jacod estimator, βn. To do this, we generate data from the
stochastic volatility model

dXt = σtdWt + θdYt (5.13)

and vt = σ 2
t satisfies

dvt = κ(η − vt)dt + γ v
1/2
t dBt ,

where E[dWtdBt ] = ρdt , and Yt is specified later.
We take κ = 5, η = 1/16, γ = 0.5, ρ = −0.5, α = 5/16 and

α′
= 2α, which are the same as in Aït-Sahalia and Jacod (2009b)

to facilitate comparison. We take T = 1 (day), consisting of 6.5 h
of trading per second, i.e., n = 23 400. We also choose the weight
function g2(x) in Example 1, and a = 6/5 and b = 7/5, and set
p = 6.

We consider two different models for the process Yt .
Model 1: Y is aβ-stable process. In (5.13),we take Yt to be a symmet-
ric β-stable process with β = 0.25, 0.5, 0.75, 1.00, 1.25, 1.50,
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Table 1
Comparisons of β̂n and βn , where Y is β-stable.

Tail prob. 0.10% 0.25% 0.5% 0.75%
β̂n (βn) β̂n (βn) β̂n (βn) β̂n (βn)

β = 1.75 bias 0.107 (0.113) 0.075 (0.064) 0.105 (0.105) 0.169 (0.149)
s.e. 0.457 (0.539) 0.263 (0.314) 0.181 (0.211) 0.148 (0.174)
MSE 0.219 (0.303) 0.075 (0.103) 0.044 (0.056) 0.051 (0.053)
MSE reduction 27.72% 27.18% 21.43% 3.77%

β = 1.50 bias 0.062 (0.070) 0.035 (0.031) 0.040 (0.020) 0.038 (0.043)
s.e. 0.399 (0.471) 0.231 (0.273) 0.163 (0.181) 0.128 (0.150)
MSE 0.163 (0.226) 0.055 (0.075) 0.028 (0.033) 0.018 (0.024)
MSE reduction 15.15% 25.00% 27.88% 26.67%

β = 1.25 bias 0.056 (0.056) 0.009 (0.030) 0.010 (0.019) 0.014 (0.013)
s.e. 0.346 (0.400) 0.202 (0.226) 0.141 (0.156) 0.114 (0.127)
MSE 0.123 (0.163) 0.041 (0.052) 0.020 (0.025) 0.013 (0.016)
MSE reduction 20.00% 18.75% 24.54% 21.15%

β = 1.00 bias 0.035 (0.051) 0.010 (0.011) 0.005 (0.007) 0.008 (−0.005)
s.e. 0.295 (0.324) 0.168 (0.196) 0.123 (0.135) 0.100 (0.109)
MSE 0.088 (0.107) 0.028 (0.039) 0.015 (0.018) 0.010 (0.012)
MSE reduction 16.67% 16.67% 17.76% 28.21%

β = 0.75 bias 0.024 (0.025) 0.013 (0.013) 0.002 (0.003) 0.004 (0.005)
s.e. 0.239 (0.268) 0.143 (0.163) 0.097 (0.114) 0.080 (0.089)
MSE 0.058 (0.072) 0.020 (0.027) 0.009 (0.013) 0.006 (0.008)
MSE reduction 30.77% 25.00% 19.44% 22.22%

β = 0.50 bias 0.005 (0.015) 0.005 (0.007) 0.002 (0.003) −0.000 (0.003)
s.e. 0.177 (0.196) 0.109 (0.125) 0.076 (0.089) 0.062 (0.067)
MSE 0.031 (0.039) 0.012 (0.016) 0.006 (0.008) 0.004 (0.005)
MSE reduction 25.00% 20.00% 20.51% 25.00%

β = 0.25 bias 0.006 (0.008) 0.003 (−0.001) 0.002 (−0.001) 0.001 (0.000)
s.e. 0.117 (0.140) 0.074 (0.083) 0.051 (0.059) 0.043 (0.049)
MSE 0.014 (0.020) 0.005 (0.007) 0.003 (0.004) 0.002 (0.003)
MSE reduction 30.00% 28.57% 25.00% 33.33%

and 1.75. We also calibrate θ to deliver some prespecified values
of the tail probability

P(|θ∆n
i Y | ≥ α∆ϖn ) ∼

cβθβ∆
1−ϖβ
n

βαβ
,

where cβ =
Γ (1 + β)

π
sin

βπ

2


. (5.14)

Model 2: Y is a CGMY process. In (5.13), we take θ = 1 and Yt to be
a CGMY process with the Lévy density:

f (x) =
c exp(−gx)

x1+β
I(x > 0)+

c exp(mx)
|x|1+β

I(x < 0).

The trajectories of the CGMYprocess could be approximately simu-
lated by the time-changed-Brownian-motion algorithm,where the
change of time is via the β/2 stable subordinator which is also a
Lévy process with the Lévy density: fss(x) = KI(x > 0)/x1+β/2
for some constant K ; see Poirot and Tankov (2006). In the simula-
tion, we fix g = m = 0.1, and β = 0.5, 0.75, 1.00, 1.25, 1.5.
We calibrate c such that 2∆n


∞

α∆ϖn

c
x1+β

(x)dx = jump intensity
at different levels.

Simulation results for β̂n are summarized in Tables 1–3, with
corresponding results forβn given in parentheses. In the tables, the
biases, standard errors (s.e.’s), and MSEs of β̂n are reported based
on 1000 simulations. For illustration, the MSEs given in Table 1 are
also presented in Fig. 3.

We make the following observations.

1. β̂n outperforms βn in terms of s.e.’s and MSEs.
The biases of both estimators are comparable to each other;

β̂n always have smaller s.e.’s (cf. Remark 5) and smaller MSEs.
We further note that biases are typically much smaller than
their corresponding s.e.’s, so that the MSEs are contributed
more from the s.e.’s, and less from the biases. In all cases, β̂n
outperforms βn in terms of s.e.’s and MSEs.

2. How much improvement is made by using β̂n instead of βn?

The improvement can bemeasured by the reduction inMSE,
defined by [MSE(β̂n) − MSE(βn)]/MSE(βn). From both tables,
we note that the reductions in MSE can be as high as 30%, and
most reductions are between 20% and 30% for both models.

In a few cases, only modest improvements have been made.
A closer inspection in those cases reveals that the bias/s.e.
ratios are also relatively high. To further improve performance,
one might consider applying some bias reduction techniques,
as was done in Aït-Sahalia and Jacod (2009b), although these
techniques are somewhat model-based.

3. The performances of both estimators depend on the value of β .
As β increases from 0 to 2, the s.e.’s and MSEs for both

estimators all tend to increase. This may not be surprising
since, the bigger the β is, the more difficult it is to separate Xd

t
from X c

t , themore contaminations from the continuous part the
increments will contain.

4. The performance is insensitive to the choice of p.
We used p = 6 in our simulations. Other values of p ranging

from 4 to 10 have also been tried, and similar conclusions have
been reached, showing that the performance is insensitive to
the choice of p. For lack of space, those results are not listed
here. We will illustrate this point again with a real example in
the next section.

6. A real example

In this section, we apply our procedure to the intra-day data
set of Microsoft (MSFT) on December 1, 2000, available from the
TAQ database. The log returns are plotted in Fig. 4, which clearly
indicates the existence of jumps.

Now we calculate the jump activity index by β̂n and βn. First,
we need to choose the thresholds α∆ϖn and α′∆ϖn . We take ∆n =

1.46 s, which is the average duration time between transactions.
We choose ϖ = 1/5 and α′

= 2α. In the case of β̂n, we take
g(x) = g2(x)with p = 6, as given in Example 1.
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Fig. 3. Plots of MSE vs. β . (1) Left Panels: Y = β-stable; Right Panels: Y = CGMY. (2) Starred lines: MSEs of βn; Dotted lines: MSEs of β̂n .

The purpose of this example is to investigate

(1) how to optimally determine the threshold α∆ϖn in β̂n and βn;
(2) how sensitive our estimates β̂n are as p varies.

(1) How to determine the threshold?

We suggest the following procedure to determine the threshold
α∆ϖn (or equivalently α). Note that the MSE of β̂n is MSE(β̂n;α) =

E(β̂n − β)2 = bias2(β̂n) + var(β̂n), which is a function of α. This
can be estimated by
MSE(β̂n;α) = bias2(β̂n)+ var(β̂n).

Here, we take var(β̂n) = σ̂ 2
T , as in Theorem 1. For bias(β̂n), we

suggest to use a two time-scaled method, which is feasible since,
under rather general conditions, we have

Eβ̂n = β + C∆1−2ϖ
n + o(∆1−2ϖ

n ). (6.15)

Finally, the optimal α is chosen to minimize the estimated MSE:

α∗
= argmin

α>0
MSE(β̂n;α).

We now apply this procedure to the real example. We allow
α to vary over a fine grid of different values, i.e., α = 0.0095,
0.00975, 0.01, 0.011, 0.012, 0.0125, 0.013, 0.014, 0.015, 0.0175,
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Table 2
Comparisons of β̂n and βn , where Y is a CGMY model.

Jump intensity 0.10% 0.25% 0.5% 0.75%
β̂n (βn) β̂n (βn) β̂n (βn) β̂n (βn)

β = 1.50 bias 0.060 (0.067) 0.033 (0.034) 0.051 (0.048) 0.065 (0.066)
s.e. 0.287 (0.336) 0.174 (0.197) 0.121 (0.140) 0.099 (0.110)
MSE 0.086 (0.0117) 0.032 (0.040) 0.017 (0.022) 0.014 (0.017)
MSE reduction 26.62% 21.25% 21.72% 15.15%

β = 1.25 bias 0.043 (0.046) 0.025 (0.029) 0.029 (0.023) 0.032 (0.033)
s.e. 0.261 (0.300) 0.162 (0.185) 0.115 (0.129) 0.089 (0.104)
MSE 0.070 (0.092) 0.027 (0.035) 0.014 (0.017) 0.009 (0.012)
MSE reduction 23.83% 23.93% 21.39% 24.58%

β = 1.00 bias 0.021 (0.019) 0.008 (0.005) 0.006 (0.007) 0.007 (0.007)
s.e. 0.221 (0.249) 0.133 (0.151) 0.094 (0.107) 0.075 (0.088)
MSE 0.049 (0.062) 0.018 (0.023) 0.009 (0.012) 0.006 (0.008)
MSE reduction 20.87% 22.37% 23.48% 25.97%

β = 0.75 bias 0.055 (0.059) 0.045 (0.045) 0.043 (0.040) 0.041 (0.038)
s.e. 0.191 (0.219) 0.116 (0.132) 0.081 (0.093) 0.067 (0.077)
MSE 0.040 (0.051) 0.015 (0.020) 0.008 (0.010) 0.006 (0.007)
MSE reduction 22.96% 21.03% 19.42% 16.44%

β = 0.50 bias 0.070 (0.070) 0.067 (0.067) 0.068 (0.064) 0.069 (0.066)
s.e. 0.155 (0.174) 0.095 (0.111) 0.066 (0.074) 0.055 (0.063)
MSE 0.029 (0.035) 0.014 (0.017) 0.009 (0.010) 0.008 (0.008)
MSE reduction 17.66% 19.64% 6.25% 7.23%

Table 3
Estimates of β when p varies.

p 4 4.5 5 5.5 6 6.5 7 8 10

n 1.532 1.529 1.522 1.512 1.503 1.496 1.487 1.475 1.458
s.e. 0.035 0.038 0.040 0.041 0.042 0.042 0.043 0.044 0.044
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Fig. 4. The left panel: Log returns of the MSFT on 12/01, 2000. The red line corresponds to the threshold 0.012∆1/5
n . The right panel: Estimated MSEs of β̂n (dashed line)

and βn (starred line) of the MSFT on Dec. 1, 2000. The two estimated MSE curves achieve the minimum at α∗
= 0.012 (starred) and α∗

= 0.125 (dashed), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.020, 0.0225, 0.025, 0.0275, 0.030. We restrict α in the range
(0.0095, 0.03) since βn already shoots above 2 beyond this range.
Note that twoMSE curves achieve theminimumatα∗

= 0.012 (for
βn) and α

∗
= 0.0125 (for β̂n), respectively. And correspondingly,

we obtain
β̂n = 1.503, s.e. = 0.042,
βn = 1.407, s.e. = 0.046.

Fig. 4 plots the MSEs of β̂n (dotted line) and MSEs of βn (star-line)
for α around α∗’s.

(2) How sensitive our estimate β̂n are as p varies?

Now let us investigate the sensitivity of our estimate β̂n to
changes of p. Although Theorem 1 requires that p be an even
integer, but here we also include some real-valued p’s. The
extension of the main results to real-valued p’s is still open. Let
p = 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10. For each p, we repeat the above

algorithm in finding the optimal α and get the corresponding β̂n.
They are listed in the Table 3.

From the table, we note that, as p increases from 4 to 10, there
is a decreasing trend for the estimate β̂n from 1.532 to 1.458, with
a range of 0.074. However, the change is very gradual, indicating
that the estimate β̂n is insensitive to the change in p. Furthermore,
there is almost no change in the s.e.’s.

Finally, we could treat both α and p as tuning parameters and
use the procedure in (1) to find the optimal values α∗ and p∗,
which minimize the estimated MSEs. Applying such a procedure,
we found that the optimal values are around α∗

= 0.013 and
p∗

= 5.

7. Proofs of main results

We will prove Theorem 1 only, since the proofs for others are
simpler and hence omitted. So we assume that all assumptions in
Theorem 1 hold in the sequel.
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Since the time horizon T is finite, by standard localization
method, we can simply prove all the results under the following
strengthened assumptions instead of Assumptions 1 and 2.

Assumption 4. The processes b and σ are bounded by some
constant L.

Assumption 5. Assumption 2 holds with Lt(ω) = L.

Without loss of generality, we assume that a = 2 in Assump-
tion 3, so that g(z) = zp for |x| ≤ 2.

Throughout the paper, K denotes a constant which may be
different at each occurrence. We use En

i and Et respectively as the
conditional expectation with respect to Fti−1 and Ft .

Write Xt = X c
t + Xd

t , where X c
t = X0 +

 t
0 bsds +

 t
0 σsdWs, and

Xd
t = xI(|x| ≤ 1) ⋆ (µ− ν)t + xI(|x| > 1) ⋆ µt

= xI(|x| > δ) ⋆ µt + xI(|x| ≤ δ) ⋆ (µ− ν)t

+ xI(δ < |x| ≤ 1) ⋆ νt
=: Xd

t (δ)
′
+ Xd

t (δ)+ B(δ).

Finally, we denote δn = α∆ϖn , and gn(x) = g(x/δn).

An outline of major steps in the proof of Theorem 1

We first prove (3.8) and the asymptotic normality of∆ϖβn V (ϖ,
α, g)nt , which, together with the continuous mapping theorem
and the delta method, renders the asymptotic normality of
β̂n(t,ϖ, α, α′).

To be more precise, write

∆ϖβn V (ϖ, α, g)nt −
At

αβ
Cβ(1) = I0 + I1 + I2,

where

I0 = ∆ϖβn V (ϖ, α, g)nt −∆ϖβn

[t/∆n]−
i=1

En
i gn(∆

n
i X),

I1 = ∆ϖβn

[t/∆n]−
i=1

En
i


gn(∆n

i X)−

∫ ti+1

ti

∫
R
gn(x)Ft(dx)dt


,

I2 = ∆ϖβn

[t/∆n]−
i=1

En
i

∫ ti+1

ti

∫
R
gn(x)Ft(dx)dt −

At

αβ
Cβ(1).

Lemma 1 shows that I1 →
P 0 if X = Xd, i.e., X is a pure jump

process. Lemma2 shows that the presence of a continuous partwill
not change the convergence of I1 to 0. Therefore, the combination
of Lemmas 1 and 2 proves I1 →

P 0. I2 →
P 0 is proved in Lemma 3.

The term I0 is a martingale w.r.t. {Fti , i = 0, . . . , [t/∆n]}, and
will be handled in Proposition 1, which gives stable convergence to
Gaussian random variable. To prove Theorem 1, we also need the
stable convergence mode which is guaranteed by Lemma 4.

7.1. Main lemmas

Before stating Lemma 1, we introduce more notation. Define

Nn
i =

−
ti−1≤t≤ti

I(|∆sX | > δn), and

Cn
i =

∫ ti+1

ti

∫
R
gn(x)Ft(dx)dt.

Let

Cn
i,1 =

∫ ti+1

ti

∫
|x|≤δn

gn(x)Ft(dx)dt, and

Cn
i,2 =

∫ ti+1

ti

∫
|x|>δn

gn(x)Ft(dx)dt.

By Assumption 2, F ′
t and F ′′

t are mutually singular, hence there
exists a predictable subset Φ of Ω × (0,∞) × R such that F ′′

and F ′ are supported onΦ andΦc , respectively. Rewrite Xd(δn) =

Xd
1 (δn)+ Xd

2 (δn), where

Xd
1 (δn) = xI(|x| ≤ δn)I(Φc) ⋆ (µ− ν),

Xd
2 (δn) = xI(|x| ≤ δn)I(Φ) ⋆ (µ− ν).

Lemma 1. Let ρ =
1
2 (1 −ϖβ) ∧ϖ(β − β ′) ∧ϖγ , if p ≥ 2, we

have

|En
i (gn(∆

n
i X

d)− Cn
i )| ≤ K∆1−ϖβ+ρ

n .

Proof. We have

En
i gn(∆

n
i X

d) = En
i [gn(∆

n
i X

d);Nn
i = 0] + En

i [gn(∆
n
i X

d);Nn
i = 1]

+ En
i [gn(∆

n
i X

d);Nn
i ≥ 2].

By (60) in Aït-Sahalia and Jacod (2009b), the last term≤ K∆2−2ϖβ
n .

To prove Lemma 1, it suffices to prove

|En
i [gn(∆

n
i X

d);Nn
i = 1] − En

i C
n
i,2| ≤ K∆1−ϖβ+ρ

n , (7.16)

|En
i [gn(∆

n
i X

d);Nn
i = 0] − En

i C
n
i,1| ≤ K∆1−ϖβ+ρ

n . (7.17)

Proof of (7.16). Note that Xd
= Xd(δn)+ Xd(δn)

′
+ B(δn), we first

show that the contribution of Xd(δn) + B(δn) is negligible. By the
mean value theorem,

gn(∆n
i X

d) = gn(∆n
i X

d(δn)
′)+ g ′

n(∆
n
i X

d(δn)
′)

× [∆n
i X

d(δn)+∆n
i B(δn)] + rn, (7.18)

where |rn| ≤ K [∆n
i X

d(δn) + ∆n
i B(δn)]

2/δ2n , since g ′ is Lipschitz
continuous. We first show that the second and the last term of
(7.18) are negligible in the mean on {Nn

i = 1}. Since g ′(0) = 0,
g ′

n(∆
n
i X

d(δn)
′)[∆n

i X
d(δn)+∆n

i B(δn)]I(N
n
i = 0)


= 0. (7.19)

By Assumption 5, note that Xd(δn) is a martingale,

∆n
i B(δn)
δn

≤


K∆1−ϖ

n β < 1;

K∆1−ϖ−ϵ
n β = 1;

K∆1−ϖβ
n β > 1;

(7.20)

and

En
i


Xd(δn)u − Xd(δn)ti−1

δn

2

≤ K∆1−ϖβ
n , (7.21)

where ti−1 ≤ u ≤ tti and K does not depend on u. By (7.20), (7.21),
and (60) inAït-Sahalia and Jacod (2009b), plus theCauchy–Schwarz
inequality and boundedness of g ′, we have

En
i


g ′

n(∆
n
i X

d(δn)
′)[∆n

i X
d(δn)+∆n

i B(δn)]I(N
n
i ≥ 2)


≤ K∆3(1−ϖβ)/2

n . (7.22)

Rewriting g ′
n(X

d(δn)
′) in the integral form, we have,

g ′

n(∆
n
i X

d(δn)
′)

=

∫ ti

ti−1

∫
|x|>δn

[g ′

n(X
d(δn)

′

u− − Xd(δn)
′

ti−1
+ x)

− g ′

n(X
d(δn)

′

u− − Xd(δn)
′

ti−1
)]µ(dx, du).

By the above equation and (7.20), we have

|En
i [g

′

n(∆
n
i X

d(δn)
′)∆n

i B(δn)]| ≤ K∆1−ϖβ+(1−ϖ−ϵ)∧(1−ϖβ)
n . (7.23)
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Since Xd(δn)
′ and Xd(δn) have no common jumps, by the product

rule,

En
i [g

′

n(∆
n
i X

d(δn)
′)∆n

i X
d(δn)]

= En
i

∫ ti

ti−1

∫
|x|>δn

[Xd(δn)u − Xd(δn)ti−1 ]

× [g ′

n(X
d(δn)

′

u − Xd(δn)
′

ti−1
+ x)− g ′

n(X
d(δn)

′

u

− Xd(δn)
′

ti−1
)]Fu(dx).

Again using the boundedness of g ′(·), (7.21), and the Cauchy–
Schwarz inequality, the left side of the above equation is less than
K∆3(1−ϖβ)/2

n . This, together with (7.23) results in

|En
i


g ′

n(∆
n
i X

d(δn)
′)[∆n

i X
d(δn)+∆n

i B(δn)]

| ≤ K∆3(1−ϖβ)/2

n , (7.24)

which, together with (7.19) and (7.22), results in that

|En
i (g

′

n(∆
n
i X

d(δn)
′)[∆n

i X
d(δn)+∆n

i B(δn)]I(N
n
i = 1))|

≤ K∆3(1−ϖβ)/2
n .

By the estimates on rn,

En
i rnI(N

n
i = 1) ≤ KEn

i


(∆n

i X
d(δn)+∆n

i B(δn))
2Nn

i


/δ2n .

Similar to obtaining (7.24), one easily gets En
i rnI(N

n
i = 1) ≤ K

∆
2−2ϖβ
n .
On the other hand, note that Xd(δn)

′ is a random step function,

En
i gn(∆

n
i X

d(δn)
′)I(Nn

i = 1)

= En
i

 −
ti−1≤s≤ti

gn(∆sXd(δn)
′)


I(Nn

i = 1)

= En
i

 −
ti−1≤s≤ti

gn(∆sXd(δn)
′)


(1 − I(Nn

i ≠ 1))

= En
i

 −
ti−1≤s≤ti

gn(∆sXd(δn)
′)



− En
i

 −
ti−1≤s≤ti

gn(∆sXd(δn)
′)


I(Nn

i ≥ 2)

= En
i C

n
i,2 − r∗

n , (7.25)

where r∗
n ≤ KEn

i N
n
i I(N

n
i ≥ 2), so r∗

n ≤ K∆2−2ϖβ
n since Nn

ti−1+s −

Nn
ti−1

, 0 ≤ s ≤ ∆n is a Poisson counting process with cumulative

intensity function as
 ti−1+s
ti−1


|x|>δn

Fti−1+s(dx)ds which is less than

K∆1−ϖβ
n . The combination of (7.22) and (7.25) completes the proof

of (7.16). �

Proof of (7.17). Let An
i = {|∆n

i B(δn)| > δn} and Bn
i = {|∆n

i X
d(δn)|

> δn}. On {Nn
i = 0}, Xd

= Xd(δn)+ B(δn). Then by the property of
g(·),

|En
i [gn(∆

n
i X

d);Nn
i = 0] − En

i [gn(∆
n
i X

d(δn));Nn
i = 0]|

≤ KEn
i

∆n
i B(δn)
δn

 I(An
i )+

p−1−
k=0

p
k


En
i

×

∆n
i X

d(δn)

δn

k ∆n
i B(δn)
δn

p−k

+ KEn
i

∆n
i B(δn)
δn

 I(Bn
i ). (7.26)

By (7.20), the first term in the last equation is eventually 0. Again
using (7.20) and (7.21), both the second and the third terms in the

last equation are less than K∆1−ϖβ+(1−ϖβ)∧(1−ϖ−ϵ)
n . On the other

hand,

En
i gn(∆

n
i X

d(δn))I(Nn
i = 0) = En

i gn(∆
n
i X

d(δn))+ Rn, (7.27)

where

Rn ≤ KEn
i


∆n

i X
d(δn)

δn

2

I(Nn
i ≥ 1)

≤ KEn
i


∆n

i X
d(δn)

δn

2

Nn
i ≤ K∆2(1−ϖβ)

n

by product rule and the fact that Nn
ti−1+s −Nn

ti−1
and Xd(δn) have no

common jumps. Let Ys = Xd(δn)ti−1+s − Xd(δn)ti−1 . By Itô’s lemma,

En
i


gn(Y∆n)− Cn

i,1


= En

i

∫ ∆n

0

∫
|x|≤δn

{gn(Ys + x)− gn(Ys)

− g ′

n(Ys)x − gn(x)}Fti−1+s(dx)ds

=: En
i

∫ ∆n

0

∫
|x|≤δn

Gn(Ys, x)Fti−1+s(dx)ds. (7.28)

where Gn(Ys, x) = gn(Ys + x)− gn(Ys)− g ′
n(Ys)x − gn(x) satisfies

|Gn(Ys, x)| ≤ K(x/δn)2, |x| ≤ δn, |Ys| > δn

=

p−2−
k=1

p
k


(Ys/δn)

k (x/δn)p−k

 , |x| ≤ δn, |Ys| ≤ δn.

It follows from this and Assumption 5 that

|En
i (gn(Y∆n)− Cn

i,1)|

≤ En
i

∫ ∆n

0

∫
|x|≤δn

|Gn(Ys, x)|I(|Ys| > δn)Fti−1+s(dx)ds

+ En
i

∫ ∆n

0

∫
|x|≤δn

|Gn(Ys, x)|I(|Ys| ≤ δn)Fti−1+s(dx)ds

≤ KEn
i

∫ ∆n

0
I(|Ys| > δn)

∫
|x|≤δn

(x/δn)2Fti−1+s(dx)ds

+ K∆−ϖβ
n

p−2−
k=1

∫ ∆n

0


En
i


Ys

δn

2k

I (|Ys| ≤ δn)

1/2

ds

≤ K∆3(1−ϖβ)/2
n . �

Next, we show that Lemma 1 still holds when there is a
continuous part.

Lemma 2. Let ρ ′
= ρ ∧ (p(1/2 −ϖ − ϵ)− (1 −ϖβ))∧ (1/2 −

ϖ − ϵ).

|En
i (gn(∆

n
i X)− Cn

i )| ≤ K∆1−ϖβ+ρ′

n .

Proof. Let 0 < η < 1/2 − ϖ . Now gn(∆n
i X) − gn(∆n

i X
d) = g ′

n

(∆n
i X

d)∆n
i X

c
+ R̃n. So we have En

i

gn(∆n
i X)− gn(∆n

i X
d)
 ≤ J1 +

J2 + J3,where

J1 = En
i

gn(∆n
i X)− gn(∆n

i X
d)
 I(|∆n

i X
c/δn| > ∆ηn),

J2 =
En

i g
′

n(∆
n
i X

d)(∆n
i X

c)I(|∆n
i X

c/δn| ≤ ∆ηn)
 ,

J3 =

En
i R̃nI(|∆n

i X
c/δn| ≤ ∆ηn)

 .
For J1, since |gn| < K , for arbitrarily large q, we have J1 ≤ KEn

i

I(|∆n
i X

c/δn| > ∆
η
n) ≤ K∆q(1/2−ϖ−η)

n .
For J2, by Lemma 1, we have J2 ≤ K∆1−ϖβ+η

n .
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For J3, by Lemma 1, we have

J3 ≤ KEn
i


∆n

i X
c

δn

2

I
∆n

i X
c

δn

 ≤ ∆ηn


I
∆n

i X
d

δn

 > 1


+ En
i

p−
k=2

p
k

 ∆n
i X

c

δn

k ∆n
i X

d

δn

p−k

× I
∆n

i X
c

δn

 ≤ ∆ηn


I
∆n

i X
d

δn

 ≤ 1


≤ K∆2η+1−ϖβ
n + K∆

p

1
2 −ϖ


n + K∆(p−1)(1/2−ϖ)+η

n .

Taking η = 1/2 −ϖ − ϵ proves the lemma. �

Lemma 3. Let ρ ′′
=

1
2 ∧ϖ(β − β ′) ∧ (ϖγ ), then∆ϖβn

[t/∆n]−
i=1

En
i

∫ ti

ti−1

∫
R
gn(x)Fs(dx)ds −

Cβ(1)At

αβ

 ≤ K∆ρ
′′

n .

Proof. By Assumption 2, En
i

 ti
ti−1


R gn(x)Ft(dx)dt =: I ′i + II ′i , where

I ′i = En
i

∫ ti

ti−1

∫
R
gn(x)F ′

t (dx)dt,

II ′i = En
i

∫ ti

ti−1

∫
R
gn(x)F ′′

t (dx)dt.

First, we look at I ′i . By change of variable,

I ′i = En
i

∫ ti

ti−1

∫
R
g(y)Ft(δndy)dt

= δ−β
n Cβ(1)En

i

∫ ti

ti−1

(a(+)t + a(−)t )dt + Dn
i , (7.29)

where |Dn
i | ≤ K∆ϖγn by Assumption 5 and boundedness of

g(·). Let An
i =

 ti
ti−1
(a(+)t + a(−)t )dt , then An

i − En
i A

n
i , 1 ≤ i ≤

n, are martingale sequences with respect to Fti , 1 ≤ i ≤ n.
Since a(+)t and a(−)t are bounded,

∑[t/∆n]
i=1 En

i (A
n
i )

2
≤ K∆n. By

Doob’s inequality,
∑[t/∆n]

i=1 (An
i − En

i A
n
i )

 ≤ K∆1/2
n , so by (7.29),∆ϖβn

∑[t/∆n]
i=1 I ′i − α−βAtCβ(1)

 ≤ K∆1/2∧ϖγ
n .

Similarly, we have |∆
ϖβ
n
∑n

i=1 II
′

i | ≤ K∆ϖ(β−β ′)∧1/2
n . �

To prove the stable convergence, we need the following lemma.

Lemma 4. Let h = 1 −ϖβ/2 and h′
= (−ϖβ) ∧


−ϖβ −ϖ +

1−ϖβ
2


. For any bounded martingale M, 0 < s < ∆n,

|Et(Mt+s − Mt)gn(Xt+s − Xt)|

≤ K(∆(1−ϖβ+ρ′)∧h
n + ϵn∆

h
n +∆h′

n s(Et(Mt+s − Mt)
2)1/2), (7.30)

where ϵn ↓ 0 as∆n → 0.
Proof. By the proof of 2, it suffices to show that (7.30) holds with
X replaced by Xd. By Ito’s formula and (80) in Aït-Sahalia and Jacod
(2009b),

(Mt+s − Mt)gn(Xd
t+s − Xd

t ) = martingale term +

∫ s

0
rnudu, (7.31)

where

rnu =

∫
R
Ft+u(dx)[(Mt+u − Mt)ψn(Xd

t+u − Xd
t , x)

+ δ(t + u, x)hn(Xd
t+u − Xd

t , x)], (7.32)

where δ(·, ·) is some bounded and predictable function, hn(y, x) =

gn(y+ x)−gn(y), and ψn(y, x) = gn(y+ x)−gn(y)−g ′
n(y)xI(|x| ≤

1). It is easy to see that

|ψn(y, x)| ≤ K


1 +


y
δn

2 1
δn


I(|x| > δn)I(|y| ≤ δn)

+ K

1 +

1
δn


I(|x| > δn)I(|y| > δn)

+ K


x
δn

2

I(|x| ≤ δn). (7.33)

By the Cauchy–Schwarz inequality, the inequality |hn(y, x)| ≤

K

I(|x| > δn)+

|x|
δn
I(|x| ≤ δn)


, Assumption 5 and (81) in Aït-

Sahalia and Jacod (2009b), we have∫ s

0

∫
R
Ft+u(dx)|δ(x, t + u)|hn(y, x)du

≤ K∆1−ϖβ/2
n


ϵ′

n +

Et(Mt+s − Mt)

21/2 , (7.34)

where ϵ′2
n = max0≤u≤∆n


|x|≤δn

δ2(x, t + u)Ft+u(dx). Let ϵn = Etϵ′2
n ,

then by the monotone convergence theorem ϵn ↓ 0. From (7.33),
we have∫

R
Ft+u(dx)ψn(y, x)


≤ K∆−ϖβ

n


1 +


y
δn

2  1
δn


I(|y| ≤ δn)+

1
δn

I(|y| > δn)


.

From this, the Cauchy–Schwarz inequality and Lemma 1, we have

Et

∫ s

0

∫
R
ψn(Xd

t+u − Xd
t , x)Ft+u(dx)|Mt+u − Mt |du

≤ K∆h′

n s

Et(Mt+s − Mt)2. (7.35)

Combining (7.32) (7.34) and (7.35),wehaveproved the lemma. �
We now present some results on the bias term I as follows.

Lemma 5. If M is a bounded martingale, we have

∆−ϖβ/2
n

∆ϖβn

[t/n]−
i=1

En
i [gn(∆

n
i X)] −

At

αβ
Cβ(1)

→P 0, (7.36)

∆ϖβ/2n

[t/n]−
i=1

|En
i [∆

n
i M(gn(∆

n
i X))]| →

P 0. (7.37)

Proof. (7.36) is the consequence of Lemmas 1–3. Then it remains
to prove (7.37). By (7.30), the left hand side of (7.37) is less than

K(∆ρ
′
−ϖβ/2

n + ϵn∆
h+ϖβ/2−1
n )

+ K∆1/2+h′
+ϖβ/2

n

[t/n]−
i=1


∆nEn

i (∆
n
i M)

21/2 . (7.38)

By the Cauchy–Schwarz and Jensen inequalities and orthogonality
of martingale differences, we have
[t/n]−
i=1


∆nEn

i (∆
n
i M)

21/2
≤ t


[t/n]−
i=1

En
i (∆

n
i M)

2

1/2

≤ t

E(MT − M0)

21/2 < ∞.

From this and choices of ϖ , we see that all the power exponents
on∆n in (7.38) are positive. This finishes the proof of (7.37). �

Corollary 1. We have∆ϖβn
∑[t/n]

i=1 En
i g

2
n (∆

n
i X)→

P At
αβ

Cβ(2).
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7.2. Consistency and asymptotic normality of∆ϖβn V (ϖ, α)nt

Recall that g̃(α, α′, x) = g(x)g(αx/α′), and ḡ(α, α′, x) =

g(αx/α′). Further, let C ′

β =


∞

0 g̃(α, α′, x)/x1+βdx and C̄β(k) =
∞

0 ḡk(α, α′, x)/x1+βdx.

Proposition 1. Let α′ > α. Then, the pair of processes

∆−ϖβ/2
n


∆ϖβn V (ϖ, α)nt −

At

αβ
Cβ(1),∆ϖβn V (ϖ, α′)nt

−
At

(α′)β
Cβ(1)


(7.39)

converges stably in law to a continuous Gaussianmartingale (W ,W
′
)

with

Et(W
2
) =

At

αβ
Cβ(2), Et(W

′2
) =

At

αβ
C̄β(2),

Et(W W
′
) =

At

αβ
C ′

β . (7.40)

Proof. Let

ζ n
i = ∆ϖβ/2n (gn(∆n

i X)− En
i gn(∆

n
i X)). (7.41)

Define respectively ζ ′n
i and gn(x)′ by the definition of ζ n

i and gn(x)
with α replaced by α′. By virtue of (7.36) and the Slutsky theorem,
considering the paired triangular arrays (ζ n

i , ζ
′n
i )

[t/∆n]
i=1 is enough.

Note that the convergencemode is stable convergence, and that for
fixed n, (ζ n

i , ζ
′n
i )

[t/∆n]
i=1 are martingale increments. So by Theorem

IX.7.28 of Jacod and Shiryaev (2003), it suffices to show that

[t/∆n]−
i=1

En
i (ζ

n
i )

2
→

P Et(W
2
);

[t/∆n]−
i=1

En
i (ζ

′n
i )

2
→

P Et(W
′2
);

[t/∆n]−
i=1

En
i (ζ

n
i ζ

′n
i )→

P Et(W W
′
).

(7.42)



[t/∆n]−
i=1

En
i (ζ

n
i ∆

n
i M)→

P 0;

[t/∆n]−
i=1

En
i (ζ

′n
i ∆

n
i M)→

P 0.

(7.43)

By definition, gn(x)′ = ḡ(α, α′, x/δn). By Lemma 2, ∆ϖβn
∑[t/n]

i=1

(En
i gn(∆

n
i X))

2,∆
ϖβ
n
∑[t/n]

i=1 (E
n
i gn(∆

n
i X)

′)2 and ∆
ϖβ
n
∑[t/n]

i=1 (E
n
i gn

(∆n
i X))(E

n
i gn(∆

n
i X)

′) are negligible. Therefore, the first two equa-
tions of (7.42) are consequences of Corollary 1. From the defini-
tion of gn(x) and gn(x)′, gn(x)gn(x)′ = g̃(α, α′, x/δn). Replace gn(x)
in (7.36) by g̃(α, α′, x/δn), (7.36) still holds with the right side re-
placed by AtC ′

βα
−β , hence the third equation of (7.42). (7.43) is true

due to (7.37). �

7.3. Proof of Theorem 1

Set ξn(α) = ∆
−ϖβ/2
n


∆
ϖβ
n V (ϖ, α)nt −

At
αβ

Cβ(1)

. Then

1

∆
ϖβ/2
n

(β̂n(t,ϖ, α, α′)− β)

=
−∆

ϖβ/2
n

log(α′/α)
log

1 +∆
ϖβ/2
n

αβ

At
1

Cβ (1)
ξn(α)

1 +∆
ϖβ/2
n

(α′)β

At
1

Cβ (1)
ξn(α′)

,

which is asymptotically equivalent to

αβ

At log(α′/α)
[ξn(α)/Cβ(1)− ξn(α

′)/C̄β(1)]. (7.44)

Then part 1 of Theorem 1 follows from Proposition 1 and (7.44),
where we have used the mode of stable convergence.

By the relation among g, ḡ and g̃ , Proposition 1 and its proof
yields the consistency of σ̂ 2

t to σ 2
t . Using the stable convergence

again, Part 2 of Theorem 1 can be obtained readily. �
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