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Comment: A Selective Overview of
Nonparametric Methods in
Financial Econometrics
Per A. Mykland and Lan Zhang

We would like to congratulate Jianqing Fan for an
excellent and well-written survey of some of the lit-
erature in this area. We will here focus on some of
the issues which are at the reserach frontiers in finan-
cial econometrics but are not covered in the survey.
Most importantly, we consider the estimation of actual
volatility. Related to this is the realization that financial
data is actually observed with error (typically called
market microstructure), and that one needs to consider
a hidden semimartingale model. This has implications
for the Markov models discussed above.

For reasons of space, we have not included refer-
ences to all the relevant work by the authors that are
cited, but we have tried to include at least one refer-
ence to each of the main contributors to the realized
volatility area.

1. THE ESTIMATION OF ACTUAL VOLATILITY:
THE IDEAL CASE

The paper discusses the estimation of Markovian
systems, models where the drift and volatility coeffi-
cients are functions of timet or statex. There is, how-
ever, scope for considering more complicated systems.
An important tool in this respect is the direct estima-
tion of volatility based on high-frequency data. One
considers a system of, say, log securities prices, which
follows:

dXt = µt dt + σt dBt ,(1)

whereBt is a standard Brownian motion. Typically,µt ,
the drift coefficient, andσ 2

t , the instantaneous variance
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(or volatility) of the returns processXt , will be sto-
chastic processes, but these processes can depend on
the past in ways that need not be specified, and can be
substantially more complex than a Markov model. This
is known as anItô process.

A main quantity of econometric interest is to obtain

time series of the form�i = ∫ T +
i

T −
i

σ 2
t dt , i = 1,2, . . . .

HereT −
i andT +

i can, for example, be the beginning
and the end of day numberi. �i is variously known
as theintegrated variance (or volatility) or quadratic
variation of the processX. The reason why one can
hope to obtain this series is as follows. IfT −

i = t0 <

t1 < · · · < tn = T +
i spans day numberi, define there-

alized volatility by

�̂i =
n−1∑

j=0

(
Xtj+1 − Xtj

)2
.(2)

Then stochastic calculus tells us that

�i = lim
max|tj+1−tj |→0

�̂i .(3)

In the presence of high frequency financial data, in
many cases with transactions as often as every few sec-
onds, one can, therefore, hope to almostobserve �i .
One can then either fit a model to the series of�̂i , or
one can use it directly for portfolio management (as
in [12]), options hedging (as in [29]), or to test good-
ness of fit [31].

There are too many references to the relationship (3)
to name them all, but some excellent treatments can
be found in [27], Section 1.5; [26], Theorem I.4.47
on page 52; and [33], Theorem II-22 on page 66. An
early econometric discussion of this relationship can
be found in [2].

To make it even more intriguing, recent work both
from the probabilistic and econometric sides gives
the mixed normal distribution of the error in the ap-
proximation in (3). References include [6, 25, 31].

The random variance of the normal error is 2
T +

i −T −
i

n
·
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∫ T +
i

T −
i

σ 4
t dH(t), whereH is thequadratic variation of

time. H(t) = t in the case where theti are equidistant.
Further econometric literature includes, in particu-

lar, [3, 4, 8, 9, 14, 18, 32]. Problems that are attached to
the estimation of covariations between two processes
are discussed in [22]. Estimatingσ 2

t at each pointt
goes back to [13]; see also [30], but this has not caught
on quite as much in econometric applications.

2. THE PRESENCE OF MEASUREMENT ERROR

The theory described above runs into a problem with
real data. For illustration, consider how the realized
volatility depends on sampling frequency for the stock
(and day) considered in Figure 1. The estimator does
not converge as the observation pointsti become dense
in the interval of this one day, but rather seems to take
off to infinity. This phenomenon was originally docu-
mented in [2]. For transaction data, this picture is re-
peated for most liquid securities [19, 37].

In other words, the model (1) is wrong. What can one
do about this? A lot of people immediately think that

the problem is due to jumps, but that is not the case.
The limit in (3) exists even when there are jumps. The
requirement for (3) to exist is that the processX be a
semimartingale (we again cite Theorem I.4.47 of [26]),
which includes both Itô processes and jumps.

The inconsistency between the empirical results
where the realized volatility diverges with finer sam-
pling, and the semimartingale theory which dictates
the convergence of the realized volatility, poses a prob-
lem, since financial processes are usually assumed
to be semimartingales. Otherwise, somewhat loosely
speaking, there would be arbitrage opportunities in
the financial markets. For rigorous statements, see, in
particular, [11]. The semimartingaleness of financial
processes, therefore, is almost a matter of theology in
most of finance, and yet, because of Figure 1 and sim-
ilar graphs for other stocks, we have to abandon it.

Our alternative model is that there is measurement
error in the observation. At transaction numberi, in-
stead of seeingXti from model (1) or, more generally,
from a semimartingale, one observes

Yti = Xti + εi.(4)

FIG. 1. Plot of realized volatility for Alcoa Aluminum for January 4, 2001. The data is from the TAQ database. There are 2011 trans-
actions on that day, on average one every 13.365seconds. The most frequently sampled volatility uses all the data, and this is denoted as
“ frequency = 1.” “ Frequency = 2” corresponds to taking every second sampling point. Because this gives rise to two estimators of volatility,
we have averaged the two. And so on for “ frequency = k” up to 20.The plot corresponds to the average realized volatility discussed in [37].
Volatilities are given on an annualized and square root scale.
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We call this thehidden semimartingale model. The ra-
tionale is (depending on your subject matter) either
that a transaction is a measurement of the underlying
priceXti , and of course there is error, or that it is due to
market microstructure, as documented by, among oth-
ers, Roll [34], Glosten [15], Glosten and Harris [16],
Brown [7], Harris [20] and Hasbrouck [21]. See [1] for
a discussion of this.

A natural model for the error is that it is either i.i.d.
or a stationary process, as considered by Zhou [38],
Gloter and Jacod [17], Zhang, Mykland and Aït-
Sahalia [37], Bandi and Russell [5], Zhang [36],
Aït-Sahalia, Mykland and Zhang [1] and Hansen and
Lunde [19].

Under quite loose conditions, this alternative model
is consistent with the plot in Figure 1. Instead of (3),
one gets that the realized volatility becomesnE(ε1 −
ε0)

2 + Op(n−1/2). In the early literature (as cited in
the previous section), the problem is usually taken care
of by (sic) reducingn. A variety of approaches that
improve on this are documented in [37], to which we
refer for an in depth discussion. As demonstrated by
Zhang [36], the true volatility�i can be consistently
estimated at rateOp(n−1/4), as opposed toOp(n−1/2)

when there is no error. This is not as slow as it seems,
sincen is quite large for liquid securities.

An alternative description of the error is that it arises
due to rounding (financial instruments are, after all,
traded on a price grid). Research in this direction has
been done by Delattre and Jacod [10] and by Zeng [35].
To first order, the rounding and additive error models
are similar, as documented by Delattre and Jacod [10];
see also [28].

It is awkward that these models imply the existence
of arbitrage. The size of the error, however, is so small
that it is hard to take economic advantage of them, and
this, presumably, is why such deviations can persist.

3. IMPLICATIONS FOR MARKOV MODELS

We now return to the subject to Jianqing Fan’s
overview, namely the Markov case. It is clear that the
model without observation error is not consistent with
the data. This may not be a problem when working
with, say, daily data, but would pose problems when
using high-frequency (intraday) observations. It is pre-
sumably quite straightforward to extend the methods
discussed in the paper to the case of observation er-
ror, and it would be interesting to see the results. The
same applies to similar studies on Markov models
by the “French school,” such as Hoffmann [23] and
Jacod [24].
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